PREFACE

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,”
the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations
for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and
Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based
credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this
entire exercise shall leverage the potential of higher education in three-fold ways — learner’s personal
enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively
therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of
an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in
upholding the qualitative parameters. It is time to acknowledge that the implementation of the National
Higher Education Qualifications Framework (NHEQF) and its syncing with the National Skills
Qualification Framework (NSQF) are best optimised in the arena of Open and Distance Learning that is
truly seamless in its horizons. As one of the largest Open Universities in Eastern India that has been
accredited with ‘A’ grade by NAAC in 2021, has ranked second among Open Universities in the NIRF in
2024, and attained the much required UGC 12B status, Netaji Subhas Open University is committed to
both quantity and quality in its mission to spread higher education. It was therefore imperative upon us to
embrace NEP 2020, bring in dynamic revisions to our Undergraduate syllabi, and formulate these Self
Learning Materials anew. Our new offering is synchronised with the CCFUP in integrating domain
specific knowledge with multidisciplinary fields, honing of skills that are relevant to each domain,
enhancement of abilities, and of course deep-diving into Indian Knowledge Systems.

Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open
University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s.
From our mandate of offering quality higher education in the mother tongue, and from the logistic
viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English.
All our faculty members are constantly engaged in this academic exercise that combines subject specific
academic research with educational pedagogy. We are privileged in that the expertise of academics across
institutions on a national level also comes together to augment our own faculty strength in developing
these learning materials. We look forward to proactive feedback from all stakeholders whose participatory
zeal in the teaching-learning process based on these study materials will enable us to only get better. On
the whole it has been a very challenging task, and | congratulate everyone in the preparation of these
SLM’s.

I wish the venture all success.

Professor Indrajit Lahiri
Vice Chancellor
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1.1 Objectives

The aim of this unit is to recall some definitions and useful results for studying
and understanding clearly the next units 2, 3 and 4.

1.2 Introduction

Real analysis is a development of the set of real numbers and real valued
functions. Therefore the concept of set and function are very much needed to study
real analysis. For that purpose, in this unit, some basic terms and results about set
and function are discussed.

1.3 Sets

A set 1s a well defined collection of distinct objects. Here well defined means it
must be possible to tell without any ambiguity whether a given object belongs to that
collection or not. Sets are usually denoted by capital letters A, B, S, ...etc.

If an object x is a member of a set S, then we write x € S and read as ‘x belongs
to S’ or ‘x is a member of a set S’. If y is not an element of S, we write y ¢ S and
read as ‘y does not belongs to S’.

Example : The collection of the letters of the word ‘logic’ is a set as it is a well
defined collection of distinct objects. If we denote this set by S, then

S={l,o0,g1,c}
We can also write the set as



8 NSOU e 5CC-MT-02

S = {x : x = a letter of the word logic}.

The first form of S is known as tabular form, where the second one is known as
set-builder form of S. The order, in which the objects of a set are taken is immaterial.

Some special sets are denoted as

IN = the set of all natural numbers.

[J = the set of all integers.

[J = the set of all rational numbers.

IR = the set of all real numbers.

¢ = the set of all complex numbers.

Finite and Infinite set : If the number of elements of a set is finite (respectively
infinite) then set is called finite (respectively infinite) set.

For example, the collection of all prime numbers between 10 and 20 is a finite
set. If we denote this set by P, then P = {11, 13, 17, 19}, which contains only four
(finite) elements. Again the set F = {x : x is a fraction and 0 < x < 1} is an infinite

set as it contains infinite number of elements. Above IN, [J, [JIR and [] are all
infinite sets.

Null Set : A set is called null (or void or empty) set if it has no member in it.
It is denoted by ¢ and written as ¢ = { }.

For example, the set of all prime numbers between 32 and 36 is a null set.

Sub set and super set of a set : If every element of a set A is also an element
of a set B, then A is said to be a subset of B. We write this as A < B. Here A is
contained in B.

Thus A ¢ B if vxeA=xeB.

If A < B then B is said to be a superset of A. We write this as B o A. Here
B contains A.

For any set A, we have ¢ c A and A c A. The sets ¢ and A (entire set) are

called improper subsets of A. Any other subset of A, if exists, is called a proper
subset of A.

It may be clear that a set S is called a proper subset of A, written as S < A, if

forany xeS=xecA, but 3ye A such that y¢S.

Moreover, two sets A and B are said to be equal, written as A = B, if A < B
and B c A.

Singleton set : If a set consists of exactly one element then it is called singleton
set.
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For example, the set {1} is a singleton set.

Universal set : If all the sets under study are subsets of a particular set, then that
particular set is called the universal set.

Power set of a set : Let A be any set. The set of all subsets of the set A is called
the power set of A and it is denoted by P(A).

For example, if A = {a, b, ¢} then

P(A) = {¢,{a}, {b}, {c}, {a, b}, {b, c}, {c,a}, A} .

Note that if A contains ‘n’ elements then P(A) contains 2" elements.
Set operations : Some important operations on sets are :

Union and Intersection of sets : If A is any arbitrary index set then {A. :1e A}
is called an arbitrary collection or family of sets. The union of the above arbitrary

family of sets, denoted by UAi, is defined by

UA, ={x:xe€ A for at least one i e A}

and the intersection of the above arbitrary family of sets, denoted by

ﬂAiz{X:XEAifOT every 1 € A},

Thus for any two sets A and B, the union of A and B, denoted by AUB, is
defined by

AUB = {x:xe AorxeBorxeboth A and B}. . = 3
A 2 'B

The Venn-diagram representation of it as >
The intersection of A and B, denoted by A ~ B, \V/

is defined by AnB={x:x e A and x € B}. AUB

It’s Venn-diagram representation is

Disjoint sets : Two sets A and B are called A B
disjoint if ANB=¢. That means the disjoint sets
have no common element. ANB

Difference of sets : Let A and B be any two sets. The difference of B from A,
denoted by A — B, is defined by

A—-B= {x:xeAbutxgB}.
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Its Venn-diagram representation is

For example, if A = {0, 1, 2, 3, 4} and

B = {2, 4, 6, 8} then

A-B=1{0,1,3} and B- A = {6, 8}. A_B

Thus A —B # B — A and it is true in general. The symmetric difference of A and
B, denoted by A A B, is defined by A A B = (A - B) uB - A).

Complement of a set : Let U be an Universal set and A < U. The complement
of A, denoted by A' (or A°), is defined by

A°={x:xeuvand x ¢ A}.

Its Venn-diagram representation as A"
It is clear that U

Also for any two sets A and B, AcB= B c A°.
Laws of Algebra of sets
(i) Idempotent laws : For any set A, AUA=A,ANA=A.
(i) Identity laws : For any set A, AUd=A, ANU=A.
(iii) Commutative laws : For any sets A and B, we have
AUB=BUA,ANB=BNA.
(iv) Associative laws : For any three sets A, B and C, we have
(AUB)UC=AUMBUC), (ANB)YNC=AN(BNC)
(v) Distributive laws : For any three sets A, B and C, we have
AUBNC)=AUB)NAUC),ANBUC)=(ANB)UANC).

(vi) De-Morgan’s laws : For any two sets A and B, we have
(AUB) =A°NB°, (ANB) =A°UB®
Cardinality of a set : For any set A, the number of elements of A is called the
cardinality of A and it is denoted by n(A).
It may be noted that n(¢p) = 0 and n(B) = © for an infinite set B.
For any two finite sets A and B, we have

n(AUB)=n(A)+n(B)-n(AB).
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Also for any three finite sets A, B, and C, we have

n(AUBUC)=n(A)+n(B)+n(C)—-n(ANB)-n(BNC)
-n(ANC)+n(ANBNC).
Cartesian product of sets : The cartesian product of any two sets A and B,
denoted by A x B, is defined by A x B={(a,b) : a € A and b € B}.

Similarly we can define B XA = {(b, a) : b € B and a € A}.

In general, A x B # B x A.

For any set A, we have A x ¢ = ¢ = ¢ x A.

The cartesian product of any three sets A, B and C can be similarly defined as
AxBxC={(a,b,c);:acA,beB,ceC}

Similarly the cartesian product of n sets A, A, ..., A_is defined as
A xA,x..xA ={(a,a,,...,a ):a, €A, 1<1<n},

where (a, a,, ...., a ) is known as an ordered n-tuple.

If IR is the set of real numbers, then IR*? = IR x IR = {(x,y):x IR, yeIR}

represents the set of all ordered pairs of real numbers, i.e., the cartesian plane.

Similarly IR’ =IR xIR xIR ={(x,y,z):x € IR, y € IR,z € IR} represents the three
dimensional space, i.e., the Euclideam space.

n _ IRXIR X...XIR _ . <i<
And IR" = (n times) {(X},X5,...,X;) :X; € IR,1<1<n} represents  the

n-dimensional Euclidean space.

1.4 Functions or Mappings

Let X and Y be any two sets. A function or mapping f of X to Y is a rule which
associates to each element x in X, a unique element y in Y and it is written as f :
X = Y. Here X and Y are called respectively the domain and codomain of f. Also
y is called the f-image of x and written as y = f(x), while x is called pre-image of
y. The set of all f-images of (the elements of) X, denoted by f(X), is called the image

of X under f or range of f. of course f(X)cY.

Types of functions : There are many kind of functions such as :
One-one function A function f: X — Y is said to be one-one (or injective) if



12 NSOU e 5CC-MT-02

distinct elements of X have distinct images. Thus f : X — Y is injective if for all

X;,X, € X, X, #x, = f(x,) #f(x,) or equivalently f(x,)=1(x,)=x, =Xx,.

=Y
|

f = Y3
X Y
Many one functions : A function f : X — Y is called many one function if
3x,,x,in X, X, #X,such that f(x,) = f(x,).

X Y

Into function : A function f: X —Y is called an into function if f(X)cY.

In this case, we say that f maps X into Y.

f Q
X Y
Onto function : A function f: X — Y is said to be onto (or surjective) function
if f(X) =Y.
In this case, we say that f maps X onto Y.

A function f : X — Y is called bijective if f is injective and surjective, i.e., one-
one and onto.

Constant function : A function f: X — Y is called constant if

f(x)=c Vx € X, where ¢ is an element in Y. Here f(X) is a singleton set.
Identity function : A function f : X — Y is said to be identity function if
f(x) =xVx e X. Such a function on X is denoted by I or simply L
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Equal functions : Two functions f: X - Y and h: X — Y are said to be equal
if f(x) = h(x) Vx € X.In this case, we write f=h.

The sum, difference and the product of two functions f : X — Y and h :
X — Y are defined as

(f+hx) = f(x)+h(x) Vxe X

(f-h)(x) = f(x)-h(x)VxeX

and (fh)(x) = f(x) h(x) Vx e X.

If h(x)#0Vx e X, the quotient f/h is defined as

(f/h)(x) =f(x)/h(x) Vx € X.

Also (cf)(x) =cf(x),celR.

Restriction and Extension of a function : Let f : X — Y be a function and
A(# ¢) < X. The function h : A — Y defined by h(x)=f(x)Vx € A,is called the
restriction of f to A and it is denoted by f/A. Thus h = f/A.

Ifh: A — Y is arestriction of f: X — Y then f is called an extension of h to

X.

As the f-images of the elements of X — A can be choosen arbitrarily, the
extension f of h to X is not unique.

Composite function : Let f: X — Y and g : Z — W be two functions such that

f(x)c Z

Then the composite of f and g is a function g of : X — W defined by

(gof)(x) =g(f(x)) Vx e X.

Thus the composite function g of : X — W is defined only when f(X) is a subset
of the domain of g.

The existence of gof does not ensure the existence of fog.
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Property of composite functions : Some important properties regarding composite
functions are as follows :

(1) For two functionsf : X > Y and g : Y — X, both gof : X -X and fog:
Y — Y are defined. However, gof # fog, in general, i.e., the operation of composite
function is not commutative.

(2) For three functions f: X > Y, g: Y > Zand h: Z —> W, h o (gof) = (hog)of,
1.e. the operation of composite function is associative.

B)Iff: X > Yand g: Y — Z are both bijective functions then gof is also
bijective function. However, the converse of this statement may not be true.

Inverse of a function : Let f: X — Y be a bijective function. Then f is said to
be invertible if 3 a function g : Y — X such that gof =1, and fog=1, . This g is
called the inverse of f and written as g = f'.

It may be noted that the inverse of an inylertible_lmapping is unique. Also if
f: X — X is an invertible mapping then fof =I=fof, where I is the identity
mapping on X.

Properties of Inverse functions :

!
(1) For an invertible mapping f : X = Y, (f) =f.

-1
(2)Letf: X > Y and g: Y — Z be two bijective mappings and f :Y — X and

-1
g:Z—>Y be their respective inverse functions. Then the function gof : X — Z is

1o
also invertible and (gof) ' =fog.

1.5 Summary

® Sets are well defined collection of distinct objects.

® If a set contains no element then it is called empty set.

® The complement of complement of a set is itself.

® The number of elements of a set is called the cardinality of that set.
® For any two sets A and B, A x B # B X A, in general.
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® Functions are, in all, of four kinds :
(1) One-one into functions
(i1) One-one into functions
(i11) Many-one into functions
(iv) Many-one onto functions.

1.6 Keywords

Sets, union, intersection of sets, complement, cardinality of a set, cartesian
product of sets, Function or mapping, injective and bijective mappings, restriction
and extension of a mapping, composite functions, inverse of a function.
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2.5 Summary

2.6 Keywords
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2.8 Model Questions

2.1 Objectives

One of the important branch of mathematics is real analysis which is consisted with set
of real numbers. Thus to study real analysis it is necessary to know the properties of real

numbers. That is why the object of this unit are as :
® To study algebraic, order and completeness properties of IR.

® To study the concept of rational numbers, irrational numbers and construction of

real numbers from system of rational numbers.

® To know the concept of neighbourhood of a point, limit point of a set, open set,
closed set in IR.

® To study Blozano Weierstrass theorem which states the sufficient condition for the

existence of limit points of a set.

16
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2.2 Introduction

It is know that IN cJ < [, where IN, [ and [J are respectively the set of natural
numbers, integers and rational numbers. The concept of real numbers IR is systematically
developed from IN via the construction of [J and [J . The set of real numbers and their
properties are discussed in this unit. The set of real numbers can be described as a
complete ordered field. The analysis, due to set of real numbers is known as real
analysis, which is one important branch of mathematics. We discuss the limit point of a
set, open set, closed set etc. as a basic part of real analysis. It is known that a finite set
has no limit point, while an infinite set may or may not have a limit point. Thus the necessary
condition for the existence of a limit point is that set must be infinite. We have studied
Bolzano Weierstrass theorem, which tells the sufficient condition for the existence of limit

point of a set.

2.3 Algebraic and Order properties of IR

This section deals with some algebraic and order properties of real numbers, which
can be derived by Field axioms and order axioms.

Field Axioms : It is known that the set of real numbers IR is a field with respect to
two operations addition and multiplication, denoted by ‘+’ and ‘.’ respectively. That means
these two operations ‘+’ and °.” on IR satisfying the following axioms, known as Field
axioms.

Addition Axioms :
(A) Closurelaw: a+belR,Va,belR.
(A, Associative law : a + (b +¢c)=(a+b) +c, Va,b,celR.

(A, Existence of additive identity : The real number 0, called the additive identity
suchthata+ 0=a=0+a, VaelR.

(A, Existence of additive inverse : For each a € IR, 3 an element —a € IR, called
the additive inverse of a such that a + (—a) = 0 = (-a) + a.

(A) Commutative law : a +b=b +a, Va,belR.
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Multiplication Axioms :

(M) Closurelaw : abelR,Va,belR

(M,) Associative law : a.(b.c)=(a.b).c,Va,b,celR

(M,) Existence of multiplicative identity : The real number 1, called the multiplicative
identity satisfies a.l =a=1.a, VaelR.

(M,) Existence of multiplicative inverse : For each a €IR, 3 an element

a”' e IR, called the multiplicative inverse of a such that a . a' =1 = a'la.
a1
Here we may also denote a~ by —.
a

(M,) Commulative law : a.b=b.a, Va,belR.

Distributive laws
(D) a. (b+c)=ab+ac Va,bcelR.
(D) (b+c).a=ba+ca Va,bcelR.

Subtraction and Division in IR

The subtraction of a real number ‘b’ from a real number ‘a’, denoted by a — b, is
defined by a — b = a + (-b).

The division of a real number ‘a’ by a non-zero real number ‘b’ denoted by a/b, is
defined by a/b = a.b™'.

Algebraic property of IR

The set of real number satisfies Field axioms. Moreover, some algebraic properties of
IR are as follows :

For a, b, ¢, IR, we have

() atc=b+c=a=bandc+a=c+b=a=bh,

@ a+b=0=Db=-a,

(i) —(-a) = a,

(v) ifc#20thena.c=b.c=>a=bandca=cb=a=b,
(v) aab=1=b=al,

(vi) ifa=0then (a')"'=a,
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(vi) a. 0 =0,
(vii) a#0,b#0=a.b=0,
(x) aab< 0=a=0o0r/and b=0,
(x) a. (-b) = —a.b) =(-a). b,
(xi)) (-a) (-b)=a.b;(-1)a=-a,
(i) (a.b)! =a'.b!, provideda # 0,b = 0.
(xii)) the equation x + a = b has a unique solution x = b —a in IR.
(xiv) for a # 0, the equation a.x = b has a unique solution x = b/a in IR.
Order Axioms : The set of real numbers IR is an ordered field, i.e., IR is ordered with

respect to order relation “>’, called greater than. That means the relation >’ between pairs
of real numbers satisfies the following axioms, known as order axioms.

(0,) Law of trichotomy : For all a, b e IR, one and only one of the following is true
a>b,a=b,b>a.

(O,) Transitivity law : For all a,b,celR,a>bandb>c=a>c.

(O,) Monotone property for addition :
Forall a,b,c elIR,a>b=a+X >b + c.

(O, Monotone property for multiplication :

Forall a,b,c eIRand ¢ >0, a>b = a.c > b.c.

Remark : (1) The order relation ‘<’, called less than, is defined as a < b if
b > a. The order axiom can also be stated with the relation ‘<’ instead of “>’.

(2) The relation a < b means either a < b or a = b and a > b means either
a>bora=hb.

(3) A real number ‘a’ is said to be positive or negative according as a > 0 or
a < 0. The set of positive (respectively negative) real numbers is denoted by IR*
(respectively IR").

Order property of IR : Beside the order axioms, IR satisfies the following order
properties :

(i) For each real number a, one and only one of the following holds :

a>0,a=0,-a>0.
() a<0<=>-a>0

(i) a>b<=>a—-b>0foralla,b e IR
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(iv) For all a,b,c € IR, if ¢ <0 then a>b = ac < bc.

(v) For a, b, elR+, a>b:>l<l.
a

Extended real number system : We can extend the system of real numbers by
adjoining © and —oo. The enlarged set is called the extended real number system.

If aelR, we have —0 <a < .

a+t oo =0 =0ow +aa— ww=-—-0w0 = -0 + 4,
a o W,ifa>0
—:(L—:oc)(a:a)(oo: .

oo a —oo,if a <0

Also 00 X 00 = 0 = (—0) X (—0) = 0 + 0.

0 X (—w)=-0w0 =(—0w) X 0 =—-00 — 0.

oo .
However, c0 — w0, —00 + o0, 0 X o0, 00 X 0, — are meaningless.

2.4 Countable sets, Uncountable sets and Uncountability of
IR.

This section deals with countable sets and uncountable sets through which infinite set
may classify two ways :

Countably infinite set and Uncountably infinite set.

Countable and Uncountable sets : A set S is said to be enumerable or denumerable
if 3 a bijection from IN onto the set S.
A set S is called countable if either S is finite or S is enumerable. A set S is called

uncountable if it is not countable. Thus an uncountable set must be infinite. The empty set
¢ is countable as it is assumed a finite set.

Examples :

(1) The set E = {2n : n € IN} is denumerable, as there is a bijection f: IN — E. Here
E is the set of even natural numbers. It is an infinite set, but countable. So, E is countably
infinite set.

(2) The set (of odd natural numbers) O = {2n—1 : n € IN} is also denumerable and
hence O is countable.
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(3) The set Z of all integers is countable as Z is denumerable.

(4) The set of real numbers in the interreal (0, 1) is uncountable.
Theorem : Any subset of a countable set is a countable set.

Proof : Let B be a subset of a countable set A. We show that B is countable.

If possible, let us suppose that B is uncountable. Then every injective function f: IN
— B must be into, not onto, i.e. f (IN) C B. Since B A, therefore f(IN) CA.

Thus for every injective function f: IN — A, f (IN) # A.

So, A is an uncountable set, which is a contradiction. Hence B must be countable.

Theorem : A countable union of countable sets is countable.

Proof : Let {A :1i€IN} be a countable collection of countable sets and let

Each countable set A, , i € IN may be represented as

A ={a;,8,,a5, .8, ]

A, =1{a,,a,,8,,...,8, ...}

AL =185, 5,00, 8 e

There are two cases arises :
Case I : If the sets A, A, ..., A_, .... are disjoint, the elements of A can be

arranged as
A={a,,a,,,8,,8,;,8y,8;,..}.
We may construct a one-one function f from IN onto A

such that f(%(m+n—l)(m+n—2)+m] =a_.

Then f(1) =a , f(2) = a,, f(3) = a,, ....
So, A is countable.

Case II : If the sets A, A, .... are not all disjoint, consider the sets B, = A,
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Then the sets B, B, ..., B_ are disjoint and UAi = UBi .

i=1 i=1

So, by Case I, UBi 1s countable and hence UAi is countable.
i=1

i=l1
Corollary : The union of two enumerable sets is enumerable.
Corollary : The union of an enumerable number of enumerable sets is enumerable.

Theorem : The Cartesian product of two countable sets is countable.

Proof : Let A and B be two countable sets. We have to show that A x B is countable.
Since A and B are countable, we can write

A={a,a,..,a,..;and B={b,b, .., bj, b, 1,3, € IN.

Then AxB={JP where P, ={(a;,b,),(a;,b,), ., (a;,b,),....}.

i=l
The jth member of P, is (a, bj). Clearly P, is countable for each i. So, by previous
theorem, A x B is countable.

Remark : If A, A, ..., A are countable sets them the cartesian product A, x A,
X ... % A_is also countable.

Proof : It can be proved by method of mathematical induction.

p
Rational Numbers : If a real number can be expressed in the form of a , Where
P, q € Z, q # 0 such that gcd (p, q) = 1 (i.e. p and q are prime to each other), then
it is called a rational number. Otherwise, it is called an irrational number. The set of
rational numbers is denoted by [J .

Let x, y € [J, then we can write X=—,y=
where a, b, c,d € Z, b# 0, d # 0.

We now define the operations addition, subtraction, multiplication and division
are as

a.,_°
b7 d’

ad+bc a ¢ _ad-bc

E Xy_
d bd b d bd

Ezﬁ’ provided ¢ # 0.
d be
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. a_c . _
Alsox—yl.e.b—dlffad bc.

Properties of [] : Some important properties of [1 are as follows :
(1) Algebric Property : The set [] forms a field with respect to addition and

multiplication defined as above. That means [] satisfies the field axioms, mentioned

in section 2.3. Here ‘—a’ is the additive inverse of ‘a’ € [0 and % 1s the

multiplicative inverse of b(# 0) € [J . The zero element and unity are respectively
0 and 1.
(2) Order Property : Further, one can check that [] satisfies the order axioms,

discussed in section 2.3. Thus [J becomes an ordered field.

X+y

(3) Density Property : It is known that if x, y € [J with x <y then e[l and

X+ . . .
x<2Y o y . That means between any two rational numbers there exists another rational

1
number E(x+y)_ By similar way, it can be check that between

X+ . .. .
y), 3 another rational number. Proceeding in this way, we can

x and %(x+y) (asx <

conclude that between any two rational numbers x and y (where x <y) 3 infinitely many
rational numbers. This property of [] is known as the density property of [] . In this

case, we can say that [J is dense.

Problem : Show that there does not exist a rational number x such that x> = 2.
Solution : If possible, let there exist a rational number x such that x> = 2.

Since x 1s rational, so 3 p,qell, q#0such that ged (p, q) =1 and x = B.
q
2
p_2 =x"=2
q

= p’ =2q°, which implies that p? is even and hence ‘p’ is even.

Let p = 2m, where ‘m’ is an integer.

Then p? = 2¢> = q°> = 2m’, which also implies that q is even.

Thus p and q are both even which contradicts our assumption that gcd (p, q)=1.
Therefore, there is no rational number whose square is 2.
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Problem : Show that the set of all rational numbers is countable.

Solution : Let [1 be the set of all rational number. Then we can write [] as

0= (9,11),(11),(11,13),....,(J_rl,ig,...in—_l),...
11 2 373 n n n

={a,,8,,85, .8, on},
where a contains all rational numbers where denominator is n. Hence the set []

is countable.

Geometrical representation of rational number, irrational number and real
number : Consider any directed straight line extending indefinitely on both sides.
We divide it into two parts and mark middle point by O. The right part of O is called
positive and left part of O is called negative.

|
T

O AB P
Take any point ‘A’ on the positive part. Assume that the point O and A represent
rational numbers 0 and 1, so that the distance OA is unity.

| |

Let pel]l and qeIN and let us divide OA into ‘q’ equal parts. Then take ‘p’

: p .
numbers such subparts and we represent the rational number a by the point P on the

directed line.

So, OP = P
q
If p > 0 then P lies to the right part of O and if p < 0 then P lies to the left part

of O. When p = 0, the point P lies on ‘O’.

Thus the point ‘P’ corresponds to the rational number ~~ and vice-versa. This

representation is unique. Here ‘P’ is known as rational points.

Note that between any two rational points closely enough on the line, there are many
points which does not represent rational numbers. Such points are called irrational points
and the corresponding numbers are called irrational numbers.

For example, if we consider the point B on the line such that OB is the diagonal
of a square of the side unity (i.e. OA) does not correspond to any rational number,
as there is no rational number whose square is 2. Thus we may conclude that

Dedekind— Cantor Axiom : Every real number corresponds to a unique point
on a directed line and every point on the directed line corresponds to a unique real
number.
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Remark : The above axiom shows that the set of real numbers is a continuum (means
without any gap). That is why the set of real numbers is called the Arithmetical continuum
and the set of points on a straight line is called linear or geometric continuum.

Dedekind section of rational number : Let Q be the set of all rational numbers. A
partition of Q into two subsets L and R (called classes) satisfying the following conditions
is called a Dedekind section of rational numbers.

ML=, R=0

(i) LUR =Q

(i) VaeL and VBeR = a<f.
There are three types of Dedekind section.

Type-1 : Let us divide the set of all rational number Q into two classes L and R as
follows :

L={x:xe Qandx < 2}

R={x:xe Qandx > 2}

Clearly it is a Dedekind section, because 2 € L and 3 € R such that LR = Q.
Also VaeL=>a<2 and VeR=p>2

La<f.

In this section L class has greatest number 2, but R class has no least number.
Type-2 : Let us divide Q into two classes L and R as follows :

L= {x:xeQandx<3}

R={x:xeQandx >3}

It is Dedekind section and in this section, least number of R class is 3 but L class has
no greatest number.

Type-3 : Let us divide Q into two classes L and R as follows :
L = {x:x eQand either x <0 or x >0 but x* <2}
R={x:xeQand x>0,x*>2}.

Clearly 0 € Land 2 € R

S~ L#dandR =¢.

As there is no rational number whose square is 2, it follows that LUR = Q.
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Va e L= eithera<0ora>0buta’<2 and VBeR =B >0andp*>>2

When o <0 then o < and when @ > 0 then a” < 2.

o? < [? and hence o < .
Thus it is a Dedekind section.
Now we shall show that L class has no greatest number and R class has no least

number.

If possible, let ‘m’ be the greatest number of L class, then m > 0 and m? < 2.
Let us take 1 — 4+3m
et us take n = ==
m® -2
Then n?—-2=———= 0 and hence neL.
(3+2m)’
443 4-2m’
Now n—m= m —m= m >0,1i.e. n > m, which is a contradiction.
3+2m 3+2m

Therefore, L class has no greatest number.
If possible let ‘r’ be the least number of R class.
~r>0andr*>2ie r*—-2>0.

L _ 4+43r
et us put s = 3105
4+3rY > =2
> 2 _ 92 = —2=—" _>0asr’=2>0
Then s > 0 and s* — 2 (3+2rj G+21)
=35’ >2.
. s € R class

2 J—
_4+43r _ 2(r°=2) 50
3+2r 3+2r
Therefore, r > s, which is a contradiction and hence R class has no least number.

Nowr—-s=r

Remark : Type -3 of Dedekind section about rational number shows that the

system of rational number has gaps. To fill up these gaps, Dedekind introduced new
numbers which are called irrational numbers. Thus irrational numbers are introduced
by section of rational numbers as follows :

Modified section of rational numbers : A division of set of all rational numbers

into two classes L and R satisfying the following condition is called the modified
section of rational numbers.
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(1) L#o,R=0
(i) LUR = Q,
(i) Voe Land VBeR => a < 3

(iv) L class has no greatest number.

Definition of real number by section of rational number : Every modified
Dedekind section defines a real number o. If the section is (L, R), then we write
a = (L, R).

The real number ‘o’ is called the real rational number if ‘ct’ is the least number of R-
class and ‘o’ is called an irrational number if R class has no least number.

Exercise : Define the following real numbers by Dedekind section of rational
numbers.

(i) 2 (i) /3 (iii) 7/5.

Section : (i) We define the real numbers 2 as 2 =(L,R),
where L = {x:xeQand x <2}

and R = {x:xeQand x >2}.

(ii) We define the real number /3 by 3= (L,R),

where L = {x:x eQ, either x <0or x >0and x> <3}

and R = {x:xeQ,x>0and x* >3}.

(iii) We define 7/5 = (L, R),

where L = {x:xeQandx’<7} and R=Q — L.

Relative magnitude of real numbers : Let a=(L,,R,)and B =(L,, R,)be two
real numbers defined by section of rational numbers. We define o < if and only if L, is
a proper part of L, i.e., VxeL, = x €L, and there is yeL,but ygL,.

We also define o =f ifandonlyif L, =L,

and o > if and only if B < o
i.e., if and only if L, is a proper part of L,.
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Exercise : Prove that the following by Dedekind section :

() 1< 2 (i) V2 <43 and (iii) V3 <2.
Anms. (i) Let 1=(L,,R,), where L, ={x:xeQand x <1} and

V2 =(L,,R,),where L, = {x :x € Q, either x <0 or x >0 and x> <2} .

Then, VxeL, = x<1 and Vx € L, = either x <0 or x >0and x* <2,

Thus VxelL =xeL,.

, 25
. Then y :E<2 and hence yelL,.

5
Let us take a number y = 1

5
But y = Z>1,soy¢L1.

. L, is a proper part of L,. Consequently 1 < /3.
(11) Let V2= (L,R,), where L, = {x:x€Q,either x <0 orx>0and x* <2}

and \/gz(Lz,Rz), where L, = {x:x €Q,eitherx <0orx>0and x*<3}.

Then Vx € L, = either x <0 or x >0 and x* <2
and Vx e L, = either x <0 or x >0and x* <3.
Thus VxeL, =xeL,.

3 9 9 .
Let us take yZE' Then y2:Z<3,soyeL2,buty2:Z>2,1.e.y§£Ll.

Thus L, is a proper part of L, and hence /2 < /3.

(iii) Let us consider /3 = (L,,R)),

where L, = {x:x € Q, either x <0 or x >0 but x* <3}

and 2=(L,,R,), where L, = {x:x € Q, x <2}.

It can be proved that L, is a proper part of L, and hence 3 <2.

Addition of two real numbers : Let ao=(L,,R)andB=(L,,R,) be two real
numbers, given by Dedekind section of real numbers. We define the number o+ 3 = (L, R),

where L={x:x=x,+x,,Xx,€L,,x,eL,}and R=Q - L.

Reciprocal of a positive real number : Let o > ( be a real number, where
a=(L,R)).
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We define l = (L, R), where L = {x : either x <0 or x >0 and
o

1 |
<€ R, so that  isnot the least number of R }.

Dedekind’s Theorem on real number : If we divide the set of all real numbers IR

into two classes L and R satisfying the following conditions :
(L=, R=0
(i) LUR =1IR
(i) VoeLand Ve R => a <3,

then there is a number ), separating the two classes such that all numbers < ), ¢ T class
and all numbers >A € R class.

The number ), may belong to either class. If A € L then A is the greatest number of
L class and if A € R then A is the least number of R class.

2.5 Summary

This chapter discusses the algebraic and order properties of the real numbers R
examines countable and uncountable sets, and proves the uncountability of R.

2.6 Keywords

Real numbers, algebraic properties, order properties, countable sets, uncountable sets,
uncountability of R.
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2.8 Model Questions

1.  What are the algebraic properties of R?

2. Describe the order properties of R.

3. Explain the difference between countable and uncountable sets.

4. Prove that R is uncountable.

5. How do the algebraic and order properties of R relate to each other?

6. Provide an example of a countable set and an uncountable set.

7. Suppose that S and T are sets and TCS. Show that if T is infinite, then S is also
infinite.

8. Show that the power set P(N) of N is uncountable.

9. Tt F[Q] be the set of polynomices having rattional coefficients. Show that F[Q] is

countable.
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3.1 Objectives

This chapter aims to introduce fundamental concepts of real analysis, including
intervals, bounded and unbounded sets, and supremum and infimum. Students will learn to
classify different types of intervals, distinguish between bounded and unbounded sets, and
understand the least upper and greatest lower bounds. These concepts form the foundation
for further studies in real analysis, particularly in limits, continuity, and sequences. By
mastering these topics, students will develop essential analytical skills for advanced
mathematical reasoning.

3.2 Introduction

Real analysis provides a rigorous foundation for calculus and higher mathematics. In
this chapter, we explore intervals, which describe subsets of real numbers, and the
distinction between bounded and unbounded sets. Further, we examine supremum (least
upper bound) and infimum (greatest lower bound), which are crucial for understanding
limits and convergence. These fundamental ideas play a significant role in defining continuity,
differentiability, and integration. Through this chapter, students will strengthen their logical
thinking and problem-solving abilities.

31
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3.3 Intervals

Let a, b € IR such that a < b. Then the open interval and closed interval are
respectively defined as

(a,b)={xelR:a<x<b} and [a,b]={x eIR:a<x <b}.

The points ‘a’ and ‘b’ are known as end points. The closed interval contains end
points, while the end points are not included in open interval.

Also the sets

[a,b)={x €IR:a<x<Db}and (a,b]={x € IR :a <x <b}are called semi-open or

semi-closed intervals. There are also known as closed-open and open-closed intervals
respectively.

Since the length of each above intervals is equal to b — a ; which is a finite positive
real number, there above intervals are called finite intervals. Infinite intervals are the
intervals of infinite length.

For instance, the sets (a,a)={xe€IR:x>a} and (—wo,a)={xelR:x <a}are
known as infinite open intervals, while

[a,0)={xelR:x>a}and (—wo,a]={x € IR :x <a} all known as infinite closed
intervals. The entire set IR is also considered as an infinite open interval by taking
IR = (-, ).

Absolute value of a real number : The absolute value (or modulus) of x € IR,
denoted by |x| is defined as

|x|= x,if x>0
-x,1f x <0

For example |5| =5and |—5| =—(-5)=5.

For any x,yeIR the distance between x and y is [x — y|.
Observations

(i) [x|>0and |x|2 =x’
(i) /=

(iif) [x| = max{x, —x}
(iv) —|X| =min{X, — X}

) [xy]=x] ]3]
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i‘zﬂ,y¢0
y

ly

(vii) |x + y| < |X| + |y|

(vi)

(viti) [x~y|2 x| ~[y| and [x—y]=[y|~|x

x—y| 2 |(x]=[y]|

(ix) |X—a|<e:> X € (a—€,a+€)and |X—a|£e:>x ela—¢€,a+ €]

Consequently,

, while the reverse implication does not hold.

x) x=y=x|=|y

3.4 Bounded and Unbounded sets

Let S IR. If 3M e IR such that x < MVx €S, then S is called bounded above. This
M is called an upper bound of S.
Again, if I3m € IR such that x >m Vx €S then S is called bounded below and

such m is called a lower bound of S.
If S is bounded above as well as bounded below then S is said to be bounded.

Thus S is bounded if 3m, M € IR such that
m<x<M,VxeS (2.6.1)
If M >0, taking m = —M, the relation (2.6.1) reduces to

|x| <MVxeS.
Hence S is said to be bounded if 3 M > O such that

|X|SM Vx eS.

Consequently, a subset S is called unbounded or not bounded if it is either not
bounded above or not bounded below.
Examples :

1
(1) The set {H ‘ne IN} is bounded. Here 0 and 1 are lower bound and upper bound

respectively.
(2) Let a,belIR.Then (a, b), [a, b], (a, b] and [a, b) are bounded.
(3) The set IN is bounded below by 1 but not bounded above.
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(4) The set IR* = {x € IR : x > 0} is bounded below but not bounded above, whereas

the set IR™ = {x € IR : x <0} is bounded above but not bounded below.
(5) The set Q, IR are unbounded.

Greatest and Smallest element of a set : Let ¢ #S — IR. If S contains a largest
element M, i.e. x <M Vx €8, then M is called the maximum (or largest or greatest)

element of S. And if S contains a smallest element m, i.e., x > m Vx €S, then ‘m’ is
called the minimum (or smallest or least) element of S. In this case, we write Max
S =M and min S = m.

For example, if S = {0, 2, 4, 6, 8, 10}, then max S = 10 and min S = 0.

1
Again for S = {H ‘ne IN}, max S = 1, while S does not contain the minimum

element.
Remark :

(1) For S =[a, b] a,belR,a<b, max S = b, which is also upper bound of S.
And min S = a, which is also lower bound of S.

(2) The set S = (a, b) does not contain the maximum and minimum element,
though S is bounded.

(3) Note that a bounded set S of IR may not contain an upper bound and (or) a
lower bound. But if S has an upper bound (respectively a lower bound) then it will
have infinitely many upper bounds (respectively lower bounds), because if M is an
upper (respectively lower) bound of S, then every number greater (respectively less)
than M is also an upper (respected, a lower) bound. Thus we get a set of upper
bounds (respectively lower bounds) for a bounded above (respectively bounded
below) set of IR.

We now define the following :

3.5 Supremum and Infimum

Let ¢ #S c IR. If M is an upper bound of S and any real number less than M is not
an upper bound of S, then M is called supremum or least upper bound (lub) of S. Here,
we write sup S (or lub S) = M.

Hence a real number M is supremum of S if

(1) M is an upper bound of S

and (ii)) M < K for every upper bound K of S.
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Similarly, if “‘m’ is a lower bound of S and any real number greater than ‘m’ is not a lower
bound of S then ‘m’ is called greatest lower bound (glb) or infimum of'S.

Here, we write inf S (or glb S) = m.

Hence a real number m is infimum of S if

(1) m is a lower bound of S

and (ii)) m >k for every lower bound k of S.
Note : The supremum and infimum of a non empty subset of IR are unique, if
they exist.
Examples :
(1) Let a,beIR witha<band S =[a, b] and T = (a, b).
Then sup S=b =Sup T and inf S = a = inf T.

1
(2) For S = {HE:neIN}, sup S=2and inf S = 1.

(3) The supremum of IN does not exist, while inf IN = 1.
(4) The set [1 has neither supremum nor infimum.

Theorem : Let ¢ #S c IR and let M e [R - Then M is the supremum of S if and
only if
(1) x<M VxeS.

and (i1) for each €>0,3 a real number x ¢S such that x > M — €.

Proof : Let € >0 be arbitrary. Since M—e< M, by definition of supremum, it

follows that M = sup S
< M is an upper bound of S and M — € is not an upper bound of S,

1.e. &©x<MVxeS and x>M-e€ for some xS,

Theorem : Let ¢ S < IR and m € IR. Then m is the infimum of S if and only
if 1) x>m VxeS and

(i1) for each €>0,3 a real number x €S such that x <m+e€.

Proof : Since m < m+ e for arbitrary > (). So, by definition of infimum, the result
follows :

Problem : Find the supremum and infimum of the following sets :

(i) S=1-2, 2}U{1+l:neIN}U{—l—l:neIN}
n

n
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={—2,2,1+l,—1—l:neIN} :{_2,2’
n n

Let &> ( be arbitrary.
VxeS=>x<2and2e€S,2>2-¢
sosup S=2

Similarly we find that inf S = -2.

(i1) Consider T =< (=1)" 1+l :nelN :{—2,3,—12,—21,-}
n 234 56
3
We find that VXGT:>X£§.
. 3 3
Let & be an arbitrary small + ve number. Then 5 > 5—5 and 5 S

So, sup T= % and inf T =-2.

Properties of Supremum and infimum : From the definition and above results one
can prove the following :

(1) For any bounded set S, inf S < sup S.
(1) Sup S =max S, if max S exists and inf S =min S, if min S exists.
(iii) For  # AcIR and ¢ # B IR,
inf(A UB) = min{inf A, inf B}
and sup (AUB)=max{sup A, supB}
Further if A < B then inf B <inf A <sup A <sup B

Problem : Let ¢ #Sc IR and T ={x:—x €S}.
Show that supT = inf S and inf T =— sup S.
Solution : Let sup S = B and inf S =b.

Let § > 0 be arbitrary small number. Then
VxeS=x<B=-x>-B

and there is a member x ¢S such that x > B-8§ = —-x <-B+34.

Thus V—-xeT=-x>-B
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and there is some _x < T such that —x <« —_B+ 8.
Sinf T=-B=-supS.

Similarly we can prove that sup T=—-b =—inf S.

3.6 Summary

This chapter covered key concepts in real analysis, including intervals, pounded and:
unbounded sets, and the notions of supremum and infimum. Intervals were. categorized
based on their endpoints, while bounded sets were distinguished from unbounded ones.
The concepts of least upper bound and greatest lower bound were explored, emphasizing
their importance in mathematical analysis. These ideas are essential for deeper studies in
real analysis and provide a basis for understanding limits, continuity, and convergence in
various mathematical contexts.
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3.9 Model Questions

1. Define an interval. Give examples of open, closed, and half-open intervals.

2. What is the difference between bounded and unbounded sets? Provide an
example of each.
Explain the concepts of supremum and infimum with suitable examples.

4.  Why is the supremum considered the least upper bound and not just any upper
bound?
State and explain the completeness property of real numbers.

6. Determine whether the set S = {x € R | O <x <5}, is bounded. Justify your
answer.

7.  Find the supremum and infimum of the set

A= {% | n € N}.

Is the set of natural numbers N bounded? Explain your reasoning.

9. Give an example of a set that has a supremum but no maximum element.

10. Ifaset has an infimum, does it always have a minimum? Justify with an example.
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4.1 Objectives

This chapter introduces intervals, the completeness property of R\mathbb {R} R,
and the Archimedean property. Students will understand these fundamental concepts
and their significance in real analysis, particularly in limits and convergence.

4.2 Introduction

Real analysis builds upon rigorous foundations of real numbers. This chapter explores
intervals, the completeness property ensuring every bounded set has a supremum, and the

Archimedean property, highlighting the density of natural numbers in R\mathbb{R} R.

4.3 Completeness property of IR

In similar to field axioms and order axioms, the set of real numbers satisfies another
important axiom, Known as Completeness axiom, as follows :

Every non-empty bounded above subset of IR has a supremum in IR.

With the above axiom, we can say that the set of real numbers is a complete ordered
field. As a consequence of completeness axiom, we have the following theorem :

39
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Theorem : Every non empty bounded below subset of IR has an infimum.

Proof : Let ¢ # S c IR such that S is bounded below. Then 3K € IR such that

x>K VxeS

Defineaset TCc IR by T={x:-x €S}.

Clearly T # ¢ as S # ¢ . Then by just previous problem, T is bounded above by —K.
So, by completeness axiom, T has a supremum in IR, say M and by previous problem,
—M is the infimum of S. Hence, the theorem is complete.

We have already seen that the set of rational numbers Q is an ordered field. However,
Q does not satisfies the completeness axiom. Thus Q is not a complete ordered field. For
this, it is sufficient to construct a non-empty bounded above subset of Q which does not
have a supremum in Q.

Define A ={x € Q":x* <2}, where Q" is the set of all positive rational numbers.

Vx e A=xeQ" and x* < 2 = x < 2, which implies that 2 is an upper bound of A.
Thus A is a non-empty bounded above subset of Q.

If possible let a(e Q) be the supremum of A. Then a.>1andso e Q".

There are three cases arises :

a’=2,0">2,a*<2.
The case o2 =2 is not possible as there is no rational number whose square is 2. So,

o # sup A in this case.

Now choose B = So+4 eQ".
200+3
30+4  2(a’-2) , (3a+4]2 2o
a—pPp=o— = 2— :2— =
Then a-p=a- 3= a3 d27P 20+3)  (u+3)

If 32 > 2 then from above we get B < o and B> > 2, which implies that o = sup A.

Again if 2 < 2 then by similar way as above, it follows that o < 8 and B < 2, which
implies that a is not an upper bound of A. Thus o # sup A. Hence the supremum of A
does not exist in Q. Consequently, Q is not complete.

Remark : The completeness axiom distinguishes between Q and IR as IR is complete

while Q is not.
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4.4 Archimedean property of IR

If x and y are any two positive real numbers with y < x then 3n € IN such that ny
> X.

Proof : If possible let ny < x.

Set S={ny:neIN}. Then S#¢ as yeS. Also S is bounded above by x. So, by
the completeness property of IR, sup S exists, say = M.

Now we have ny<M VnelN=(n+1)y<Mas n+lelN

=>ny<M-yVnelN.

This means that M — y is an upper bound of S and M — y < M, which is a
contradiction to the fact that M = sup S.

So ny > x for some p e IN.

From the above property, the following results are immediately holds :

Result 1 : If y is a +ve real number and x is any real number then there exists
a positive integer ‘n’ such that ny > x.

Result 2 : For any real number X, there exists a +ve integer n such that n > x.

Theorem 4.4.1 For any x €IR,3m,n el] such that m <x <n.

Proof : From Result 2, we have for any x e IR,3n el] " (set of +ve integers)
such that x <n ...(2.9.1)
Since x eIR,—x €IR,so 3 a +ve integer p such that p > —x.

i.e. p <X = m<x by taking -p = m. ..(2.9.2)
From (2.9.1) and (2.9.2), the result follows.

Theorem 4.4.2 For any x € IR, there exists a unique integer n such that n <x <n +1.

Proof : Set [x] =n, where [x] is the integral part of x.
Then p <x ..(2.9.3)

We claim that x <n + 1. If not, x>n+1, which is an integer.

So, [x]2n+1=n>n+1, which is absurd.
Thus x <n + 1 ..(2.94)
The result follows from (2.9.3) and (2.9.4).

Theorem 4.4.3 For any x elIR, there exists a unique integer n such that

x—1<n<x

Proof : By theorem 2.09.1, for x eIR, 3 two integers m and p such that
m<gzx<p.
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Choose n =max {re N:r < x} ..(2.9.5)

Then by Theorem 2.9.2, we get n+1>x 1.e. x—1<n...(2.9.6)

(2.9.5) and (2.9.6) gives the theorem.

By density property of Q we have seen that there are infinitely many rational
numbers between any two rational numbers, which can be extended as the
following :

Theorem 4.4.4 : There is at least one rational number and hence infinitely many
rational numbers between any two distinct real numbers.

Proof : Let x,yeIR such that x #yandx<y.

So, y —x>0.

By Archimedean property for y — x and 1€IR,3Ja+ve iteger n such that
n(y—x) >1

le.nx+1<ny ..(2.9.7)

It is clear that nx € IR. So, by theorem 2.9.2, there exist a +ve integer ‘m’ such
that

m-1<nx<m -(2.9.8)

=> m<nx+1<ny, ...(2.9.9)

using (2.9.7)
From (2.9.8) and (2.9.9), we get nx < m < ny

. m
ie. x <r <y, where r=—¢€Q
n

Thus we get a rational number lying between x and y. By similar argument, we
get rational number r, between x and r and another rational number r, between r and y
such that

X<rI <r<r,<Yy.

Proceeding in this way, we can find inifintely many rational numbers lying
between x and vy.

For the case of irrational numbers,

Theorem 4.4.5 : There is at least one irrational number and hence infinitely many
irrational numbers between any two distinct real numbers.

Proof : Let x,y € IR suchthat x#y and X <y. Then X —p <y—p for arbitrary

irrational number ‘p’. Since x —p, y—p € IR and x —p # y —p, 3 a rational number r such

that
X —p <r <y-—p, by just previous theorem,
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re. x<K(=r+p)<y.

Here K must be irrational number as it is the sum of a rational number and an
irrational number.

Thus we get an irrational number K between x and y. By similar argument as
above, we get irrational number K' between x and K and another irrational number
K" between K and y such that

x<K'<K<K"<y.
Proceeding in this way, we can find infinitely many irrational numbers lying

between x and y. Hence the proof of the theorem is complete.
By virtue of Theorem 2.9.4 and Theorem 2.9.5, we can state the following :

Theorem 4.4.6 There is at least one real number and hence infinitely many real
numbers between any two distinct real numbers.

4.5 Summary

This chapter covered intervals, the completeness property ensuring supremum and
infimum exist, and the Archimedean property stating no infinitely large or small real numbers
exist, reinforcing foundational real analysis principles.

4.6 Keywords

Open and closed intervals
Supremum and infimum
Completeness property
Least upper bound property
Archimedean property
Bounded sets

Rational and irrational numbers

4.7 References

1. Principles of Matheinatical Analysis - Waiter Rudin, McGraw-Hill

2. Real Analysis: Modern Techniques and Their Applications - Gerald B.
Folland, Wiley
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Real Analysis - H.L. Royden, P .M. Fitzpatrick, Pearson
Understanding Analysis - Stephen Abbott, Springer

Real Analysis for Graduate Students - Richard F. Bass, American Mathematical
Society
Introduction to Real Analysis - Robert G. Bartle, Donald R. Sherbert, Wiley

4.8 Model Questions

1
2
3.
4
5

Define an interval. Give examples of different types of intervals.
State and explain the completeness property ofR.

What is the Archimedean property? Provide an example.
Prove that there is no smallest positive real number.

Explain how the completeness property relates to the existence of supremum and
infimum.
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5.1 Objectives

e Understand different types of intervals and their properties.
e Define and explore neighborhoods of a point in a metric space.
e Identify and analyze limit points of a set.

5.2 Introduction

This chapter explores fundamental concepts in real analysis, including intervals,
neighborhoods, and limit points. These ideas form the basis for continuity, convergence,
and the structure of real numbers.

5.3 Neighbourhood of a point

A set N is called a neighbourhood (abbreuiated by nbd) of a point p € IR if there
exists an open interval I containing p and contained in N, i.e., pe I N.
The set N —{P} is called a deleted neighbourhood of p.
Examples :
(1) The set IR is a nbd of each of its points, because
VxelR, xe(x—e,x+e)cIR for every &>0. The open interval

(x— €, x+ €) 1s known as € —nbd of x.

45
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(2) The set Q of rational numbers is not a nbd of any of its points, since if
x € Q, then (x— €, x+ €) contains an infinite number of irrational points and hence

(x—e,x+€)z Q for every e> 0.
Properties of Neighbourhood
Theorem 5.3.1 : Every open interval is a neighbourhood of each of its points.

Proof : Let ‘p’ be an arbitrary point of the given open interval (a, b). Since every set
is a subset of itself, we can write p € (a, b) < (a,b),

which means that (a, b) is a neighbourhood of p. As p is an arbitrary point of
(a, b), so (a, b) is a neighbourhood of each of its points.

Corollary : Any closed interval [a, b] is a neighbourhood of each point in it except
the points a and b.

Hints : pe(a,b)e[a,b].

Theorem 5.3.2. Any superset of a neighbourhood of a point is also a neighbourhood
of that point.

Proof : Let N be a neighbourhood of a point p and let M 5 N .

Since N is a neighbourhood p, so an open interval (a, b) containing p such that
pe(a,b)c Nc M,

which implies that M is a neighbourhood of p.

Since p and M are choosen arbitrarily, the result follows.

Theorem 5.3.3 : The intersection of two neighbourhoods of a point is also a
neighbourhood of that point.

Proof : Let N, and N, be two neighbourhoods of a point p. So,3€,>0 and €,>0
such that

pe(p—€,pt+e€,) N, and pe(p-¢,,p+€,) N,

Choose e=min{e,e,} so that

pe(p—s pte)c(p—¢<,pte)c N,

and pe(p—¢,pte)c(p—¢<,,pt<s,)N,,
which follows that
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pe(p—< p+e)c N,(IN,.

Hence N, (N, is also a neighbourhood of p.
Note : By repeated applications of the above theorem, we can state the
following :

The intersection of finitely many neighbourhoods of a point is also a neighbourhood of
that point.

However, the intersection of an infinite number of neighbourhoods of a point may not
be a neighbourhood of that point.

1 1), .
For example, for every n € IN, (——, —j is a neighbourhood of 0.
n n

A 11
But ﬂ(_ﬁ’ﬁj = {0}, which is not a neighbourhood of 0, as {0} is finite set.
n=l

Theorem 5.3.4 : The union of two neighbourhoods of a point is also a neighbourhood
of that point.

Proof : Let N, and N, be two neighbourhoods of a point p € IR. So, 3 open intervals
(a, b,) and (a,, b,) such that pe(a,,b,)c N, and pe(a,,b,) = N,.

| |
T

4 éz p Bl t‘)z
Choose a, = min {a, a,} and b, = max {b, b,}.

Then pe(a,, bl)U(az’bz) = (a;b,).

Also (a;,b,)cN,UN, and (a,,b,) c N,UN,
= (a,,b;)=(a,;,b,)U(a,,b,) c N,UN,.
Hence p e (a,,b;) c N,UN,,

which shows that N, UN, is a neighbourhood of p.

Note : By repeated applications of the above theorem, we can state the
following :

The union of a finite number (or arbitrary number) neighbourhoods of a point is
also a neighbourhood of that point.
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5.4 Limit points of a set

Let ¢ #S < IR. A point p € IR is called a limit point (or limiting point) of S if every
deleted neighbourhood of p contains atleast one point of S.
Thus a point p € IR is a limit point of S if

(N={p})NS=¢,

where N—{p} is the deleted neighbourhood of p.

A limit point of a set is also sometimes known as an accumulation point or a
condensation point or a cluster point of the set.

Isolated point : A point of a set is called an isolated point of the set if it is not a limit
point of that set.

Examples : The set s:{l:n eIN}has only a limit point 0, which is not a
n

member of the set. However, each point in the set S is an isolated point of the set.

Remark : A limit point of a set may or may not be a member of the set. Moreover,
a set may have no limit point, a unique limit point, or a finite or an infinite number of limit
points.

Theorem 5.4.1 : Let ¢ #S IR . A point p e IR is a limit point of S if and only if
every neighbourhood of p contains infinitely many points of S.

Proof : At first, let us take that every neighbourhod of p contain infinitely many points
of S. So, every neighbourhood of p contains a point of S other than p. Consequently, p
is a limit point of S.

Conversely, suppose that p is a limit point of S. We have to prove that every
neighbourhood of p contains infinitely many points of S.

If possible, let a neighbourhood N of p contains only finite number of points
p,> P, --» P, different from p.

p—Dp, P—P.|}-

The € > 0 and (p— €, p+ €) is a neighbourhood of p which contains no point of

) 9 seeee s

Choose € = min{|p -p,

S other than p. So, p is not a limit point of S, which is a contradiction to our
assumption. Hence every neighbourhood of p contains infinitely many points of S.

Note : In view of the above theorem, the definition of limit point can be rewritten
as :

A point p is a limit point of a non empty set S in IR if every neighbourhood of
p contains infinitely many points of S.
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Thus the empty set ¢ and a finite set have no limit point. So, a set, having limit point,
must be infinite. Though there are so many infinite set which has no limit point. For example,
the set of natural numbers has no limit points even though it is an infinite set.

Theorem 5.4.2 : Let ¢ #S < IR and S is bounded above. If S has no maximum
member then sup S is a limit point of S.

Proof : Since S is a non empty bounded above subset of IR, the sup S exists (by
completeness property) in IR and sup s = p(say). Clearly p #Sas S has no maximum
member.

Let &> ( be arbitrary number.

Since sup S =p, so VxeS, Xx<p=>x<p+e

and 3 an x es such that x >p—e€.

Hence x e (p—€,p+€) and X#p as xesandp¢s.

This shows that every deleted € -neighbourhood of p contains a point of S and hence
p, i.e., sup S is a limit point of S.

Theorem 5.4.3 : Let $ #Sc IR and S is bounded below. If S has no minimum
member then inf S is a limit point of S.

Proof : The proof is similar as above just using the concept of infimum instead
of supremum.

Derived set : The set of all the limit points of a set S is called the derived set
of S and is denoted by S'.

Examples :

(1) For S={(—l)“(l+l):neIN},S'= {-1L1}.
n

(2) For any finite set A, A', = ¢ and hence ¢' = ¢.
(3) (a, b)' = [a, b] and [a, b]' = [a, b].
4) Q' =1R.

I 1 1
Exercise : Find the derived set of the set {—+—+— :m,n,pe IN}
m n p
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Solution : Let S:{i+l+l:m, n,peH\I}
m n p

Let & be an arbitrary small positive number.

1
Let us keep m, n are fixed and we choose p such that —<39.

r 1.1 1 1 1 1 1 1 1
Hence —+—+—<—+—+3 andalso —+—+—->—+—-9,
m n p m n m n p m n

Thusi+l—8<i+l+l<i+l+5’
m n m n p m n

where i+l+leS,
m n p

1 1
which implies that o + o€ S', Vm,nelN.

Let us keep ‘m’ fixed and choose integers n and p such that 1 < g, 1 < 8 .
n p
Therefore 1 + 1 < &, which implies that
n p
i+1+l<i+8andi+l+l>i—8
m n p m m n p m

1 1 1 1 1
Thus. ——0<—+—+—<—+9
> m m n p m °’

which implies that 1 €S, VmeIN.
m

S

1
) —<—,—<—and —<
Again let us choose m, n, p such that m 3’0 3 p 3

)

.'.l+l+l<8 and hence 0—6<i+l+l<0+6.
m n p m n p

This shows that 0e8S".
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m m n

Thus S'={O,i,i+l:m,neIN}

Theorem 5.4.5 : The derived set of a bounded set is bounded.

Proof : Let S be a bounded set, So, sup S and inf S exists and let sup S = B and
inf S =D.

Therefore, ¥x e S=b<x <B.

We have to show that S' is bounded. If possible, let S' is not bounded above. Then
Ja o eS' such that o > B.

-B
h _a-b5 : S : :
Choose § 5 b B aed o 0t5

As a eS', therefore o is a limit point of S and hence the interval (o0 — 90,
o + O) contains a member x € S, where x # a.

As x lies in (o0 — J, o + 9), therefore x > B, which is a contradiction to the fact
that x < B.

Thus the set S' is bounded above.

Similarly we can prove that the set S' is also bounded below. Hence the derived set
of a bounded set is bounded.

Problem : Let A and B be any two subsets of IR such that A = B.
Show that A'c B'.

Solution : \vx ¢ A'= every deleted neighbourhood of x contains at least one point
of A.
= every deleted neighbourhood of x contains at least one point of

B (since A = B)
= x is a limit point of B

= xeB'
Hence A'cB'.

Problem : For any two subsets A and B of IR, show that (AUB)'=A'UB'".
Solution : Since A < A|UB and B c AUB, by above problem we have that
A'c(AUB)'and B'c (AUB)".
Thus AUB'c (AUB)' (1)
Again x € (A UB)'= every deleted neighbourhood N (say) of x contains at least
one point of AJB
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= N contains at least one point of A or B.

= xeA'orxeB'

= xeA'UB'

So, (AUB)'c A'UB' ..(2)
From (1) and (2) it follows thle result.

Problem : Show that (A(1B)'c A'(1B' for any two subsets A and B of IR.

Solution : Since (A(1B)c A, we have (A[1B)'c A'and A(1Bc B, we have
(ANB)' c B' Thus (ANB)'c ANB".

Note : However, A'\B'# (A(1B)' in general. In fact A'\B'< (A(1B)', in general
For this, let A = (0, 1) and B = (1, 2). Then A' = [0, 1] and
B'=11, 2].

Therefore A'NB'=[0,1]N[L, 2] = {1}, while (ANB)'=¢'=¢.

5.5 Summary

Intervals classify subsets of real numbers, neighborhoods describe proximity, and limit
points determine set boundaries. These concepts are essential for deeper studies in
topology, calculus, and mathematical analysis.

5.6 Keywords

Intervals, Open Set, Closed Set, Neighbourhood, Limit Point, Accumulation Point,
Metric Space, Real Numbers, Topology, Convergence.
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1. Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
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5.8 Model Questions

1. Find the limit points of the set
Q=11,2,3,4, ... ].
2. What is the limit point of the set?
S = {;12 'n e N}
3. To the sum of two limit point of a subset of R always a limit point of that subject?

4. For any fund P € N, how may subset, of R can you construct whose limit point
is P?
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6.9 Model Questions

6.1 Objectives

To explore fundamental concepts in real analysis, including open and closed sets, set
closure, and the Bolzano-Weierstrass theorem, essential for understanding the structure and
behavior of subsets in metric spaces.

6.1 Introduction

This chapter introduces open and closed sets, their closure properties, and the
Bolzano-Weierstrass theorem, providing a foundation for analyzing limits, accumulation
points, and compactness in real analysis.

6.3 Open sets and closed sets

Before defining open sets, first of all we define the following :

Interior point : Let S IR and p €S. Then p is called an interior point of S if 3
a neighbourhood N of p such that pe N cS.

The set of all interior points of S is called the interior of S and it is denoted by Int (S)
or S°.

54
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It may be noted that Int(S) < S. Since every neighbourhood of a point contains
infinitely many points, so no point of any finite set can be an interior point. Thus Int S =
¢ for any finite set S. Also Int ¢ = 0.

Moreover, Int (Int S) = Int S, 1.e., (S°)° = S° for any set S.

Examples :

(1) Int (a, b) = (a, b) and Int [a, b] = (a, b) for a,be IR with a <b.

(2) Int IR = IR, since each point of IR is an interior point of IR.

(3) Int IN = ¢, since every neighbourhood of P € IR. contains points not belonging
to IN, i.e. no point ‘p’ of IN can not be an interior point of IN.

(4) Int Q = 0, since every neighbourhood of p € Q contains rational as well as
irrational points, i.e., p can not be an interior point of Q.

Boundary point : Let SR and p e IR. Then p is called a boundary point of S
if every neighbourhood of p can intersect S & S' (same notation for derived and
complement of a set). The set of all boundary points of S is called boundary of S and it
is denoted by S,

It may be noted that 6S =0S'.

Examples :

(1) If S = (a, b) or [a, b], then S = {a, b}.

() If S = {(x,y)eIR*:x* +y” <1}, then
Int S= {(x,y)elR*:x*+y* <1} and 0S = {(x,y) e IR* : x* +y* =1}.

Remark : A boundary point of a set S may or may not be a point of S.

Open set A non empty set G in IR is called an open set if every point of G is an
interior point of G.

Thus a non empty set G in IR is an open set if and only if for each point p € G, 3
a neighbourhood N [i.e., an open interval (a, b)] such that

peNcG (ie, pe(a,b)cQG).

In other words, a non-empty set G in IR is called an open set if G is a

neighbourhood of each of its points.
Note that a finite set need not be open.

Examples :

(1) The entire set IR = (—o0, 0) is open as for each x € IR, IR is a neighbourhood
of x.
(2) Each open interval (a, b) is an open set, because every point of (a, b) is an
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interior point, while the closed interval [a, b] is not an open set as a & b are not interior
points of [a, b]. Similarly, (a, b] and [a, b) are not open sets.

(3) The null set ¢ is open set, since ¢ contains no points, so ¢ satisfies the defination
of open sets.

Theorem 6.3.1 : The intersection of two open sets in IR is open.

Proof : Let G, and G, be two open sets in IR. We have to show that G, G, is an
open set.

If G,NG,=¢ then G,NG, is an open set, as ¢ is an open set.

So, let us suppose that G, G, # ¢ and x € G, G,.

Then x e G, and x € G,.

Since G, and G, both are open sets, x is an interior point both of G, and G, and

hence x is an interior point of G,NG,.
Since x is arbitrary point of G, G, , so every point of G, (G, is an interior point

of G,NG,. Hence G, G, is an open set.
Theorem 6.3.2 : The intersection of a finite number of open sets in IR is an open set.

Proof : Let G, G,, ..., G_be n open sets and let G = ﬁGi . We have to show that

i=l
G is open.
If G = ¢, then G is an open set.

So, let us suppose that G # ¢ and take x € G = ﬁGi

i=l
So, xeG, foreachi=1, 2, .., n.
Since G, is an open set, so, X is an interior point of G, for each = 1, 2, ..., n.

Hence x is an interior point of G = ﬂGi .

i=1

Since x is choosen arbitrarily, every point of G = ﬂ G, 1s an interior point of G. Hence
i=l

G= ﬂGi is an open set.

i=l
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Note : The intersection of an arbitrary family of open sets may or may not be an open
set.

For example, for each n € IN,let G, =(0,n). Then each G_is an open set.

11
Again if we consider G; = (_I’Ij Then for each i€ IN,G; is an open set.

~ 11
However, OGi=(—1,1)ﬂ(—5,5)ﬂ(——,—)ﬂ ...... =10}.

which is a finite set and hence not open set.

Similarly if we take B, = (0, 1+ 1) , where 1 is any positive integer. Then each B,
i

being an open interval, is an open set, whereas ﬂBi =(0,1] is not open as the point 1

i=l1

in ﬂBi is not an interior point of ﬂBi .

i=1 i=1

Theorem 6.3.3 : The union of an arbitrary family of open sets is open set.

Proof : Let {G,:ie A} be an arbitrary family of open set, where A is an index
set.

Put G ={ JG,

We have to show that G is an open set.

Let x e G. Then xeG; for some ijen.
Since G; is open, so X is an interior point of G; and hence 3 a neighbourhood N of
x such that xe Nc G;

Since G; < G, we get x e Nc G, which implies that x is an interior point of

G. As x is arbitrarily choosen, so every point of G is an interior point of G.
Consequently, G is open.

Corollary : The union of two open sets is an open set.
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Theorem 6.3.4 : A subset G of IR is open if and only if it is a union of open intervals.

Proof : Let us suppose that G is open set and {G;, :1 € A} be an arbitrary family of
open intervals contained in G, where A is an index set.

We have to show that G = UGi .

Evidently UGi cG. .. (2.12.1)

Again if x € G, then x is an interior point of G as G is open. So, there exists
some open interval G; in {Gi e /\} containing x, i.e. X€G; < UGi

which implies that G < UGi . ..(2.12.2)

From (2.12.1) and (2.12.2), it follows that G = JG;..

Conversely, let G be a union of open intervals. Then since each open interval is an
open set, G is a union of open sets. Hence G is open.

Theorem 6.3.5 : Let S c IR. Then

(1) Int S equals to the union of all open subsets of S.
(i1) Int S is an open set.

(i11) Int S is the largest open subset of S.

(iv) S is open if and only if Int S = S.

Proof : (i) Let {Gi} be the collection of all open subsets of S. We have to show that

It S=JG,

Let x € Int S. Then x must belongs to some open subset, say G; of S and hence
X e UGi .

Thus Int ngGi. .(2.12.3)

Now let us suppose X UGi so that x € G, , for some i,. Since G; is open, x

is an interior point of G;.
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But G; S and hence x is an interior point of S, i.e. x € Int S. Hence

JG, cIntS. .(2.12.4)
From (2.12.3) and (2.12.4), we get Int S=JG;.

(i1) From (i) we have Int S= UGi , which is the union of arbitrary family of open

sets, so Int S is open.
(iii) Let {G;} be the collection of all open subsets of S. Then

Ge{Gi}ngUGi:Ggmt S, as Int S:UGi. This shows that Int S is the

largest open subset of S.
(iv) If S is open, then ScIntS, as Int S is the largest open subset of S. Also
Int S ¢ S always. Hence Int S = S.
Conversely, if Int S =S, then S is open as Int S is open by (i1).
Theorem 6.3.6. Let S and T be two sets such that S—T.
Then S°— Te°.
Proof : Let p be an arbitrary point of S°. Then
p €S°= S is a neighbourhood of p.
= T is a neighbourhood of p.
=pe T
Thus p € S° = p € T° and hence S°c T°.
Theorem 6.3.7 : For any two sets S and T, (S(1T)°=S°T°.

Proof : Since for any two sets S and T,

SNTcS and SNTcT.

So, we have by Theorem 2.12.6 that

(SNT)cS°and (SNT)°c T

Hence (SNT)°c S°NT® ..(2.12.5)
Again let p be an arbitrary point of S°(T°.

Then we have

peS’NT°=peS°andpeT°

= S is a neighbourhood of p and T is a neighbourhood of p.
= SNT is a neighbourhood of p.
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=pe(SNT)°
Hence S°T°c (SNT)° ...(2.12.6)

From (2.12.5) and (2.12.6) it follows that (S(1T)°=S°NT°

Theorem 6.3.8 : For any two sets S and T, S°UT°c (SUT)°.

Proof : Since for any two sets S and T, we have
ScSUTand T<SUT.
So, by virtue of Theorem 2.12.6, we have that
S°c(SUT)°and T°c (SUT)* = S°UT°< (SUT)°.

Remark : In general S°UT°#(SUT).In fact (SUT)°z S°UT®, in general.
For this, let us consider S =[0, 1] and T = [1, 3].
Then S° = (0, 1) and T° = (1, 3). Also SUT = [0, 3] and hence (SUT)° = (0, 3).

But S°UT°=(0,1)U(1, 3) = (0, 3) - {1}.

Thus S°UT°z (SUT)° and hence S°UT°=(SUT)°.
Closed Set : A subset F of IR is called a closed set if all the limit points of F are

members of F, i.e. F'c F, where F' is the derived set of F.

Examples :

(1) Any closed interval [a, b] is closed, while (a, b) is not.
(2) The sets [a, b) and (a, b] are neither open nor closed.

(3) Every finite set F is closed, since F'=¢ c F.

(4) The entire set IR is closed.

(5) The null set ¢ is closed, since ¢'=dpc ¢ .

Remark : The words ‘open’ and ‘closed’ are not antonyms. Any set in IR may be

of four types such as

(1) open, for example the open interval (a, b) in IR.

(i1) closed, for example the closed interval [a, b] in IR.

(ii1) both open and closed, for example the sets ¢ and IR.

(iv) neither open nor closed, for example the intervals (a, b] and [a, b).

The relationship between open sets and closed set are characterised by the

following :

Theorem 6.3.9 : A set F in IR is closed if and only if its complement F¢ is open.

Proof : At first, Let us take F is closed. We have to show that F° is open.
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Let p be an arbitrary element of F°. So, p ¢ F.
Since F is closed and p ¢ F, so “p’ is not a limit point of F. So3 a neighbourhood

N containing p such that F(1N = ¢, which means that pe N < F°.

Consequently, p is an interior point of F¢. Hence F°¢ is open.

Conversely, suppose that F¢ is open. We show that F is closed. For this, let p be
a limit point of F. Then every deleted neighbourhood of p contains at least one point
of F. Hence there is no neighbourhood of p, which is contained in F°. So

p ¢ Int(F®) = F°as F° is open, by Theorem 2.12.5(iv). Therefore p € F. Since p is
arbitrary, we may conclude that F' C F and hence F is closed.
Corollary : A set G in IR is open if and only if its complement G* is closed.

Proof : It follows from above theorem by just taking F = G¢ and use (G°)* =G, i.e.
complement of complement of a set is itself.

Theorem 6.3.10 : The derived set of every set is closed.

Proof : Let S be a set and S' be its derived set. We show that S' is closed. For this,
let us take o be a limit point of S'. We have to show that ¢ S', i.e, o is a limit point
of S.

Let § > (0 be an arbitrary number.

Since a is a limit point of S', the interval (o —J, o + d) contains an infinite number of
members of S' other than o.

Let Be(a—d,a+0d)cS'and B #a.

Since B € S', therefore f is a limit point of S. So, the interval (o — 8, o +3) contains

an element of S other than .. This shows that o is a limit point of S and hence the theorem
is proved.

Theorem 6.3.11 : The intersection of two closed sets is a closed set.

Proof : Let F, and F, be two closed sets. Then F¢, and F*, are open sets (by Theorem

2.12.9) and hence F°UE, is an open set as union of two open sets is an open set.
Since F°UF, =(F NFE), by De Morgan’s law. So, (E E,)‘is an open set and
hence F,NF, is a closed set.

Theorem 6.3.12 : The intersection of an arbitrary family of closed sets is closed.

Proof : Let {F :ie A} be an arbitrary family of closed sets, where A is any index set.
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Put F=(")F,

JESIN

Using De-Morgan’s Law, we have
Fe= (ﬂEj =UF

Since each F ¢ is open, so F¢ is the union of an arbitrary family of open sets. So, by
theorem 2.12.3, F¢ is open and hence by Theorem 2.12.9, F is closed.

Theorem 6.3.13 : The union of two closed sets is a closed set.
Proof : Let F, and F, be two closed sets.

So, F and F; are open sets, by Theorem 2.12.9.

= F'(E, is an open set, by Theorem 2.12.1.
= (F1 UF, )° is an open set, by De-Morgan’s law.
= F UE, is a closed set, by Theorem 2.12.9.

Theorem 6.3.14. The union of a finite number of closed sets is a closed set.

Proof : LetF, F, ..., F_be n closed sets. Then F ¢, F.¢, ..., F ¢ are open sets and

n
hence ﬂE° , the intersection of a finite number of open sets, is an open set.
i=1

So, by De-Morgan’s law, (UFIJ = ﬂFi‘"' is an open set and hence UE is a closed
i=1

i=1 i=1
set, by Theorem 2.12.9.

Note : The union of an arbitrary family of closed sets may or may not be closed.

1
For example, for each neIN,letF, = [1, i} Then each F_is a closed set.

n

* 3 4
Now UFn =L Z]U[L E}U{L E} U.....= [1, 2], which is a closed set.
n=l1

n

Again if we consider S, = {0, m} for each n e IN. Then each S_is a closed set.
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However CJ F = {O, %} U {0, %} U [O,%} U......

n=l

= [0, 1), which is not a closed set.

Problem : Let G be an open set and F be a closed set in IR. Show that

(1) G — F is open and (i) F — G closed.

Solution : (i) Let x ¢ G—F.Therefore x € G but x¢F. Since xeG and G is

open, so X is an interior point of G. Thus there is a positive number €, such that

X €(x—€,x+¢€)cG.

Again since x ¢ F and F is closed, so x cannot be a limit point of F. Therefore, there
exists a positive number €, such that

(x—€,,x+€,)NF=¢

Choose e=min{e, €,}.

Then xe(x—¢,x+e€)cGand (x—,x+€)(N1F=0¢,

which implies that x € (x—€,x+€)c G-F.

This shows that x is an interior point. Hence G — F is open as x is arbitrary.

(i1) Again let p be a limit point of F — G.

Since F — G C F, therefore p is a limit point of F.

So, peF as F is closed

We now show that p ¢ G . If possible, let p € G . Then there exists a positive number
€ such that

pe(p—s,p+te)cG.

This shows that (p—€,p+e)N(F-G)=0¢,

which is a contradiction to our assumption that p is a limit point of F — G.

Thus p¢ G and hence p € F—G, which means that F — G contains all its limit
points and hence it is closed.

6.4. Closure of a set

Let S be a subset of IR. The closure of S, denoted by §, is the intersection of all
closed supersets of S,



64 NSOU e 5CC-MT-02

i.e. S=({F:Fisclosed and S c F}.

Note that S S for any subset S of IR.

Also ¢ =¢and IR =IR.

Theorem 6.4.1 : If S is any subset of IR then
(1) § is closed

(i) § is the smallest closed superset of S.

(iii) S is closed «— S=S§.

Proof : (i) From the definition of g, it is the intersection of some closed sets

containing S. Since intersection of an arbitrary family of closed sets is closed, so § is
closed.

(ii) By definition of S (closure of S) and using above (i), (ii) follows.

(iii) Let us suppose that S=S. Since S is always closed, therefore S is closed.
Converely suppose that S is closed. Then clearly S is the smallest closed superset

containing itself. Consequently S=S.

Note : Since for any set S in IR, S is always closed. Thus (§) =S by above (iii).

Theorem 6.4.2 If S is any subset of IR, then S =SS/, where S'is the derived set
of S.

Proof : We now show that S|JS'is closed. For this, let x be any limit point of
SUS'. Then x must be a limit point of S and (or) S'.

If x is a limit point of S, then x €S'. Again, if x is a limit point of S' then x ¢ S' as
S' is always closed. Thus, in both the cases, x €S'. Hence x e SUS', and consequently
SUS' is closed.

Since SUUS' is a closed superset of S, and S is the smallest closed superset of
S, we have

ScSUS!' .. (2.13.1)
Again, since S is closed, we have S'cS.
Now ScS=S'cS'cSandScS always, we may conclude that

sUs'cs. .. (2.13.2)
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From (2.13.1) and (2.13.2), it follows that S =S|JS'

Remark : The above theorem can be used as alternative definition of closure of a set.
We can also find the closure of a set using the formula in above theorem. For example,

(1) N=INUN'=INU¢=INasIN'=¢
Q) 0=0 Uz 0 asl'=¢0

(3) IR=IRUIR'=IRUIR =IR as IR'=IR.
(49) Q=QUQ'=QUIR =R asQ'=1R.

(5) For sz{l:nem},s'z{O} and hence S=SUS =10, 1%%}
n

Theorem 6.4.3 : For any twosets Sand T, Sc T=S T
Proof : Let Sc Tandx €8S.

Then xeSUS'=xeSorxefs'

=>xeTorxeTasScT=S'cT'

=xeTUT'=xeT

So, ScT.

Theorem 6.4.4 : If S and T are two subsets of IR then SUT=SUT -
Proof : SUT =(SUT)USUT)

=(SUT)UES'UT),as (SUT)'=S"UT’

=SUSHUTUT)=SUT.

Theorem 6.4.5 : If S and T are two subsets of IR, then SN\ T SNOT-
Proof : Since S(NTcSandSNTcT.

Therefore, SN1TcSandSNTc< T by theorem 2.12.17.
=SNT<=SNT.

Remark : However SO\ T = ST in general, for any two subsets S and T of IR.
For this, let S = (1, 2) and T = (2, 3).

Then S=[1,2]and T =[2, 3]

. SNT={2} and SNT = ¢, which implies that SNT=¢ = ¢.
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Thus SNT#SNT -

Some important sets :

(i) A set S is called dense in IR if S = IR

(i1) A set S in IR is called dense-in-itself if S — S'.

(ii1) A set S in IR is called perfect if S = S'.

For example,

(i) The set Q is dense in IR as Q=IR. Also Q is dense-in-itself as Q = Q".
Similarly IR is dense-in-itself.

(11) If we consider S =(a,b) c IR . Then S'=[a, b].So S € S' and hence S is dense-
in-itself.

(iii) Let S = [a, b], a, b € IR. Then S’ = [a, b]. So, S is a perfect set.

6.5 Bolzano Weierstrass Theorem for sets

In section 2.11, we have seen that a finite set has no limit point. Also an infinite set

1
may or may not have a limit point. For example, the infinite set {H ‘nelN } has limit point

0, while the infinite set [] of integers has no limit point. So, a natural question arises— what
is the sufficient condition for the existence of a limit point of an infinite set. The following
theorem known as Bolzano— Weierstrass Theorem gives us the said sufficient condition.

Theorem 6.5.1 (Bolzano-Weierstrass Theorem) : Every bounded infinite subset of
IR has at least one limit point.

Proof : Let S be a bounded infinite subset of IR. Since S is bounded, So sup S and
inf S exists by completeness property of IR.

Let inf S =m and Sup S = M.

Define a subset H of IR by

H = {x € IR : x exceeds at most finitely many elements of S}.

Then m € H as m does not exceed any element of S and hence H # ¢.

However, M exceeds infinitely many elements of S, since S is infinite and Sup S =M.
So, there is no number greater than or equal to M in H. Consequently M is an upper bound
of H. So, H is a non-empty bounded above subset of IR.

Therefore sup H exists and Sup H = a (say).
We now show that a is a limit point of S.
Choose € > 0.
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Since Sup H = «a, so 3 any € H such that a—e<y.
So, a— e exceeds at most finitely many elements of S as y € H.

Also by definition of sup, o+ e can not belongs to H. So o+ e exceeds infinitely
many elements of S. Thus for each <>, the e-neighbourhood (a0 — €,
o+ €) of a contains infinitely many elements of S. Hence a is a limit point of S.

Remark : In above theorem, the condition of boundedness is only sufficient condition
for the existence of a limit point of an infinite set, while this condition is not necessary for
an infinite set may have a limit point. For this, the set of rational numbers Q is an infinite
and unbounded set and Q has limit points. In fact Q' = IR.

6.6 Summary

In this unit we have discussed many important properties of IR (set of real numbers)
like algebraic property, order property and completeness property. Through this unit, the
students can learn the concept of neighbourhood of a point in IR, limit point of a set, open
set, closed set in IR etc. The students also can know the sufficient condition for the
existence of limit points of a set. Many results regarding the topic are given here. One can
study more. For them, a list of references is given in section 2.18. Some important data
and results are cited in section 2.16 (summaries) at a glance. For understand the topic
clearly, some model questions are given in section 2.19.

® The system of real numbers can be described by means of certain axioms which can
be divided into three categories, namely Field axioms, Order axioms and completeness
axiom. The system IR of real numbers equipped with above three axioms is called
a complete ordered field.

® The set of rational numbers is an ordered field but not a complete ordered field.

® A set is countable if it is either finite or enumerable. A set is uncountable if it is not
countable.

® Subset of a countable set is a countable set.

® The cartesian product of two countable sets is countable.

® A real number of the form B, where p,q e[, q#0 and ged (p,q) =1,1s a
q

rational number.

® ./m, where m is a non-square positive integer, is an irrational number.
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® The terms ‘real number’ and a ‘point’ on the real line can be used interchangeably.

® (Archimedean property) If x and y are any two positive real numbers with y <x then

dn e IN such that ny > x.

® Between any two distinct real numbers, there exists infinitely many rational numbers,

irrational numbers and hence real numbers.

® The set IR is a neighbourhood of each of its points, while each of the set IN, Z, Q

and the set of irrational numbers are not a neighbourhood of any of its points.

® A set having limit point must be infinite or in otherwords a finite set has no limit

points.

Every infinite and bounded set in IR has at least one limit point. (Bolzano Weierstrass
Theorem).

The set of all the limit points of a set is known as its derived set.
A set is open if each point of it is an interior point.
Any arbitrary union of open sets is an open set.

The intersection of a finite number of open sets is an open set. However, the
intersection of an infinite number of open sets may or may not be an open set.

Any subset of IR is open if and only if it is a union of open intervals.
A set is closed if all the limit points of the set are members of that set.
A set is closed (open) if and only if its complement is open (closed).
Any arbitrary intersection of closed sets is a closed set.

The union of a finite number of closed sets is a closed set. However, the union of
an infinite number of closed sets may or may not be a closed set.

The union of a set and its dervied set is the closure of that set.

For any set S in IR, Int S is the largest open subset of S, while S (closure of S) is
the smallest closed superset of S.

6.7

Keywords

Real numbers, Field axioms, order axioms, completeness axiom, ordered field,

complete ordered field, countable sets, uncountable sets, rational number, irrational
number, Archimedean property, Neighbourhood of a point, limit points, open sets, closed
sets, Bolzano Weierstrass theorem for sets.
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6.9 Model Questions

[A] Multiple Choice Questions (MCQ) :
(Choose the correct answer each of the following) :

[1]

[2]

[3]

[4]

The set of rational numbers is

(a) complete ordered field (b) ordered field but not complete
(c) field but not ordered (d) none of the above.

Let S be a bounded set. Then

(a) inf S <sup S (b) inf S = sup S.

(c)inf S < sup S (d) sup S = inf S.

1
The lower bound of {H ‘ne IN} is
(@0 (b) 1

1
(c)n d) 7

For any two positive real numbers x and y with y <X, there is n e [N such that

(a) ny>x (b) ny<x (c¢) ny > x (d) ny < x.
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[5]

[%]

[10]

Ans. :

Between any two distinct real numbers, there exists

(a) only one irrational number (b) finite number of irrational numbers
(c) infinitely many irrational numbers (d) None of the above.

Every non empty bounded above subset of real numbers has

(a) Supremum (b) Infimum

(¢) both infimum and supremum (d) neither infimum nor supremum
The derived set of any set is

(a) open (b) closed

(c) both open and closed (d) neither open nor closed.

For any set S, Int S is

(a) open (b) closed

(c) both open and closed (d) neither open nor closed.

For any set S, S is

(a) open (b) closed

(c) both open and closed (d) neither open nor closed.

1
Let S = {H:nelN}_ Then S is

(a) closed (b) dense-in-itself
(c) both closed and dense-in-itself (d) neither closed nor dense-in-itself.

[1] (), [2] (¢), [3] (a), [4] (c), [S] (¢), [6] (a), [7] (b), [8] (a), [9] (b),
[10] (d).

[B] Miscellaneous Questions :

[1]

Let a, b € F such that a # 0 and a . b = a, show that b = 1.

Hints : Multiply both sides of a . b =a by a™' and use the property M, and M,
of section 2.3.

Let F be an ordered field. If a, b, ¢ € F such that a <b and b < ¢ then show
that a < c.

Given in an ordered field F, 0 <a<band 0 <c <d, where a, b, ¢, d €F. Show
that 0 <ac <bd.

Hints : 0<a<b=0<b-a andsince (<,
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[4]

[5]

[6]

[7]

[8]
[9]

it follows that ) <bc—ac = 0<ac <bc (D)
Similarly one can show that pc < bd ..(2)
(1) and (2) gives the result.

Let A and B be two sets such that A < B. If A is an uncountable then show that
B is an uncountable, i.e., every superset of an uncountable set is uncountable.

Hints : If possible, let B be a countable set. Then A being a subset of a countable
set, must be countable, which is a contradiction. Hence the result.

Let A be the domain of a function f and let A be countable. Show that f(A) is
countable.

Hints : Since A is countable, A can be arranged as a, a,, a,, .... So, f(A) can
also be arranged as f(a,), f(a,), f(a,), ..., which means that f(A) has one to one
correspondence with IN. Hence f(A) is countable.

Prove that the set IN x IN is countable, where IN is the set of natural numbers.

Hints : Here IN x IN = U{A, :n € IN}, where
A ={(n,]),(n,2),(n,3),....(n,n),...},n €IN.
Define a mapping f: A, — IN by f(n, m) =m,m e IN.

Then f is bijective. Consequently A is countable for each n eIN. Hence
IN x IN is countable.

Let Z be the set of all integers. Show that Z is countable.

Hints : Define a mapping f: IN — Z by

f(n)=

Show that f is bijective and hence Z is countable.

Prove that union of two countable sets is also countable.

Let ‘m’ be a non-square positive integer. Show that there is no r € Q such that
r’ =m.
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[10]
[11]

[12]

[13]

Solution : If possible let 3r e Q such that r* =m. So, 3p,qell, q=0 and ged

p
(p, q) = 1 such that r:a.

Since m is a non-square positive integer, 3 two consecutive square integers
2> and (L +1)* such that

A <m<(A+1)

Sa<Pan+l

q
=0<p-Aq<q (1)

2
Now m(p—Aq)’ =mp® —2Ampq +A’mq* = (mq—Ap)* as = =m
q

mq— Ap
p—2Aq

2 2
m:(gj andm:(mq_kpj )
q P-2q

Since ged(p, q) = 1, we must have p—Aq > q, which contradicts to (1). Hence

2
Thus m =( ) , which implies that m has two representations

the result.

If p is any prime number, show that \/5 is not a rational number.

Show that if x is rational and y is irrational then x + y is irrational and if
x # 0 then xy is irrational.

Prove that between any two distinct real numbers, there exists infinitely many
real numbers both rational and irrational.
Hints : Density property of IR.

Give examples of sets which are

(1) bounded below but not bounded above
(i1) bounded above but not bounded below
(iii) bounded

(iv) unbounded.
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[14] Give an example of an infinite set which is bounded.
Ans. : The open interval (1, 2).

[15] Give an example of a subset of an unbounded set which is not necessarily

unbounded.
Ans. : The set IR is unbounded but its subset (0, 1) is bounded.

[16] Find the infimum and supremum, if they exists, of the following sets :

o

®
(ii) {(_i)n ‘ne IN}
(iii) {1+(_r?n :neIN}

(@) {(—l)nn ‘ne IN}

V) {n%:neIN}

(vi) {xeD IX2S25}
(vii) {H+l:neIN}

1
Solution : (i) Let S = {E ‘ne IN} Then max S = 1 and hence sup S =1. And

by definition of infimum, inf S = 0.

1
(i) The maximum and minimum element of the given set are respectively 5 and

1 .
—1. So, sup S:E and inf S = 1.
1"
@ If S = {l-i-( ) :neIN} then max S:% and min S = 0. So,
n

sup S:% and inf S = 0.
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(iv)

(V)

(vi)

(vi)

Let S = {(—1)“n:neIN}. Then S =

{..., 5,-3,-1,2,4,6, ...}.
Clearly the set is neither bounded below nor bounded above. Hence infimum
and supremum of S do not exist.

Given S = L:nEIN = l,%,z, .....
n+l1 2 3 4

1
Here sup S = 1 and inf SZE'

Let S = {xeD :X2S25}. Then sup S = max S =5 and inf S =

min S = -5.

-1, 2, -3, 4, -5, 6, ..} =

1
LetS = {H+—:neIN}.Then sup S= [[+1 and inf S = IT by similar
n

to (i).

(17) Show that a non empty finite set can not be a neighbourhood of any of its points.
Hints : Let S ( ¢) be a finite set and p be an arbitrary point of S. Since for any

positive real number €, the open interval (p — €, p + €) contains infinitely many
points, so (p — €, p + €) can not be a subset of the finite set S. Then S is not
a neighbourhood of p.

(18) Give an example of

(1)
(1)
(iii)

(iv)

\2
(M)
(i)
(iii)
(iv)
v)

Ans.

a set which is a neighbourhood of each of its points.

a set which is not a neighbourhood of any of its points.

a set which is a neighbourhood of each of its points with the exception
of one point.

a set which is a neighbourhood of each of its points with the exception
of two points.

a set which is not an interval but is a neighbourhood of each of its points.

any open inerval in IR, say (a, b).

any non empty finite set.

any semi open interval in IR, say (a, b].
any closed interval in IR, say [a, b].

0, HU 2, 3).

(19) Show that the set of integers is not a neighbourhood of any of its points.
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20)
(03]
(22)
23

24

(25)

(26)

Is the set of natural numbers a neighbourhood of 5 ? Give reasons.
Define limit points and derived set of a set.
Give an example of a set which coincides with its derived set.

Find the limit points of the following sets :
(1) IN (ii)[a, b) (iii)) IR — Q (iv) {1, 2, 3, 4}.

Give examples of sets S such that

i) SNS'=¢

(i) S'cS

(iii) ScS'

Ans. (i) S={%:neIN}
(i) S= 101,530 0}

2
(iii)) S = (a, b).
Give example of each of the following :
(1) a bounded set having limit points.
(i1) a bounded set having no limit point.
(i11) an unbounded set having limit points.
(iv) an unbounded set having no limit point.

(v) an infinite set having a finite number of limit points.
Ans. (i) [a, b], (ii) any finite set, (iii) Q, (iv) IN, (v) {i+ﬁ+% ‘m,n,p € IN}
Give example of each of the following :
(1) an open set which is not an interval
(i) a closed set which is not an interval.
(1) an interval which is an open set.

(iv) an interval which is a closed set.
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(v) an interval which is not an open set.
(vi) an interval which is not a closed set.
(vii) a set which is neither an interval nor an open set.
(viii) a set which is neither an interval nor a closed set.
(ix) a set which is open as well as closed
(x) a set which is neither open nor closed.

Ans. () (1,2)U@3,4) (i) {1, 2, 3, 4}, (ii)) (a, b), (iv) [a, b], (v) [a, b],

w2

(vi) (a, b), (vii) IN, (viii) {ﬁ ne IN} , (ix) IR, (x) [a, b).

n
(27) Verify Bolzano-Weierstrass theorem for the set S in IR, where S = {m ‘ne IN} .

(28) Prove that arbitrary union of open sets in open.
(29) Show that arbitrary intersection of closed sets is closed.
(30) Is the union of an infinite number of closed sets a closed set ? Justify your answer.

(31) Is the intersection of an arbitrary family of open sets an open set ? Give reason.
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Structure

3.1 Objectives

7.1 Objectives

7.2 Introduction

7.3 Sequence

7.4 Bounded sequence
7.5 Summary

7.6 Keywords

7.7 Reference

7.8 Model Questions

7.1 Objectives

The Object of this unit are as :

to study sequences, its boundedness and convergence.
to know about non-convergent sequences.

to know about the sum, difference, product and quotient of two or more
convergent sequences as well as some limit theorems.

® to study a special type of sequence, called monotone sequence and its properties.

® to know monotone convergence theorem through which we get the necessary and

sufficient condition of a monotone sequence to be convergent.

to study subsequence and its properties including Bolzano weierstrass theorem for
sequences.

to study Cauchy sequence and Cauchy’s convergence criterian, which states that
the necessary and sufficient condition of a sequence to be convergent.

77
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7.2 Introduction

This unit deals with the sequences of real numbers. Its foundation was laid by the
French mathematician Augustin Louis Cauchy (1789 — 1857). To the development of
sequences of real numbers, the contribution of George Cantor (1845 — 1918) is also
significant. A sequence of real numbers is a function from IN to IR. Such functions plays
an important in real analysis.

7.3 Sequences

A function f: IN — IR is called a sequence in IR (or a real sequence), where IN and
IR are respectively the set of natural numbers and set of real numbers.

The value of the function f'at n € IN is denoted by f(n). If f(n) = x_then the sequence
is denoted by {f(n)} or {x },i.e., {x, X }. Here x_is called the n term or general
term of the sequence {x }.

Two sequence {x_} and {y } are said to be equal if x_ =y for each n €IN.

PIIREE

Remark : (1) The domain of every sequence is IN, but its range is
{f(n) : n € IN} C IR. That means the range of the sequence may be a finite or an infinite
set. So, the range of a sequence {x } is the set consisting of all the distinct elements of the
sequence {X }.

(2) We use IN with usual well ordering.

Examples :
1 1
(1) Let f:IN — IR be defined by f(n) :H’ nelIN. So, the sequence is NE
. . 1 1 . . . .
which can be also written as 11 53 . The range of this sequence is infinite.

(2) Let f:IN—IRbe defined by f(n)=n,neIN.So, the sequence is

{n},ie.{1,2,3,4,...}.Its range is also infinite.
(3) Similarly {n?} is the sequence {12, 2%, 32, .....}

n
(4) Let f:IN — IR be defined by f(n) = L, n € IN . The sequence is {—},
n+l n+l1



NSOU e 5CC-MT-02 79

b

W | N
AW

1 o n+1 )
whose elements are bX >+« (. Similarly T:neIN is the sequence

(5) Let f:IN—>IRbe defined by f(n)=(-1)", neIN. The sequence is

{(—1)“}, ie.{-11,—1,1,—1,...}. The range of this sequence is {~1,1}, i.e., finite.
. nm .
(6) Let f:IN—IR be defined by f(n)ZSHl?,HEIN So, the sequence is

. nm
{SIHT},i.e. {1,0,-1, 0, 1, 0, ....}. Its range is {-1, O, 1}, i.e., finite.

(7) Let £ :IN — IR be defined by f(n) =3,V n € IN. So, the sequence is {3}. i.e.,
{3, 3, 3, .....}. This sequence is called the constant sequence.

7.4 Bounded Sequence

A sequence {x_} is called bounded above if 3)\f ¢ |R such that x, <M, VneIN.
Here M is known as an upper bound of the sequence {x }.

A sequence {x } is bounded above as well as bounded below if IM € IR such
that x, 2m, Vn e IN. Here m is known as a lower bound of the sequence {x }.

If a sequence {x } is bounded above as well as bounded below then bounded
below ther {x } is called bounded. Thus, a sequence {x } is bounded if 3m, M € IR
such that

m<x <M,VnelN

In other words, a sequence {x } is bounded if there exists a real number M(2
0) such that

x,| <M, VnelN,

that means if the range of the sequence is bounded.

A sequence {x } is called unbounded if it is not bounded.

Remark : Every number greater than an upper bound is also an upper bound and
every number smaller than a lower bound is also a lower bound.

An upper bound of a sequence is called the supremum (or least upper bound),
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written as sup or lub, if it is less than or equal to every upper bound of the sequence.
Similarly a lower bound of a sequence is called infimum (or greater lower bound),
written as inf or glb, if it is greater than or equal to every lower bound of the
sequence.

Examples :

(1) The sequence {-n} is bounded above by —1, but not bounded below.

(2) The sequence {n’} is bounded below by 1, but not bounded above.

1

(3) The sequence {H} is a bounded sequence, as 0<lgl, VneIN. The
n

supremum and infimum of this sequence are 1 and 0 respectively. So, this sequence
contains its supremum, but not infimum.

. nm
(4) The sequence {sin %} is bounded as —1< sin == <1,VnelN,

(5) The sequence {(—1)“} is a bounded sequence. In this case, the bounds are

-1, and 1.

. 1
(6) The sequence s a bounded sequence, as — < 2. I, Vn e IN. The
n+1 2 n+l

supremum and infimum of this sequence are 1 and 1 respectively. So, this sequence
2
contains its infimum, but not surpemum.
Exercise : Show that the sequence {Xn}, where x_ =1+l+i2+__,,+ 1s
bounded.

zn—l

Solution : Here, x,=1,x, :1+%, X, :1+%+%+_”_, that means the sequence

is strictly increasing. Consequently the sequence is bounded below by the first term
re. 1.

L2 5 s vmem
211— 1 n-1
1_7
2

Hence the sequence is bounded above also. Thus the given sequence {x } is bounded.

Also, x =1+l+i2+....+
2 2
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7.5 Summary

This chapter explores the concept of sequences, focusing on their bounded nature,
convergence, and limit points, with applications to real analysis.

7.6 Keywords

Sequence, bounded sequence, convergence, real analysis, limit points, monotonicity.

7.7 References

1. Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill

2. Real Analysis: Modern Techniques and Their Applications - Gerald B. Folland,
Wiley

3. Real Analysis - H.L. Royden, P.M. Fitzpatrick, Pearson

7.8 Model Questions
1. Define a sequence and explain its boundedness.
2. What is the difference between convergent and divergent sequences?
3. State the Bolzano-Weierstrass theorem for bounded sequences.
4. Give an example of a bounded sequence that does not converge.
5. Explain the concept of a limit point for a sequence.
6. What is a Cauchy sequence, and how does it relate to convergence?
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Structure

8.1 Objectives

8.2 Introduction

8.3 Convergent sequence
8.4 Limit theorem

8.5 Summary

8.6 Keywords

8.7 Reference

8.8 Model Questions

8.1 Objectives

To understand the concept of convergent sequences, their limits, and key theorems
governing limits in real analysis.

8.2 Introduction

This chapter explores convergent sequences, their properties, and essential limit
theorems. These concepts form the foundation for rigorous analysis and mathematical
proofs in calculus and beyond.

8.3 Convergent Sequence

A sequence {x_} is said to be convergent if there is a real number ¢ such that for
each € > 0, there exists a natural number m (depending on € ) satisfying

x,— (<€, Vn2m. (75.1)

In this case, we also say that the sequence {x _} converges to ¢ or ‘£’ is the limit
of the sequence and we write
X, > fasn—>o or lniE}Xn =4

or Simply limx_ =/.

82
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Note : (1) We know that

x,—l|<e e x, e(l-¢€, l+¢€)

So, we may use X, € ({— €, /+ €) instead of |x, — €| <e in the above definition. This

means that after a finite number of terms from the begining, all the terms of the sequence
must lie in the open interval (/- g, /+ €).

Thus if imX, = then limx,,, =0,

(2) The choice of m, in the definition, is not unique. As, if the criterian (7.5.1), in above
definition, is satisfied then (7.5.1) also holds for any greater natural number of m.

Non-Convergent sequence : A sequence is called non-convergent sequence if it is

not convergent. Non-convergent sequences are either ‘divergent’ or ‘oscillatory’, as
defined below :

Divergent sequence A sequence {x } is said to diverge to + o if for every positive

real number K, however large, 3 a natural number m such that x, > K, Vn>m.

In this case, we write }grolo X, =+% or limx, =+ooor X, — +oo.
Again a sequence {x } is said to diverge to — o< if for positive real number K,

however large, 3 a natural number m such that x, <-K,Vn=m.
In this case, we write limx, =—co or imx, =—c or X, — —oo.
n—oo
Thus a sequence {x_}, which diverges to either 4oo, or — is called a divergent
sequence.

Oscillatory Sequence : A sequence {x } is said to be oscillatory if it is neither
convergent nor divergent.

In this case, the sequence {x } oscillates between two numbers as n — oo.

Also an oscillatory sequence is said to oscillate finitely or infinitely according as it is
bounded or unbounded.

Examples :
(1) The following sequences are convergent :

(1) {l} is convergent and converges to 0, as liml =0.
n n

n
(i1) {—1} is convergent and converges to 1, as limi =1.
n+ n+l

(iii) {x,},where x =3 forall n e N, is convergent and converges to 3.
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5y |n*+3
(2) Each of the sequences {n }, n+l diverges to +o.

1
(3) Each of the sequences {_n}a{k’g(gj} diverges to —owo.

n-1 . N’
(4) The sequence {(—1) }and {sm;} oscillate finitely betdween —1 and 1,

|
whereas the sequence {(—1)"n} and {(—1) H+H} oscillate infinitely.

Theorem 8.3.1. The limit of a convergent sequence is unique.

Proof : Suppose {x } is a convergent sequence. If possible, let {x } converges

1
to two distinct limits ¢y and ¢’ Choose e=5|€—€’|. Then > (. So, there exists

m,,m, € IN such that—

x,—/|<e,Vn2zm, and |x,—¢|<e,Vn2m,.

Take m, = max {m,, m_}. Then it follows from above that

<€, Vnz2m,. ....(3.5.2)

x, = | <eand|x, — ¢

Thus Vn=m,, we have

[0= ] =]0x0 = )= (x, = )
<|x, = ¢|+[x, -
<e+¢€, using (3.5.2)

=2e=|(-/|
So, |[(—1 <|€ —/’|, which is absurd and hence our assumption is wrong.

Consequently, the limit of a convergent sequence is unique.

Theorem 8.3.2. Every convergent sequence is bounded.
Proof : Let {x } be a convergent sequence and it converges to /.

Choose e=1. Then dm € IN such that |Xn —€| <l,Vn=zm
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Now [x,|-]{<|x, = ¢ <L, Vn2m. ie. |x,|<1+|([,Vn2m.... (3.5.3)
If M = max {1+ L1 1K [ veees Xy },then
x,|<M,Vn>1,2,..,m-1 .. (3.5.4)
and since 1+|£| <M, it follows from (3.5.3) that
|Xn| <M, Vn2>2m .. (3.5.5)
From (3.5.4) and (3.5.5), we see that

X,|<M, VneIN.

Consequently the sequence {x_} is bounded.

Note : The converse of the above theorem is not true. For this, we consider the
sequence {(—1)“’1} ={L,-11,-1,...}, which is bounded but it is not convergent,

because lim (—1)™! oscillates between —1 and 1.

D"
Exercise 3.5.1 : Show that the sequence {T is convergent .

__1
2n+1°

So, lim x,, =0=1imx,_,,, which implies that the given sequence is convergent

1
Solution : Here X,, =— and X,,,; =
2n

and it converges to zero.

. 2n° +1
Exercise 3.5.2. Show that the sequence {x }, where X, = 1

>—» converges to 1.
n" -1

Solution : Let € > 0 be given, then
2n° +1

2n’ —

<e

Xn—l|<EC>

-ll<e & >
2n° -1

1
2 2+ 2+ €2
0> 1<€<:>2n2_1>g <:>n2>2—e<:>1’1>(2—€) =8, say
- S €

Choose m = [§ ]+1, where [§] is the greatest integer, but not greater than §.

=

Then n>m=n>3=|x, —1|<e,
which means that the sequence {x_} converges to 1.
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8.4 Limit Theorems

The sum, difference, product and quotient of two sequences give rise to new
sequences. In this section, we show that the sum, difference, product and quotient of
two convergent sequences are also convergent and determine their limits.

Theorem 8.4.1 : Let {x } and {y } be two convergent sequences such that

limx, =x and lim y, =y respectively.
Then
(1) Im(x, +y,)=x+y=limx +limy,_
(i) lim(x, -y,)=x—-y=limx_ —limy,
(ii1) lim(cx,)=cx=climx _,V celR

(iv) lim(x,y, ) =xy =limx_.limy_

liml X2 |2 X _ limx . '
(v) 1m Y_n = ; = m’ provided {y,}is a non-zero real numbers and y #0.

Proof : (1) Let > (0 be arbitrary small number. Since limx, =x and limy,_ =y,
so there exists two natural numbers m, and m, such that

|xn—x|<%e, Vn2>m, ..(3.6.1)

1
and yn—y|<56, Vn>m,, .(3.6.2)

Choose m = max {m, m }. Then (3.6.1) and (3.6.2) hold vn >m.

Thus ¥n > m, we have

|(x, +y,) - (x+y)|=|(x, =x)+(y, —Y)|

S|X —x|+ y —y|<le+le=e
n n 2 2

ie. |(x,+y,)—(x+y)| <€, Vn>m,
which implies that the sequence {x_ +y } is convergent and
lim(x, +y,)=x+y=limx, +limy, .

(i1) It is similar as above. Only note that ¥n > m, we have
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X, —X|+

1 1
(x, —y.) - x=y)|=|x, - x)=(y, = y)|< yn—y|<5e+§e:e,

which implies that the sequence {x, 6 —y, } is convergent and

lim(x, -y,)=x-y=limx, —limy, .

(i11) If ¢ = 0 then the result is obvious. So, suppose ¢ # 0.

We know that

|cx,, —cx| =[c]|x, —x|. .(3.6.3)

Let >0 be given. Since limx, =X, so there exists a nutural number m such
that
€
le
In view of (3.6.4) we have from (3.6.3) that
|cxn—cx|<eVn2m,

which implies that the sequence {c x } is convergent and

,Vn>2m- ..(3.6.4)

x, —X|<

n

lim(cx,)=cx=climx , forallc e IR.
(iv) We have that

X, ¥, — Xy =|(X, ¥, =X, ¥) +(x,y —xy)|

X, (¥, —y)+y(x, —x)|

<|x, yn—y|+|y| Xn—X| ...(3.6.5)
Since {x_} is convergent, it is bounded. So, there exists M'< [R such that
X, |<SM', VnelN. ...(3.6.6)

y|} Then, in view of (3.6.6), we have from (3.6.5) that
X, —X|. ..(3.6.7)

Since {x_} and {y, } are convergent, so for arbitrary > 0,3 two natural numbers

m and m, such that

Take M = max{M',

y,—y|+M

X,¥, —Xy|<M

X —X|<i,‘v’n2m1 (3.6.8)
n M ..(3.6.
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S
—Y|<maVn2mz .(3.6.9)

Choose m = max (m, m,). Then the relations (3.6.8) and (3.6.9) hold for all

n > m.
Thus Vn>m we have from (3.6.7) that

—Xy| < M.i+M.i =€,
2M 2M

which implies that the sequence {x y } is convergent and
lim (xy)=xy=Ilmx .limy.

(v) Since lim y =y, so for €= %, 3 a natural number m, such that
y| | | ,Vn=m, :>|y| v, < |§|,Vn2m1
Yy, >%,Vn2ml, ...(3.6.10)
X, X|_|xy-xy, _‘y(xn—X)—x(yn—y)|
Now = =
Yo Y Yoy Yo¥
1y Yo~V 2|
< <— X, = X|+—=1|¥, Y|
5] | w L(3.6.11)

Vn2>m, by (3.6.10).
Again since {x_} and {y } are convergent, so for arbitrary €>0,3 two natural

numbers m, and m, such that

X, —X| < || m, L(3.6.12)

i
—yl<mea vn>m, .(3.6.13)

Choose m = max {m, m, m,}. Then each of the relations (3.6.11) — (3.6.13)

hold for alln > m.
Thus V n >m,in view of (3.6.12) and (3.6.13), we have from (3.6.11) that
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|2

2 0yl 2%y

X, X €

———|<ig.—€t—5.— 7 €< t+t-=€.

Y. vyl |y 4 1yl 4(x[+n 2 2
Xn

Thus we get y___ <€, Vn2m,

which implies that the sequence {y

. [x, ] _x _ limx,
lim| —+ |=—=~ .
y,) y limy,

Note : By virtue of Theorem 8.4.1(V), we can say that

} is convergent and

n

.1 1 1
hm(—J =—== > that means if {y } is a convergent sequence of non-zero
y,) y limy, "

1
real numbers and converges to a non-zero real number y, then the sequence {y_}

n

1

is also a convergent sequence and converges to

Theorem 8.4.2. : If {x } is a convergent sequence of real numbers and converges to
X, then the sequence {[x |} is also convergent and converges to [x|.

Proof : Let > ( be an arbitrary small number.
Since {x_} is convergent sequence and converges to X, so 3 a natural number m such
that

xn—x|<e, Vn>m. ...(3.6.14)
Now ‘(|xn|—|x|)‘ S|Xn —X|<E, Vn2=m, using (3.6.14)
which implies that the sequence {[x |} is convergent and lim|x |=|x|.

Note : The converse of the above theorem is not true. For this, if we consider

X

n

=1, Vn e IN. So, thle sequence { } is a

thle sequence {X,}= {(—1)""1}. Then
convergent sequence and converges to 1, while the sequence {x } is not a convergent
sequence.

X

n
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Theorem 8.4.3 : Let {x } be a convergent sequence of real numbers such that lim
x =x. If x, 20Vne€IN, then x > 0.

Proof : We have to show that x > 0.
If possible, let us suppose that x < 0.

Since, lim x_ = X, so for a given €>0,3 a positive integer m such that
|Xn—X|<E,Van

le. X—e<Xx,<xXx+eVn=m. ...(3.6.15)

X
Since x < 0, choosing €=—E >0 in (3.6.15) , we get
x+§<xn<x—§,‘v’n2m

2 2

X
je. X <—<0,Vn2>2m
n 2 9

which is a contradiction to the fact that x >0, Vn € IN. So, our assumption is

wrong. Hence we have x > 0.
Theorem 8.4.4 : Let {x } and {y } be two convergent sequences and there exists

a natural number m such that x, <y ,Vn2m.Then lim x < limy_.
Proof : Let lim x =x and limy =y.
Suppose z =y —x_. Then {z } is a convergent sequence such that z, >0, Vn > m.

So, by Theorem 8.4.3, it follows that lim Z > 0, and hence limx_< limy .
Theorem 8.4.5 (Sandwich Theorem) : Let {x }, {y } and {z } be three sequences
of real numbers and there is a natural number m such that x <y <z, vn>m. Iflinx_

= ( =linz, then {y } is convergent and limy = /.

Proof : Let > (. Since limx = ¢/ =lim z , so 3 two natural numbers m and m,
such that

|xn —€| <€, Vn2=m, and |zn —£| <€, Vnzm,.

Choose m, = max {m,, m_}. Then it follows from above that

|Xn —€| <eand|z, —€| <€, Vn 2m,.

ie. (—e<x,<l+eand/-e<z, </+€ Vn=m, ..(3.6.16)
Also giventhatx <y <z, wn>m- ..(3.6.17)
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Again let us choose K = max {m,, m}. Then from (3.6.16) and (3.6.17) we can write
l—e<x,<y,<z,</l+e€, VnzK,

which implies that {y } is convergent sequence and limy = /.
Examples :

Ex 3.6.1. Prove that lim(Vn+1-+n)=0.

Solution : Here lim(«/n - \/H) - lim =lim !

1
n—w n—»w 1 n—»o
\/n+ JM/H \/H(HJHIJ
n

lim - lim 1

1
~ now n— 1 :O'EZO'
n 1+,/1+—
n

—

) 1 1
Ex 83.2:P that Im + +..... +—)=1
) rove ta n_>°°(\/n2+1 Jn2+2 Jn?+n
. 1 1 1
Solution : Let us take x = + + o+
Yn?+1 Vn?+2 n’+n
< 1 + 1 + +—1 sincen®+r>n’+1
..... , for2 <1 <n
VP41 Vn?+l Vn?+1 or r=n
n
= ,Vnz2. (3.6.18)
n’+1
Again clearly + 1 > 2 _
n?+1 Jn*+2 Jn?+2
1 1 1 3

s + + >
Slmﬂary\/n2+l \/n2+2 \/n2+3 \/n2+3'

Proceeding in this way, we get Xn > S vn22 ..(3.6.19)
From (3.6.18) and (3.6.19) we obtain

n n

— <X, <—=—, Vn22 ..(3.6.20)
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) ) 1
Now lim n =lim ! =1andllmL:hm—:l.

n—»0 n—0 n—»om 2 n—»o 2
Jn?+n \/1+1 n +n 1+(1j

n n

So, by Sandwich theorem, it follows from (3.6.20) that limx_=1.

. 3+ 2\/5
Ex. 8.3.3. Find the value of Iim
n—o ,\/H

. 34+2Vn . 3
Solution : We have llm———= hm(—,_ + 2] 3im—+2=3.0+2=2
n—oo n n n—oo \/_

n—oo

Ex. 8.3.4. Show that [im D@ =2) _
e n(n+3)

Solution : We know that liml =0.

n
1 2
Gn+1)(1n-2) (3+j(l—j lim(3+1]lim(l—2j 31
NOW, lim =lim n n :n%Oc njrm" n =__=3
n—» n(n+3) n—»0 1+§ lim 1+E 1
n n—»0 n

Theorem 8.3.6. Let {u} be a sequence such that lim =2 = /, If |¢|<1, then

n—ee 1

limu, =0

n—oo

Proof : Let € be an arbitrary small positive number.

un+1

<e,Vn2>m.

Since lim =/, s0 3 anatural number m such that

n—oo
un

un+1 —/
u

n

As |¢|<1, we choose € so small such that |¢|+e<1landlet|(|+e=r.
Then 0 <r <1

—f+(h—z)
un

un+1

u

n

S|€|+ <|€|+e,‘v’n2m.

Now

unJrl

u

n

<r,Vnz>m.
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u u u
m+1 m+2 n
Hence we have - < I', - < r, .......... < T.
m um+1 un—l
. . un n—m rn
Multiplying above, we get | <r - = ey
m
|um n
and hence 0 <[u |<—1", where 0 <r <1
r

Taking limit as n — e, we get [u, |— 0,sincer” - 0asn — oo,

This means that limu, =0

n—oo

n

* _0.

Example 8.3.5 Show that for any x € IR, lim| '| =
noen |

n

X
Solution : Let u, =

n!
n+l
o Uy _ X n!: X
9 . n
u  (n+D! x" n+l
1
u X X.—
Hence lim—% =lim—— =lim—L =0<1.

n—»0 un n—w 1 + | n»oo1+l
n

. X
So by above theorem, it follows that llll_rg; =0,

Example 8.3.6 : Show that [jm 22— DM~ 2')""(m “n+D g
n!

X|<1.

2

m(m-1)(m-2)....(m—-n+1) o

Solution : Let u, =

n!
M
. u . .
o lim— =lim X = lim-& ] X =—X =/, say,
—>co —>oo —>o0
n un n n-+ n 1+7
n

o |l =]x|=|x| <1.
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So, by Theorem 8.4.6. we have rlgg u, =0

ie. [pmm-hm-2)..(m-n+b ,

n—w n!

Theorem 8.3.7 If {u } be a sequence such that lim 2l = ¢ > 1, then Illi_{gu“ =®©

n—eo un
Proof : Let &> ( be arbitrary small number.
Since ¢ > 1, we choose € such that / — e > 1

.. . u .. .
Again since lim— =/ therefore 3 a positive integer m, such that
n—ee

n
u
ol _Yl<e, Vn>m

un
: un+1
le. I—e<—</+€,Vn2m.
u

n

So, M>g_e:K(say), where K> 1, Vn>m.

n

Puttingn=m, m+ 1, m + 2, ...., n — 1 in above and multiplying them, we get
un n-m ! X u, R
> K" =", which means that [u,|> uK
u, K K™

Since K > 1, therefore K" —>oc0asn —> o

Hence limu, =co.

n—o

1
Theorem 8.3.8 : Ifu_> 0 forall n e INand lim 2L = /(finite) then lim (u, )4 =,
n—oo u n—>oo

n

Proof : Let > () be an arbitrary small +ve number.

) . u
Since lim—2* =/, So 3 a natural number m such that
n—oo un
u . u
—_]l<e, Vn2m ie. /—e<—2 < /+e, Vn2m.
un un
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u u u
Thus we get, (—e< " </+€, —e<—22 <y e ... f— €< —n

un u

<l+e-

u

m+l n-1

Multiplying all these above, we get

nem U, v . (=€) u, (+E)
(f— E) <u—<(€+ E) 1.e. —(ﬁ— E)m < u < (€+ E)m

m

m

um@<un <um@, u_>0.
(l—e)” (L+e)"

' u, n B i u, n
1.€. [(g_ o ] (l—-e)<u," < [(£+ o ] (l+€)

1.€.

1 1 1

Le. An(/— €)<u, " <B"(l+e), ...(3.6.21)

where A = U >0and B= Ui >0
(—e) (r+e)™

1 1 1

It is known that for p > 0, limp" =1 and hence limA" =1 and limB" =1.

n—oo n—oo n—o

Consequently it follows from (3.6.21) that
1
(l—e)<u"<(l+e€),Vn=2m

1
u"—/

B —

ie. <€, Vn2m and hence limu " =/.

n—eo

1
Remark (1) In above theorem, if /= then limu " =oo.

n—o

(2) The converse of the Theorem 8.4.8 is not true. For this, if we consider the

3+ _l n l b un+
#. Then limu " =1 but lim == 4oes not exist.

n—ow
n—o u,

sequence {u_}, where u, =

1

Example 8.3.7 : Prove that limw = l
n—oo n e
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Il! 1 un—v—l 1
Solution : Let u, = vy Then u, >0,vneIN and }lgngou— = > 0.

So, by virtue of Theorem 8.4.8, it follows that

1

Nn
limgfu, =, ielim 2 =1,
[§

n—oo n—aoo n c

1
Example 8.3.8. Prove that lim {(n +Dn+ 2)""(2n)}n = f

n—oo n

. (n+1)(n+2)....2n)
Solution : Let u, = o -Then u, >0, Vn eIN and

fim Yeet gy 20D 14

n—o un n—o n+1 ( ljn e
1+—
n

So, by virtue of Theorem 8.4.8, it follows that
1
2
limg/z _ i T {(n+D(n+2)...(2n)*> _ ﬂ
e n—oo n e

n—aoo

Theorem 8.3.9. (Cauchy’s first theorem on limits)

a,+a,+..+a,

If lima_ =/, then lim =/.
n—oo n—oo n
Proof : Let us take b =a — (. ...(3.6.22)
Since lima, =/, Solimb_ =0,and hence the sequence {b } is convergent.
Also from (3.6.22), we have that
a,+a,+..+ta, :£+bl+b2+ ..... +b,
n n

b, +b,+...+b,
n

=0.

So, to prove the theorem, we have to show that }gg

Since {b_} is convergent, so it is bounded and hence 3 a number K such that

Ib,| <K, VnelN. .(3.6.23)

Again since {b_} converges to 0, so 3 a natural number m such that
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<%e, Vn > m. ...(3.6.24)

b,+b,+...+b_ b _,+b ., +...+b,

NOW | " | - m m+1 - |

S|b1|+|b2|+ ..... +|bm|+|bm+1|+----+ b,| (. mK € (n—m)

,Vn2>m,
n n n 2 n

(3.6.25), using (3.6.23) and (3.6.24).

i mK e
Let m, be the positive Integer greater than so that — <, Vnz2m,.
! n 2

b, +b,+...4+b,
Thus for all n > max(m, m ) we have from (3.6.25) that | |<E

2

0.

which means that lim bi+b,+..+b, =

n—oo n

ata,t..ta,

Consequently, lim "

Note : The converse of the above theorem is not true. For this, let us consider
a sequence {a }, where a_= (-1)".

a,+a,+..+a o
Then =0, if n is even
n

= ——,if n is odd.
n

a,+a,+...+a

So, lim =0, but the sequence {a } is not convergent, i.e. lima,
n n—oo

n—o n

does not exist.

1 1 1 1
Example 8.3.9 : Show that }g{}oﬁ(l‘Fzz +3° +...+n“) =L

1 1

Solution : Let a_ =n". Then lima_=limn" =1

n—oo n—o0
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a+a,+..+a,

So by Cauchy’s first theorem on limits, we have lim

n—co n

n—eo I

1 11 1
ie. lim—(1+22 +33 +....+n“)= 1.

. 1 1 1
E le 8.3.10 : Show that lim + +..+ ):1.
xample 8.3.10 : Show tha n—w(\/nz+1 Jn?+2 Jn®+n

n ) )
Solution : Let @& = 7" Then lima, =lim
Jn?+n ne o= n?+n

= lim ! =1.

H’e,/1+l
n

Thus by Cauchy’s first theorem on limits, we have

. a,+a,+....+a
lim —+—2 D=1

n—o0 n

e e )
1€ nse Jn2+1 An?+2 n’+n

- nm( L, ;]-1
1€ e \/n2+l \/n2+2 ..... n’+n '

Example 8.3.11 : Show that lim iz+ ! >+ ! st +; =0.
el n® (n+1)” (n+2)

I 1 1
. Iim| —+ + +ot
Selution : Now 00| » (m+1? (n+2)° (2n)2}

NS S | I n n n
=lim — + lim— >+ sttt ————
noo n° nowp _(n+1) (n+2) (n+n)
.1
=0+lim—(a, +a,+....+a,), (3.6.26)

n—o N
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_and lima, =— " = lim— =0.
(n+r) n—>0 (n+n)° n->*4n

where a_ =

So, by virtue of Cauchy’s first theorem on limits, we have
.1

lim —(a, +a,+...+a,)=0

n—o n

and hence it follows from (3.6.26) that

. 1 1 1 1
lim| —+ >+ st = =0
ol n (n+1)° (n+2) (2n)
Theorem 8.4.10 (Cauchy’s second theorem on limits)

If lima, =/, wherea, >0,vn e INand / # 0 then P_)Il}e\“/al a,..a, =/
Proof : Define a sequence {u }, where u =loga, vnelN.
Since each a > 0 and lima, = />0, we have

n—oo

limu, =limloga, =log (l'm an) =log /.

n—eco n—oo n
Hence by Cauchy’s first theorem on limits, we get
i Sy el

n—eo n

=log /.

A | ) 1
1e. 11m—(10g a,+loga,+....+log an)=10g£ = lim log(a, a, .....a,)" =log ¢

n—ee

= loglim (a, a, ..... an)g =log 7,
which yields that lim (a, a, ....a )" = /.

Example 8.3.12.: Show that 11_{2 tn=1

Solution : Define a sequence {a_}, where

a—la—%a—E a——n
1 s &9 19 3 27“"9 n n—l'
Then each a > 0 and a, a, .. a =n.

Also lima, = lim—"— — lim——=1>0.

n—ow n—w ) — 1 n—»w 1

99
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Therefore by Cauchy’s second theorem on limits, we get

n—oo

1

Example 8.3.13. : Sh thtlimzéziz n—Hng—e
xample 8.3.13. : Show that lim| =| = | =] | — .

Solution : Let a =(1+lj =(n_+lj .
n n

. . 1Y
Then a, >0,VneIN and Lligan=llm(1+—} =e>0.

n—oo n

So, by Cauchy’s 2nd theorem on limits, we get lim(a, a,...a,)n =¢

1

NEERONE .

1
. (n" )
Example 8.3.14 : Prove that hm(—'j —e.

n—o0 n!

n

n
Solution : Let a, =
n!

n+l | n n
Then 21 _(o+) &:(_n+lj :(l+lj .

a (n+1)! n" n n

n

So, lim2nt — lim(1+lj —e>0.

n—oo an n—oo n

Hence by virtue of Theorem 3.6.8, it follows that

n—eo n—e\ pn!

1
1 n\n
. = . .. [n
hm(an)n =e,le. llm(—') =e.
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8.5 Summary

We define convergent sequences, establish their properties, and prove key limit
theorems. These results provide essential tools for studying functions, continuity, and
differentiation in real analysis.

8.6 Keywords

Convergent sequence, limit, epsilon-delta, bounded sequence, limit theorems, real
analysis.

8.7 References

e Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill

e Real Analysis: Modern Techniques and Their Applications - Gerald B.
Folland, Wiley

e Real Analysis - H.L. Royden, P.M. Fitzpatrick, Pearson

8.8 Model Questions
1. Define a convergent sequence with an example.
2. State and prove the uniqueness of limits theorem.
3. Explain the epsilon-N definition of sequence convergence.
4. State and prove the limit theorem for sum of sequences.
5. Prove that a convergent sequence is bounded.
6. Give an example of a sequence that is bounded but not convergent.



Unit 9 O Monotone sequence

Structure

9.1 Objectives

9.2 Introduction

9.3 Monotone sequence
9.4 Summary

9.5 Keywords

9.6 Reference

9.7 Model Questions

9.1 Objectives

To understand monotone sequences, their properties, and their significance in real
analysis, including boundedness and convergence criteria.

9.2 Introduction

Monotone sequences play a crucial role in real analysis. A sequence is monotone if it
is either non-decreasing or non-increasing. The Monotone Convergence Theorem ensures
their importance in mathematical analysis.

9.3 Monotone Sequences

Let {x_} be a sequence of real numbers. Then {x } is said to be
(1) monotonically increasing if x_,, >x_,VnelIN;

(i1) monotonically decreasing if x , <x ,VnelIN.

A sequence {x_} which is either monotonically increasing or monotonically decreasing,
is called a monotonic sequence or montone sequence.

Note : If a sequence {x _} such that x | > x , vn eINthen {x } is called strictly
increasing sequence and if x , <x_then {x } is called strictly decreasing sequence.

102
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Examples of montonic sequences
(1) The sequence {x }, where x_=n, is a monotonically increasing sequence, as X,

> X, VnelN.
_ 1 . :
(2) The sequence {x }, where X, = L sa monotonically decreasing sequence, as X

< Xna VnelN.
(3) The sequence {x_}, where x = (~1)" is neither a monotonically increasing
sequence nor monotonically decreasing sequence.

Example 9.3.1 : Is the sequence {x }, where

1
X, = 1+E+—+----+H, a monotonic sequence ?

Solution : We have

11 1 11 1 1 1
X=X, =(I+=+=-+...+—)-(Q+=+-+..+—)=——>0, —_—
e R v R AL e

So, X, > X, VnelN,

which implies that the given sequence {x } is monotonically increasing and hence
monotonic.
4n -1
Sn+2

Example 9.3.2 : Find the bounds of the sequence {x }, where X, =

. C x _4n+3 4n-1 13 S
Solution : Here Xnu = Xa Sn+7 5n+2 (5n+7)(5n+2)

which implies that the sequence {x } is monotonically increasing.

5

So, a lower bound is the first term of the sequence, i.e., x,, which is equal to PE

Moreover, an upper bound is = limx, = 3
3 4
It may be noted that 7 is the greatest lower bound and 5 is the least upper bound.

Theorem 9.3.1 : Every monotonically increasing sequence, which is bounded above,
is convergent and converges to its least upper bound.

Proof : Let {a_} be a monotonically increasing sequence which is bounded above.
Let sup {a } = B. Then for given an arbitrary small positive number €, 3 a member
a_ of the sequence {a } such that
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a, >B-e.

Therefore a, >B—€,Vn>m, ..(3.7.1)

since the sequence is monotonically increasing,.

Also a, <B,Vn ie. a, <B+e,Vn. ..(3.7.2)

From (3.7.1) and (3.7.2), we get

B-e<a,<B+e Vn2m ie. |a, —-B|<e, Vn2m.

This shows that the sequence {a } is convergent and it converges to B, i.e., its
supremum.

Theorem 9.3.2. Every monotonically decreasing and bounded below sequence is
convergent and converges to its greatest lower bound.

Proof : Let {a } be a monotonically decreasing sequence, which is bounded below.
Let inf{a }="b. Then for given an arbitrary small positive number €, there is a number
a_ of the sequence {a_} such that

a, <b+e

Therefore, a, <b+e,Vn2>m, ..(3.7.3)

as the sequence {a } is monotonically decreasing
Also a, =b, Vn.

Then a, >b—-¢€,Vn ..(3.74)
From (3.7.3) and (3.7.4), we get

b—e<a, <b+e, Vn2m ie. |an—b|<e, Vn>m,

which implies that the sequence {a_} is convergent and its limit is b. Thus the sequence

converges to its infimum.
By virtue of Theorem 8.3.2, Theorem 9.3.1 and Theorem 9.3.2, we can state the

following :

Theorem 9.3.3. (Montone convergence Theorem) : A monotonic sequence is
convergent if and only if it is bounded.

Remark : Every monotonically increasing sequence which is not bounded above
diverges to « . And every monotonically decreasing sequence which is not bounded

below diverges to —wo.
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1 n
Example 9.3.3 Let a, = (1+Hj . Show that the sequence {a_} is monotonically

increasing and bounded above.
If the limit of the sequence is e then show that 2 <e < 3.

Solution : We have

a, =(l+l)n :1+3_l+n(n—l)'L+n(n—1)(n_2)+

n 1! n 2! n? 3!
=1+l+l 1—l +l 1—l 1—g +....to (n+1) terms..
I 2! n) 3! n n
Similarly,
an+1:1+l+l(1_Lj+l(1_ : j(l— 2 j+ ...... to (n+2) terms
1 2! n+1) 3! n+1 n+1

Comparing a_with a_, , we find that first two terms are equal. From the third term,
every term of a_, is greater than the corresponding term of a , and a | contains one term
more than a .

Therefore, a_, >a , Vn;

n+l

which implies that {a } is montonically increasing sequence.

1
Now, we have 1-; <l

1 1 1
So—l-— < —
21 n 2!

1 1 2 1
Similarly, 3, 1‘; I_H <3; and so on.

1 1 1 1
Hence, a, <1+ﬁ+a+§+m-+a ...(3.7.5)
T N N N
oW 31123 22 27
. 1 1 |
Similarly, we can show that Z < ?, ; < =

Thus from (3.7.5), we get



106 NSOU e 5CC-MT-02

and hence a, <3, Vn, which implies that the sequence {a_} is bounded above.
Consequently the sequence {a } is convergent, by Theorem 9.3.1.

. 1
If Illl_)f{}oan=e, then we have al<a“<3_F ie 2<a <3-

n-1"
Taking limit as n — oo in above, we get 2 < e < 3.
Example 9.3.4 : Show that the sequence f, where

1

1
f(n)=——+ + et
n+l n+2 n+n

is convergent.

1 1

1
Solution : Here f(n) =——+ ot
n+l n+2 n+n

Sfn+D) =
( ) n+2 n+3 2n 2n+1 2n+2

1 1 1
+ - = >
2n+1 2n+2 n+1 2(n+1)(2n+1)
which implies that the sequence {f(n)} is monotonically increasing.

Thus f(n + 1) — f(n) = 0,VneIN,

1 1 1 1 1 1
NOW <_9 T g eeeey - .
n+l n n+2 n n+n n
So, f(n)= ! + ! +ot ! <l+l+....+l=3:1,Vn
n+l n+2 n+n n n n n

which means that the sequence {f(n)} is bounded above.
Thus by virtue of Theorem 9.3.1, the sequence {f(n)} is convergent.

Example 9.3.5 : Prove that the sequence f defined by
f(1)=+/7, f(n+1)=4/7+f(n) converges to the positive root of x* — x =7 =0.
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Solution : Here f(1)=+/7, f(n+1)=./7+f(n)
Therefore {f(2)}2 — {f(l)}2 =7+J7-7=7>0,

which implies that f(2) > f(1). ...(3.7.6)
Now {f(n+D)} ~{f)} = [T+ T} ~[JT+f@-D}
=1fn) — f(n-1).

So, f(n+1) > f(n) whenever f(n) > f(n — 1)
i.e. whenever f(n — 1) > f(n — 2)

ie. whenever f(2) > f(l) but th1s is true by (3.7.6).

Thus f(n+1) > f(n), Vn, which means that the sequence {f(n)} is monotonically

increasing.
Since f(n) < f(n+1), so {f(n)}?> < {f(nt1)}*> =7 + f(n)
ie. {f(n)}* — f(n) — 7 < 0. ..(3.7.7)

Consider a quadratic equation x*> — x — 7 = 0, which has two roots, one positive,
say o and another is negative, say — 3, such that § > 0.

So, x> —x—-7=(x-a)(x +P)

and hence {f(n)}* ~f(n)~7 = {f(n) ~ o} {f(n) + B}

So, we have from (3.7.1) that {f(n)—-oa}{f(n)+p} <0

Since f(n)+p>0,

so, f(n)—a >0

ie. f(n)<a,Vn, which implies that the sequence {f(n)} is bounded above.
Consequently, by virtue of Theorem 9.3.1, the sequence {f(n)} is convergent.

Let us take limf(n)=/. Then hm f(n+1)="2

n—soo

Now, {f(n+1)} =7+f(n)

Taking limit as n — o we get (2 =7+ /
ie. 02— 1 -T7=0=U-)({+B)=0
Since ¢ > 0, therefore (#—3<0, so ¢ = a.

Thus the limit of the given convergent sequence is the positive root of the
equation x*> — x =7 = 0.
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Example 9.3.6 : Show that the sequence f defined by
f(1)=+/2 and f(n+1) =/2f(n) converges to 2.
Solution : The members of the sequence {f(n)} are \/Z \/2\/5 , \/2,\/2x/§ yeeeens

We have 2.2 >2= /242 >+2, ie. f(2)>f(1)

Supose that f(n + 1) > f(n).

Then \/2f(n+1) >\/2f(n) =f(n+2)>f(n+1).

Thus f(n + 1) > f(n) => f(n + 2) > f(n + 1), and f(2) > f(1).

So, by mathematical induction, we may conclude that the sequence {f(n)} is

monotonically increasing.
Clearly we have f(1) < 2.

Suppose that f(n) < 2.Then f(n + 1) = /2f(n) <+/2.2 =2
Thus f(n) <2 =>f(n + 1) < 2, and (1) < 2.

So by mathematical induction, we have f(n) < 2, Vn.
This show that the sequence {f(n)} is bounded above.
Consequently the sequence {f(n)} is convergent by virtue of Theorem 9.3.1.

Let limf(n)="/.

Since f(n + 1) = \/2f(n), we have {f(n+1)}’ = 2f(n).
Taking limit of above as n — o0, we get

P=20=0(1-2)=0.

But this limit ‘ £ can not be equal to zero. So, we must have ¢ =2, i.e., 1111_{1; f(n)=2.

9.4 Summary

Monotone sequences are classified as increasing or decreasing. A bounded monotone
sequence is always convergent. This concept is fundamental for understanding limits,
continuity, and convergence of series.

9.5 Keywords

Monotone sequence, increasing sequence, decreasing sequence, bounded sequence,

convergence, real analysis.
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9.6 References

e Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
e Real Analysis: Modern Techniques and Their Applications - Gerald B.
Folland, Wiley
e Real Analysis - H.L. Royden, P .M. Fitzpatrick, Pearson
9.7 Model Questions
1. Define a monotone sequence with an example.
2. Prove that every bounded monotone sequence is convergent.
3. Give an example of a monotone but unbounded sequence.
4. State and explain the Monotone Convergence Theorem.
5. Show that the sequence a = L i1s monotone and convergent.
n
6. Discuss the role of monotone sequences in real analysis.
2
7. x,= n2+1.Verifyxn—>lasnﬁoc_
2n° +3 2
. n? -1
8. Verify that lim ———=1.

n—en® +n+1
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10.5 Summary

10.6 Keywords

10.7 Reference

10.8 Model Questions

10.1 Objectives

To explore the concepts of subsequences and Cauchy sequences, highlighting their
significance in convergence analysis and the completeness of real numbers.

10.2 Introduction

Subsequences help analyze convergence behavior, while Cauchy sequences characterize
completeness. Understanding these concepts is fundamental to real analysis, ensuring
rigorous treatment of limits and continuity.

10.3 Subsequences

Let {x_} be a sequence of real numbers and {in}:j:1 be a strictly increasing sequence

of natural numbers, i.e., 1, <i, <1, <.... Then the sequence {Xin} = {X‘I,X'Z,X's, ..... } 1s

called a subsequence of {x }.

Note : (1) If {y,} is a subsequence of {x } then each y = x; forsomei, 2n.

(2) Every sequence can be regarded as a subsequence of itself.

110



NSOU e 5CC-MT-02 111

Examples of subsequences.
(1) Each of the sequences

1
(1){ } @ ){ } (111){ }and (1V){(2 )'} are subsequences of the
1
sequences {H}

(2) Each of the sequences {x,,,} and {x,,}are subsequences of the sequence

{x,}.

(3) The sequence of prime numbers {2, 3,5, 7, 11, ....} is a subsequence of natural
numbers {1, 2, 3,4, ....}.

Theorem 10.3.1 : Let {y_} be a subsequence of a sequence {x _}. Then

(1) {yn} is bounded if {x } is bounded.
(i1) {yn} is montonic if {x } is monotonic.

(i) {yn} is convergent if {x } is convergent. Further, if {x } converges to /
then {y } converges to /.

Proof : Since {y } is a subsequence of {x }, we have y, =X, , where {i } is a

sequence of natural numbers such thati <i  and i, 2n, VneIN.
(1) If {x_} is bounded then there exists real numbers m and M such that
m<x, <M, VnelN.

So, in particular we have m<x;, <M, VneIN.

Consequently the subsequences {y } is bounded.
(i) If {x_} is monotonic increasing then

= X. <X,

in < in+1 I Intl

ie.y <vy., VnelN,

which implies that {y } is also monotonic increasing.

Similarly if {x_} is monotonic decreasing then we can prove that {y } is also
monotonic decreasing. Hence if {x_} is monotonic sequence then {y } is a monotonic
sequence.
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(iii) Let {x_} be a convergent sequence and converges to /. Then for given an
arbitrary small positive number €, then there exists a positive integer K such that

|xn —€| <e Vn=K.

Since i > n, we have n > K =>1 > K.
:>‘xi —E‘ <e,i.e.|yn—£| <e.

Thus Vn =K,

converges to /.
Note : The converge of (ii1) is not true. If there exist two different subsequences

y, =1 | <€, which implies that the subsequence {y } is convergent and

{x . } and {X i } of {x_}such that they converse to two different limits, then the sequence

{X_} 1s not convergent. That means if a sequence {x _} has a divergent subsequence then
{x,} 1s divergent. For example, it is known that {y } = {1, 1, 1, ...} and {z }= {-1, -
1,-1, ...} aretwo subsequences of {x_}, where x = (~1)". Then both the subsequences
{y,} and {z } are convergent and they converge to 1 and —1 respectively. However, the
sequence {X_} is not convergent.

Example 10.3.1 : Show that the sequence {sin %} is not convergent.

. NT
Solution : Let X, =sm7.Then

Since the subsequences {X,, 5}, {X,, } and{x, }

converge to different limits 1, 0 and —1 respectively, the sequence {x } does not
converge.

Corollary 10.3.1 : A sequence {x } converges to a real number ¢ if and only if its
subsequences {x, } and {x, } converges to the same limit /.

Proof : Suppose the sequence {x } converges to /. Then by Theorem 10.3.1
(iii), its subsequences {x, } and {x, } also converges to /.
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ie limx, =/l=limx, (3.8.1)

Conversely, suppose (3.8.1) is true. Then for given an arbitrary small positive number
€, there exists two natural numbers m, and m, such that

|in —£| <€, Vn 2m,. and |in_1 —£| <€, Vn 2m,.
Choose m = max {m , m,}. Then from above we get

(—e<Xx, <lt+eand /-e<Xx, </+€Vn=m.

Hence /—e<x,</+€Vn=2m-1, which is also a natural number.
Consequently, I111_>n3° x,=/.

Note : Any two subsequences of a sequence {x_} converge to the same limit do not
imply that the sequence {x } is convergent.

. . . nTm
For this let us consider the sequence {x }, where X, = SIHT.

Th {X }:{sinE sing—n sin”—n }
en 8n—7 4, 4 N 4 9 wesees

. 3n . lln . 197
and {Xgs) = Sin ==, Si—=, s =, ..

1
are subsequences of {x }. Each of {xg, ,}and {x,, i} converges to Nk but the

sequence {x,} is not convergent.

Now we have seen that every convergent sequence is bounded, (Theorem 8.3.2), but
the converse is not true, i.e., bounded sequence may not be convergent. However, we
have the following :

Theorem 10.3.2 (Bolzano-Weierstrass Theorem for Sequences) :
Every bounded sequence has a convergent subsequence.

Proof : Let S be the set of all distinct points of a bounded sequences {x_}. Then S
is bounded. There are two cases : S may be finite or infinite.

If S is finite, then there must be at least one element. say o, in S, which is infinitely
repeated in {x }. Let {i } be strictly increasing sequence of natural numbers such that

X, =a,VnelIN. Clearly {x, } is a subsequence of {x } and hence {an} converges to

1
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a, as X 1S a constant sequence {o, o, o, ....}. So the sequence {x } has a convergent
> n 5 Wy Wy n

subsequence {an } .

Now, if S is infinite, then by Bolzano Weierstrass Theorem for sets, it has a limit point
(see, Theorem 2.14.1), say ¢ in IR. We have to construct a subsequence of {x_} which
converges to /.

1 1 /
Since / is a limit point of S, the — — neighbourhood I = (1——, 1+—) of /
m m m

contains infinitely many element of S. Hence for each m, there are infinitely many

values of n such that x_ €I .

Choose x; €1,,x; €1, suchthat i, >1i,. Then choose x; € I;such that i, >1i, and

1
so on. So, we obtain a subsequence {Xin} of {Xn} such that x; €1, i.e. ‘Xin —4 < o

Vn € IN.

Consequently limx, =/. That means we get a convergent subsequent {Xin} of

n—oo

{x,}. Hence the theorem.

. nm
Note (1) : In Example 10.3.1, we have seen that the sequence {Xn} = {sm ?} i

bounded (but not convergent), which has three convergent subsequences {X,, s}, {X,, }

and {x4n71} . So, Bolzano Weierstrass Theorem for sequences is verified.

Note (2) : However a bounded sequence may have a divergent subsequence. For
this, in the sequence {x } of Example 10.3.1, the subsequence

(X501} ={1,—1,1,=1,1,—1,.....} is a divergent subsequence of the bounded sequence

{x,}.

Also an unbounded sequence may have a convergent subsequence. For this we
. (_1)“ 1 1 . .
consider a sequence {x,}= {n }= 1,2, 3 4, 3 6, ..... , which is unbounded. The
sequence {x, } is a divergent subsequence of {x }, while the sequence {XZH_I} is a

convergent subsequence of {x }.
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10.4 Cauchy Sequences

A sequence {Xn} is called a Cauchy sequence if for given an arbitrary small positive

number €, there exists a natural number K such that

X, —xm| <g,Vn,m=K.
Taking n=m + p, where p=1, 2, 3, ..., the above condition can also be written as

‘X <g,Vmz2K.andp=1, 2,3, ...

m+p Xm

Thus a sequence {x } is cauchy if x and x _are close together when m and n are large
w. 1. to K.
1 .
Example 10.4.1 : Show that the sequence o[ 1sa Cauchy sequence.
1 . . .
Solution : Let X, = . Let € be an arbitrary small positive number. It is known

n

1
that { } converges to 0.

1 €
So, H_O <5 Vn 2K (a natural number)
1
1. —<E, Vn =K
2
Now |Xm—xn = i—l Si+l<E+E=G,Vm,n2K.
m n|l m n 2

ie. |xm —X,| <€, V' m,n 2K, which shows that {x } is a Cauchy sequence.
Theorem 10.4.1 : Every convergent sequence is a Cauchy sequence.

Proof : Let {x } be a convergent sequence and limx  =/.

n—eo

Then for given an arbitrary small positive number €, 3 a natural number K such that

xn—z|<§,vn21<, (3.9.1)

and hence |xm—£|<§,vm21{. ..(3.9.2)
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Thus ¥n, m > K, we have

€ €
|Xm—xn —‘(Xm—ﬁ)—(xn—E)‘S|xm—£|+|xn—€|<E+5—e

5

which shows that the sequence {x_} is a Cauchy sequence.
Theorem 10.4.2. : Every Cauchy sequence is bounded.
Proof : Let {x } be a Cauchy sequence.

Choose € = 1. Then there exists a natural number K such that

X, —Xm|<1, Vn,m K.

So, in particular taking m = K+1, we have

X, —|XK+1| <Ix, _XK+1| <l,vn=K.

or, [x,|<1+|x,|=A(say), Vn =K ..(2.9.3)
Let M = max {|x1 DX [ Xy ,7»}.

Then it is evident that

x,|<M,Vvn=12,..,K-1 ..(3.9.4)
and also from (3.9.3) we have |x,|<M, Vn =K. +(3.9.5)

From (3.9.4) and (3.9.5) it follows that |x,|<M, Vn e IN,

which means that the sequence {x } is bounded.

Note : The converse of the above theorem is not true, i.e., bounded sequence may
not be a Cauchy sequence.

For this, let us consider the sequence {x_}, where x = (~1)" Clearly this sequence

is bounded as <1,VnelN.

Xl’l
NOW [X,,,1 =X, | = (1™ = (=1)’"| = |-1-1|=2, Vm € IN ....(3.9.6)
Choose €=1 and take p = 2m+1, q = 2m then p, q > m.
Then (3.9.6) shows that it is not possible to find any meIN such that
‘Xp —Xq‘ <e, Vp,q>m.

That means the sequence {x } is not a Couchy sequence.
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Theorem 10.4.3 : Every Cauchy sequence in IR is convergent.

Proof : Let {Xn} be a Cauchy sequence. So, {Xn} is bounded by Theorem 3.9.2.
Hence it has a convergent subsequence by Theorem 10.3.2. Let {y } be a convergent
subsequence of {x } such that y — /.

We shall show that {x } also converges to £.
Let € be an arbitrary shall positive number.

Since y, — ¢, 3a natural number K, such that

€

yn—£|<5,vn2Kl. (3.9.7)

Again since {x_} is Cauchy, there exists a natural number K, such that
€

Ixn—xm|<5, Vn,m>K,. .(3.9.8)

Let K, = max {K, K }. Then V n,m=>XK,we have

X —X |<S and |y —€|<E, ...(3.9.9)
n m 2 n 2

Since {yn} is a subsequence of {x }, we have

Y, =X,, for some m > K.. ...(3.9.10)

Now, [x, —{|=|(x, = x,)+(x,, = 0| =|(x, = x,) + (v, = )|

e €
<|x, =X, +|yi, — 1< S+ =S wing (3.9.9).

Thus Vn>K, we have Xn—€| <€, which implies that the sequence {x }
converges to /. Hence the theorem.
Combining Theorem 3.9.1. and Theorem 3.9.3, we can state the following :

Theorem 10.4.4 : (Cauchy’s Convergence Criterion) A sequence of real numbers
is convergent if and only if it is a Cauchy sequence.

Using the definition of Cauchy sequence, the Cauchy’s convergence criterion can be
stated equivalently in the form as

Anecessary and sufficient condition for the sequence {x } is Cauchy that for given every
arbitrary shall positive number €, there exists a natural number m such that

Xn+p—Xn‘<E, Vn2>mandpeIN.

The above criteria is also known as Cauchy’s general principle of convergence.
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Example 10.4.2. Show that, with the help of Cauchy’s general principle of convergence,
the sequence {x },

1 1
where Xn=1+5+—+ ----- +H’ is not convergent.
1
Solution : Here X, =1+—+—-+..... +E’
1 1 1 1
X =l+=+—+ =+ —+ ot
P n n+l n+2 n+p
1
e=—
Choose >
xx—L+1++1|—1 1 1
Now, e =5l = T2 n+p| n+l n+2 n+p
1 1 .
>—+—+...+—,takingp=n=m
2m 2n 2m
m 1
=—=—=c
2m 2

Thus by Cauchy’s criterian for convergence, it follows that the given sequence

{x,} 1s not convergent.
Example 10.4.3 Use Cauchy’s general principle of covnergence to prove that the

n

sequence 1S convergent.
q { n+1 } g

n
Solution : Let X, =m- Then for all p € IN,

_n+p

n+p

n+p+l1
Let € be al%) arbitrary small positive number. Choose m € IN such that
m= {l} +1.
€

x LN

_|n+p+1 n+1|_ (n+p+D(n+1)

| n+p

NOW, n+p Xs ‘
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Thus

1 . p
<——, since
n+1 ntp+1

<1, VpelIN

1 1
<—<e,forn>—.
n €

Xn+p - Xn

<€, Vn2mand p € IN, which proves that the sequence {x } is

convergent.

10.5 Summary

In this unit we have defined the concept of sequence of real numbers, bounded
sequence, montone sequence, Cauchy sequence and their convergence to a limit with
examples. We also discussed the subsequence of a sequence of real numbers and their
properties with examples. Many important results related to the topic have been presented

here

. Some problems have also been worked out with help of them. For more study, a

list of references is given in section 3.13. The important data and results are also mentioned
in section 3.11 as a summary of this unit. Some problems/questions are given at the end
of this unit.

A sequence is a function from IN to IR.

A sequence is called bounded if it is bounded above as well as bounded below.
If a sequence is convergent then its limit is unique.

Every convergent sequence is bounded, but the converse is not true.

Non-convergent sequences are the sequences which are not convergent.
Non-convergent sequences are either divergent or oscillatory.
The sum, difference and product of two convergent sequences are also convergent.

The quotient of two convergent sequences is also convergent, provided the limit of
the sequence & each terms of the sequence in denominator is not equal to zero.

If a sequcne {x } is convergent then {|x |} is also convergent, but the converse is
not true.

A sequence is called monotonic if it is either a monotonically increasing or
monotonically decreasing.

Every monotonic sequence is either bounded above or bounded below.
Every incresing sequence is bounded below.

Every discreasing sequence is bounded above.
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A sequence having althernatively positive and negative terms can not be monotonic.

A monotonic sequence is convergent if and only if it is bounded (Monotone
convergence Theorem).

Every subsequence of a bounded sequence is bounded.
Each subsequence of a monotonic sequence is monotonic.

Every subsequence of a convergent sequence is convergent and converges to the
same limit of a sequence. However, the converse is not true.

Every bounded sequence has a convergent subsequence (BolzanoWeierstrass Theorem
for sequences). However, a bounded sequence may have a divergent subsequence.
Also an unbounded sequence may have a convergent subsequence.

Every convergent sequence is a Cauchy sequence, but the converse is not true.
However, every Cauchy sequence in IR is convergent.

Every Cauchy sequence is bounded.

A sequence of real numbers is convergent if and only if it is a Cauchy sequence
(Cauchy’s General Principle of Convergence)

10.6

Keywords

Sequence, bounded sequence, convergent sequence, divergent sequence, oscillatory
sequence, limit of a sequence, monotone sequence, montone convergence theorem,
subsequence, Cauchy sequence.
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10.8 Model Questions

[A] Multiple Choice Questions (MCQ) :

(Choose the correct answer each of the following) :

[1] The sequence {n} is

(a) bounded above (b) bounded below
(c) bounded (d) unbounded.

[2] The sequence{2"} is
(a) bounded below (b) bounded above
(c) bounded (d) unbounded.

[3] The sequence {(—1)"n} is
(a) bounded below (b) bounded above

(¢) neither bounded above nor bounded below
(d) None of these.

[4] The sequence {1+(_1) } is

n
(a) convergent (b) divergent
(c) oscillatory (d) none of these.
5] The val flim3+2\/H i
[5] e value of lIM /o 1S
(a) 0 (b) 1
(c) 2 (d) 3
: 2\ .
[6] The value of 1111_{2£1+Hj is
(a) e (b) ¢
1 oL
O @ =
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[7] An example of oscillatory sequence is

(1" i
(a) { . (b) {(=D"n}
© || @ {-1n’}
[8] A sequence can converges to
(a) one limit (b) finite number of limits
(c) infinitely many limits (d) All of the above.
[9] Every bounded monotonically decreasing sequence is
(a) oscillatory (b) diverges to +o
(c) diverges to—o (d) covnergent

[10] Which of the following statement is true ?
(a) a convergent sequence is not bounded
(b) a bounded sequence has no divergent subsequence.
(c) an unbounded sequence may have a convergent subsequence.
(d) None of these above.

Ans. : [1] (b), [2] (a), [3] (c), [4] (a), [5] (c), [6] (b), [7] (b), [8] (a), [9] (d),
[10] (c).
[B] Miscellaneous Questions :

[1] Explain the boundedness of the following sequences :

[2] Give examples of a sequence which is
(1) bounded above but not bounded below
(i1) bounded below but not bounded above
(ii1) bounded
(iv) Neither bounded below nor bounded above.
[3] Show that the sequence{(—1)"} does not converge.
Hints : If x_= (-1)", then x, =1 and x, ., = —1.

1

[4] Show that limn" =1

n—oo
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[5]

[6]

[7]

8]

[9]

[10]

limL =0
Prove that — \/ﬁ

1
Show that lim p® =1, where p > 0.

n—oo

1
Hints : Case I ; p=1. It is obvious as p" is constant sequence.

1
Case II : p >1. Then pn —14q for some q > 0.

So, p=(1+q,)">1+nq,
. p-1
ie. q, < P Vn e IN and hence

1
1 -1 .
p"—1=q. <27 50 as n —s oo, which means limp" =1.
n

n—oo

1

- 1
CaseIIl : 0 <p <1: Then P :1+r

n

for somer, > 0.

Lot

p:(1+rn)“ “l+nr, nr,

=0<r, <L,VnelNandhence
np
1 r 1 1
0<l-p" =—"—<r, <— —>0asn — oo, which implies that limp" =1.
l+r np n—0

n

n*+3n+5

Examine, whether the sequence { ———
2n" +5n+7

} is convergent or not. Find
limit, if it converges.
Show that the sequence {x }, where x =+n+1- Jn ,Vn e IN, is convergent.

1 1 1
Show that the sequence {b_}, where b, = + ot ,
JnP+1 n’+2

converges to 1.

1 1
lim + Fvoret——p =00
Show that “—’w{\/n+l \/n+2 \/Z} .
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[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Prove that Illlglo% =1
Hints : Use Theorem 3.6.8 for u =n

Show that lim

1 1 1 1
+ +..... T+ | =—.
n"°‘°L/2n2+1 J2n? 42 \/2n2+n} V2

Hints : Use Cauchy’s first theorem on limits.

1

1 1
Im| —+—+....4+—|=®
Show that n_m|: \/H \/ﬁ \/ﬁ} .

Prove that lim

n—oo (

1

Hints : See example 3.6.14 as (H—J == =

(nh)"

n!
Show that Ilgg 27"n*=0

2
Hints : Use Theorem 3.6.6. for u, = r21_n
Give an example of a sequence in each of the following :
(1) monotonically increasing but not bounded above.
(i1)) monotonically decreasing but not bounded below.
(i1i1) bounded above as well as bounded below but not monotonic
(iv) not monotonic.
Is every bounded sequence a monotonic ?

Hints : No. For this, consider {(—1)“'1}.

2

Is the sequence { N ,} monotonically increasing or decreasing ? Find bounds of

this sequence, if any.

Show that the sequence f, where f(n)= %+%+ ,,,,, +i' is convergent.
12! n!

Hints : Use Theorem 9.3.1 by showing that the given sequence is monotonically
increasing and bounded below.
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[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

Show that the sequence /3 {/3./3, 4 1333 _— converges to 3.

Leta , b, be two distinct positive real numbers and

1
a,= E(an,l +b,,)andb, =\/a, b, ,,¥n>2. Show that the sequences {a }

and {b_} are monotonic and convergent.

n—oo

Also show that ,llifoloan =limb,
Define a subsequence. Give an example of a subsequence of a sequence.

3n
3n+1

n
} is a subsequence of the sequence {—}

Show that the sequence {
n+1

Prove that the sequence {x } satisfying the condition

X X , Vn € IN, where 0 < c¢< 1, is a Cauchy sequence.

n+2 ~ “n+l < C|Xn+1 - Xn

State and prove Cauchy’s general principle of convergence.
State and prove Bolzano Weierstrass Theorem for sequences.

Give an example of a bounded sequence that is not a Cauchy sequence.



Unit 11 Q Series of Real Number

Structure

11.1 Objectives

11.2 Introduction

11.3 Infinite Series
11.4 Summary

11.5 Keywords

11.6 References

11.7 Model Questions

11.1 Objectives

The Object of this unit are as :

e to study infinite series, and its convergence.

e to study a special type of series, geometric series & its behaviour.
e to know about Telescoping series.

e to know about convergence Tests like comparison test, D'Abmbert’s Ratio test,
Cauchy’s Root test, Integral test.

e to study about Alternating series & Leibuitz test for alternating series.
e to study Absolute convergence and conditionally convergence.

e to know about power series and radius of convergence of a power series.

11.2 Introduction

In this chapter we shall discuss the techniques of testing the behaviour of infinite series
as regards convergence. The most important technique for series, all of whose terms are
of the same sign (all positive or all negative), is to compare the given series with another
suitably chosen series with known behaviour. So, first of all, comparison tests are
discussed, and then some special tests for convergence are considered. Leibnitzs testis for
alternating series. At last, power series will be discussed in detail towards the end.

126
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The most important application of sequences is the definition of convergence of an
infinite series. From the elementary school you have been dealing with addition of numbers.
As you know the addition gets harder as you add more and more numbers. For example
it would take some time to add

Sio=1+2+3+4+5+...+98+99+100
It gets much easier if you add two of these sums, and pair the numbers in a special
way :
28,00 =1+2+3+44+...+97+98+99+100

100+994+98+97+...4+4+3+2+1.
A straight forward observation that each column on the right side to 101 and that
there are 100 such columns yields that

101.100

2S,,, =101.100, that is S,,, = =5050.

This can be generalized to any natural number n to get the formula

S, :1+2+3+4+5+....+(n—1)+n=w-

This procedure indicates that it would be impossible to find the sum
1+24+3+4+5+.....+n+...

where the last set of .... indicates that we continue to add natural numbers.
The situation is quite different if we consider the sequence

1 111 1

27478716 7 2™

and start adding more and more consecutive terms of this sequence.

1 -1 ]
2 2 2
1 1 1 3
— 4 — =1__=_
2 4 4 4
1 1 1 1 7
_— 4 =]l—-—=—
2 4 8 8 8
1 1 1 1 1 15
—+—+—+— =l-—=—
2 4 8 16 16 16
1 1 1 1 1 1 31
—F—t+—+—+— =l-—=—
2 4 8 16 32 32 32
1 1 1 1 1 1 1 63
—+—F+—t—+—+— =l-—=—
2 4 8 16 32 64 64 64
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These sums are nicely illustrated by the following pictures

i |
B I

In this example it seems natural to say that the sum of infinitely many numbers

IR
’4383 ------ cquals .

N | =

1.1 1 1o

1
—+
2 4 8 16 2"
Why does this make sense ? This makes sense since we have seen above that as
we add more and more terms of the sequence

. 1
This reasoning leads to the definition of convergence of an infinite series.
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11.3 Infinite Series

Definition : 11.3.1 : Given a sequence (a ) of real numbers, a formal sum of the form

> a,(or D a, for short) is called an infinite series.

For anyn e[] , the finite sum s : =a + ... +a_is called the (n-th) partial sum

of the series Zan .
A more formal definition of an infinite series is as follows. By the symbol

znan we mean the sequence (s ) where s :=a + .. +a.
We say that the infinite series Zan is convergent if the sequence (s ) of partial
sums is convergent. In such a case, the limit s : = lim s_is called the sum of the series

and we denote this fact by the symbol Zan =s.

We may that the series Zan is divergent if the sequence of its partial sums is
divergent.

The series Z ,a, 1s said to be absolutely convergent if the infinite series Z NER

is convergent. Note that a series Zan of non-negative terms, (that is, a_> 0 for all

n) is convergent iff it is absolutely convergent.

If a series is convergent but not absolutely convergent, then it is said to be
conditionally convergent.

Let us look at some examples of series and their convergence.

Example 11.3.1 : Let (a ) be a constant sequence a_= ¢ for all n. Then the infinite
series Zan is convergent iff ¢ = 0. For, the partial sums is s = nc. Thus (s ) is
convergent iff ¢ = 0.

Example 11.3.2 : Let an be non-negative real numbers and assume that Zan is

convergent. Since s . =s_+a_, it follows that the sequence (s ) is increasing. We
have seen (Theorem 2.3.2) that (s ) is convergent iff it is bounded above. Hence a
series of non-negative terms is convergent iff the sequence of partial sums is

bounded. Note that if Zan is convergent, then Zan =lub {s, :neN}.

Example 11.3.3 : (Geometric Series), Let a and r be real numbers. The most
important infinite series is

+00
a+ar+ar’+ar +...+ar" +....= Z:arn
n=0
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This series is called a geometric series. To determine whether this series converges or
not we need to study its partial sums :

S, = a, S, =a+tar,

S,=a+ar+ ar’ S, =a+ar+ ar’ + ar,

S,=a+ ar + ar’ +ar’ + ar, S,=a+ar+ar’+ar’ + ar* + ar’,
S,=a+ar+ar’+ .. +ar*' +ar

1
Notice that we have already studied the special case when a = 1 and I'= 5 In

this special case we found a simple formula for S_and then we evaluated nlLrEOSn_

It turns out that we can find a simple formula for S_in the general case as well.
First note that the case a = 0 is not interesting, since then all the terms of the
geometric series are equal to 0 and the series clearly converges and its sum is 0.

Assume thata # 0. If r = 1 then S_= n a. Since we assume that a # 0, .}E& n a does

not exsit. Thus for r = 1 the series diverges.
Assume that r # 1. To find a simple formula for S , multiply the long formula
for S_above by r to get :

S, =a+ar+ar’+...+ar"" +ar"
S, =ar+ar’ +...+ar" +ar"";
now subtract, S,-rS, =a—ar",
l_rn+l
I-r

We already proved that if [r|<I, then lim "' =0.If |t > I, then lim " does

and above for S : S, =a

n—>+o0
not exist. Therefore we conclude that

n+l

l-r

IimS, =1lim a =aLfor|r|<1,

n—>+w n—+oo 1—r1 -1

lim S, does notexist  for|r| =1,

n—>+oo
In conclusion

+00

. . n . . 1
If [r] <1, then the geometric series Za r- converges and its sum is al—.
n=0 —TI

+00
If [r] =2 1, then the geometric series Za r" diverges.
n=0
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1
Example 11.3.4 : Prove that the series z n(n+1) converges and find its sum.
n=l
Solution : We need to examine the series of partial sums of this series :

11 1 1
=—t—F— ..t ,
"T12 23 34 n(n+1)

It turns out that it is easy to find the S_if we use the partial fraction
decomposition for each of the terms of the series :

! :l— ! forallk=1,2,3,

k(k+1) k k+1

Now we calculate :

n=12,3,.....

I 1 1 1 I 1 1 1 1 1 1
=l == |+ === || == |+ | ———— |+ —— =1- .
(l 2) (2 3) (3 4} (n—l n} (n n+1j n+l

1
Thus S,=1-—— for all n = 1, 2, 3,
n+1

...... Using the algebra of limits we

conclude that

lim S, = lim (I—L)zl.
n—+o0 n—>+o0 n+1

+00 l
Therefore the series nzz;‘n (n+1) converges and its sum is 1 :
+00 l
=1
o n(n+1)

Example 11.3.5 : (Telescoping Series). Let (a ) and (b, ) be two sequences such that
a,=b,,,—-b,n>1. We note that s, =a =b, —b,s, =a +a =(b,-b) +
(b, —b,)=Db, - b, and

s,=a,+...+a_=(b,-b)+(b;-b,)+...+(b,,,—b )=b ., —b,.

Thus we see that >.a, converges iff limb_ exists, in which case we have

Ya, =-b, +limb,.
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o0

n
Example 11.2.6 : Consider anlm . This is one of the series for which we
can find the sum! We observe
B n B n B n
" n*+n’+1 (0*+1)°-n> (0*+1+n)(n*+1-n)
1

1 1
- 2[n2—n+1 n2+n+l}'

a

1 1
Note that the sum in the brackets is a telescoping series with 0, = E(HJ

I 1 1 1
§ = | | > =,
Hence we get S =7 2(n2+n+1j 2

1
Example 11.3.7 : Let us look at the series 2, o of positive terms. Observe that

1 1
— <——forn > 2. If s_denotes the partial sum of the series 2., — and t that
n° n(n-1) n n n

1 . . .
of z—n (n—1) it follows that s <t . Since (t ) is bounded above (Example 5.1.6)

the sequence (s ) is bounded above. Hence in view of Example 5.1.3 we see that the

series Y n~* is convergent.
This is a special case of the comparison test to be seen below.

Example 11.3.8 : (Harmonic Series), The harmonic series is
=1 1 1 1
D — =l —+.
o n 2 3 4

The first few terms in the sequence of partial sums are :

3 11 25 137 49
S, =LS,==-,5,=—,S,=—,S,=—,S, =—,
1 277 67t 1277 607" 20
363 761 7129 7381
S;=—=,8y=--—7.,5,= > 10 =
140 280 2520 2520
This series diverges to + oo . To prove this we need to estimate the nth term in

the sequence of partial sums. The nth partial sum for this series is
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11.4 Summary

In this chapter, we explored the fundamental concepts of series in real analysis. We
began by defining an infinite series as the sum of an infinite sequence. Some examples are
also demonstrated.

11.5 Keywords

e Infinite Series

e Partial Sums

11.6 References

e Principles of Mathematical Analysis — Walter Rudin, McGraw-Hill

e Real Analysis: Modern Techniques and Their Applications — Gerald B.
Folland, Wiley

e Real Analysis — H.L. Royden, P .M. Fitzpatrick, Pearson

11.7 Model Questions

1. Show that the series

1
Zn—p, converges and diverges for P > 1 and P < 1 respectively.

2. Show if the sequence {S,}, S, =Y. a,

n=1

oscillating infinitly, then 2 is also oscillates infinitely.
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Structure

12.1 Objectives

12.2 Introduction

12.3 Convergence test
12.5 Summary

12.6 Keywords

12.7 Reference

12.8 Model Questions

12.1 Objectives

Understand the concept of an infinite series and its relation to sequences.
Learn various tests for determining the convergence or divergence of a series.
Differentiate between absolute and conditional convergence.

Apply series concepts to mathematical problems and real-world applications.

Develop rigorous reasoning skills in real analysis.

12.2 Introduction

A series is the sum of the terms of an infinite sequence. It plays a crucial role in
mathematical analysis, particularly in understanding limits and approximations. Convergence
tests help determine whether a series has a finite sum. This chapter introduces fundamental
series concepts and essential tools for their analysis.

12.3 Convergence Tests

Theorem 12.3.1 : (Cauchy Criterian). The series > a_ converges iff for each ¢ > (

there exists N e[] such that

nm>=N=s —s |<e

134
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Thus, the series > a_converges iff for each ¢ > () there exists N e[] such that

+..+a,|<e

m+2

n>m>N=la  +a

This cauchy criterian is quite useful when we want to show that a series is convergent
without bothering to know its sum. See Theorem 5.1.17 for a typical use.

Proof. Let X a_ be convergent. Then the sequence (s, ) of its partial sums is convergent.

We know that a real sequence is convergent iff it is Cauchy. Hence (s ) is convergent iff
it is Cauchy. The result follows from the very definition of Cauchy sequences.

Corollary. If > a converges, thena — 0.

Proof, We need to estimate |a |. The key observationis a =s —s_ and the fact that
(s,) is convergent and hence is Cauchy. (Here (s ) is an usual the sequence of the partial

sums of the series >a ).

Let € > 0 be given. Since the sum X.a, is convergent, the sequence (s ) of partial
sums is convergent and in particular, it is Cauchy. Hence for the given € there exists

such that for n > m > N we have |s_ — s _| < &. Now if we take any n=>N+1, then

- Sn - Sn—l

a =s —s_,. Note that n — 1 > N. Hence we obtain |a, <g forn>N+1.

This proves that a, - 0.
The converse of the above proposition is not ture.

Remark : Most often we need the following observation on a convergent series

o0 N
Ya If X a =s, then Zn:N+1an = s—zkzlak_ :

o0

Now what is the meaning of the symbol z a,? We define a new sequence

n=N+1
(b) by setting b, :=a,,.The infinite series associated with the sequence (b ) is

o0

denoted by Zn:N+1a“ or simply by Z:ZNHan :

N+n

Let s_denote the partial sums of 2.a,. Let ©, == ZN+1 a, = Zzzlbk Lets :=a +

..+a . Then we have 6, =s, —s. Clearly 6, — s—s,. The claim follows from this.
An important corollary, which is used most often, is the following.

Corollary. Given ¢ >0, there exists Ne N such that the “tail” of the series

00
Zn:N-%—lan <E.
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Proof : This is easy. Since s, s, for g>( there exists N e[] such that for
n>N,s e(s—g,s+¢). Inparticular, s—e <s, thatis, s—s, <e. By the last remark

z a, =s—sy. Hence the corollary follows.

n=N+1 “'n
Exercise 12.3.1 : Given a sequence (a ), let us assume the associated infinite series

2.a_is convergent. Let N e[] be fixed. Let b, €[],1<k <N be given. We form a
new sequence (c ) where ¢, = b, for <k <N and b, = a_for k > N. Let s= 2a,
and b : = b, + ..+b . Show that 2 c is convergent and that 2 c =s+b-s,.

Given two series (Whether or not convergent) >.a, and > b_, we may define their
sum as the infinite series associated with the sum (a_+ b ) of the sequences (a ) and

(b). Thus, Xa,+Xb, =2(a,+b,). Similarly, given a scalar ), c[] we define the
scaler multiple A2 a_ to be the series 2(Aa,).

Theorem 12.3.2 : (Algebra of Convergent Series), Let >a, and X2b be two
convergent series with their respective sums A and B, respectively.

(i) Their sum X (a, +b, )is convergent and we have >(a, +b,)=A+B.

(ii) The series A2 a_ is convergent and we have A2 a_ =A.A.

The set of all (real) convergent series is a vector space over R.

Proof, The proofs are straight forward and the reader should go on his own.

Let (s ), (t ), and (a ) be the partial sums of the series >.a,, 2b, and X(a, +b,).
Observe that using standard algebric facts about the commutativity and associativity of
addition, we obtain.

c,=(a,+b)+...+(a, +b )=(a,+...+a, )+ (b, +..+b )

=s t1t.

It follows from the algebra of convergent sequences that 6, - A + B.

(i1) is left to the reader.

Remark The ONLY way to deal with an infinite series is through its partial sums and
by using the definition of the sum of an infinite series.

We need to be careful when dealing with infinite series. Mindless algebraic/formal
manipulations may lead to absurdities.

Lets=1-1+1-1+ ..+ D)+ ..
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(Note that s has no meaning, if we apply our knowledge of infinite series!) Then
—s=-1+1-1+14+..=1+(-1+1+.)-1=s-1.
Hence s = 1/2. On the other hand
s=(1-D+{-1)+..=0.
Hence we arrive at the absurdity 0 = 1/2.

Theorem 12.3.3 : The series Z;un , where u, 20, n =N € IN converges iff its
sequence of partial sums {U } is bounded, in which case, U=sup{U :n>N} = z; u, .
Proof : If Zilun converges, then {U } converges. Since in view of Theorem 7.2

every convergent sequence is bounded, z; u, has bounded partial sums. On the other
hand, suppose u_ [<M,n e N. Since u, >0 for n > N, U, is an increasing sequence for
n > N. Now in view of Theorem 8.1(1) every increasing bounded sequence converges to
its supremum, it follows that " u, converges to U.

Theorem (Comparison Test), 12.3.4 : Suppose 0 <u_<v_for large nell .

(D). If Z::I v, <0, thenZ:::lun <0

(2). If Z::Iun =0, thenZ:::lVn =0

Proof : Let Ne[] be so large that 0<u, <v, n>N. Then for the partial sums

U, = Zzzluk and V, = Z;Vk , we have0<U —-U <V -V ,n>N. Since N is
fixed, U_is bounded if V_is bounded, and V_is unbounded if U_ is unbounded. The result
now follows from above Theorem.

Example 4.4.1 : Since n!>2"" nell, the converges of the series z::ll/ n!

immediately follows from Theorem 9.6 and Example 9.1. Similarly the divergence of the

series Z; 1/n°®,0<e<1 follows by comparing it with the harmonic series.

Theorem (Limit Comparison Test) 12.3.5 : Suppose u , v > 0 for large n e N.

If 0<lim /v, <oo, then z:zlun converges iff ZL v, converges.

n—o ul‘l

Proof . Let /=lim_,_u /v, . Then there is a large Ne[] such that

n—eo n

(¢/2)v, <u, < (3¢/2)v for n>N. The result now follows from comparison Theorem.
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Example 12.3.2 : As an application to above theorem we shall show that
© 1/3
zn_l[(n3 + 1) —n} converges. For this, it suffices to consider the convergent series

Z::;l/n2 , and note that u_ =[(n’+1)"” —n] and v, =1/n’ both are positive for all

nell and
n’[(n’ +1)—n’]
(0’ +1)*’ +n(n’ +1)"’ +n
1 1

= - —.
(1+1/0*)? +1+1/n*)"*+1 3

_ nz[(ns +1)1/3 —n]=

| =
=

n+1
Example 12.3.3 : Determine whether the series 2 \/76 converges of diverges.

Solution : The dominant term in the numerator is n and the dominant term in the

denominator is /¢ — 3. This suggests that this series behaves as the convergent

series ZP Since we are trying to prove convergence we will take

W - n+l1 ad b :L

a
n n 2
V1+n° n

In the Limit Comparison Test. Now calculate :

n+l n*(n+1) .
[ L6 2 3 -
fim M0’ @D e o o n
n—>-+oo i n—>+o0 1+1’16 n—>+o0 /1+n6 n—>+oo 1
2 T+l
n n3 n

In the last step we used the algebra of limits and the fact that

lim Lﬁ +1=1
n—-+o0 n

which needs a proof by definition.

n
6 =1
Since we proved that lim ‘ﬁ% =1 and since we know that ZP is convergent,
n—>+o0 n=l1
n2

n+l1
the Limit Comparison Test implies that the series Z \/—6 converges.
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Theorem 12.3.6 : (d' Alembert’s Ratio Test), Let 2. ¢ be a series of positive reals.
Assume that

liincn+l /c, =T.

Then the series 2, c, is (i) convergent if 0 <r <1, (ii) divergent if r > 1.

The test is inconclusive if r = 1.

Proof : If r < 1, choose an s such that r <s < 1. Then there exists N <[] such
thatc ,, <sc, forall n>N.Hence ¢, < sch , for k e[] . The convergence of > c_
follows.

If r > 1, then ¢, >c, for all >N and hence X c, is divergent as the n-th term

does not go to 0.
Can you think of why the test is inconclusive when r = 1 ? The failure of the test

when r = 1 follows from looking at the examples > 1/n and ¥ _1/n’.

Theorem 12.3.7 : (Cauchy’s Root Test). Let > a_ be a series of positive reals.

1/n
n

Assume that lim_a " =a.Then the series > a, is convergent if ) <a <1, divergent

if a > 1 then and the test is inconclusive a =1.
Proof : If a < 1, then choose a such thata < o < 1. Then a < o" for n > N. Hence

by comparing with the geometric series %oc , the convergence of 2. a_ follows.

If then a, =1 for all large n and hence, the n-th term does not approach zero.
Can you think of why the test is inconclusive when r = 1 ?
The examples 2 1/n and X 1/n? illustrate the failure of the test when r = 1.
Exercise set :

2"n! |
(1) Show that 2., is convergent.
n
n+l
Q)Is 2, 5 convergent ?

n
(3) Use your knowledge of infinite series to include that o — 0.

n!
(4) Show that the sequence (Fj is convergent. Find its limit.
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(5) Assume that > a_ converges and > a_=s. Show that > (a,, +a,, ,) converges

and its sum is s.

(6) Let (a ) be given such that a, — 0. Show that there exists a subsequence (ank)

such that the associated series 2., a, Is convergent.

1
2" —
(8) Let (a ) be given. Assume thata > 0 for all n. Let s _denote the n-th partial sum

(7) Show that the series 2., n is convergent.

of the series 2. a_. Show that the series 2z, ?“ is divergent. Can you say anything more

specific ?
Exercise 12.3 Determine whether the series is convergent or divergent. If it is
convergent find its sum.

— 2 o & —2 n+3 +00 \/5 ! +o0 N+3
@ ;6(5) ®) é( S © §(2nﬂ) @ 2
(e)i o () f% (2) Zio(Sinl)n (h) §n2+4n+3
® i(c"“)n 0] inzz_l (k) i(tanl)“ 0 iln(ﬂﬁj
S — +Zmarctan n i 342 i + T
m i @4 ) 25 ® 2Tt e
g N nsin| 2 & (n+1) < 0 oy "
) ;ezT-Tf (r) ;nsm(EJ (s) ; 22_'_1 (t) 25(0.9) +(0.1)%)

12.3 LetZLun be a divergent series of positive numbers. Show that there exists

0

a sequence {an} of positive numbers which converges to zero, but anl g, u, diverges.

12.3 Let {u_} be a nonincreasing sequence of positive numbers and converges. Show
that lim,_, nu = 0. Further, give an example to show that if the sequence {u } is not

nonincreasing then the result is false.
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12.4 Suppose u,.v, >0,neN,and {u /v }, {v/u } are both bounded sequence.

Show that the series Y * u, and) " v, either both converge or both diverge.
4.5 Suppose that {u } and {v } are sequences of positive real numbers, and there exists
an NeN such that u_,,/u, <v_, /v, forall n >N show that

n+l n+l

(i) If Y " v, converges then > " u, converges.

(i) If Y " u, diverges, then > " v, diverges.

4.6 Suppose that (u ) is a sequence of positive real numbers, and the series u_

zun diverges show that the series.

n=1
(i) D u,/(1+n’u,) converges
(i) D, u,/(+nu,) diverges
(i) >°" u, /(1+u})diverges.

(10) Let >.a_ be absolutely convergent. Assume that a + 1 = 0 for any n. Show

that the series & is absolutely convergent.

l+a,
We shall now state and prove the integral test. We shall use some of the results
from the theory of integration, which will be stablished in Chapter 6. (See Page 202).

If f: [a,b] > [ is continuous with o < f(x) <P for x €[a,b] then

a(b-a) < [ f(x)dx <P(b-a).

We can motivate this inequality geometrically by considering a non-negative
function f and using the geometric interpretation of the definite integral.

Theorem 4.4.8 : (Integral Test) Assume that f: [1,00] —[0,00) is continuous and
decreasing. Leta_ :=f(n)and b_: = Ln f(t)dt Then

(i) 2a, converges if (b ) converges

(i) 2a, diverges if (b ) diverges.
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Proof . Observe that n > 2, we have a, < J.nilf(t)dt <a,, so that

3a, < [ttt < iak.
k= ! =]

If the sequence (b ) converges, then (b ) is a bounded increasing sequence.

n .
Zk:z a, <b, Hence (s)) is convergent.

If the integral diverges, then b, — co. Since b, < Z: a, , the divergence of the series

follows.

In the following examples, you will again have to use results such as the
fundamental theorem of calculus to compute the integral.

Exercise Set (Typical application of the integral test).

(1) The p-series 3 n® converges if p > 1 and diverges if p < L.

(2) The series 2. ! diverges.

(n+2)log(n+2)

logn

(3) Show that the series 2 is convergent if p > 0.

np

12.4 Summary

In this chapter, we explored the fundamental concepts of series in real analysis. We
began by defining an infinite series as the sum of an infinite sequence and introduced the
necessary conditions for its convergence. Key topics included partial sums, geometric and
arithmetic series, and common tests for convergence, such as the comparison test, ratio
test, root test, and alternating series test. By the end of the chapter, readers should be able
to determine the convergence or divergence of various series and understand their
applications in mathematical analysis.

12.5 Keywords

e Infinite Series

e Convergence and Divergence
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e Partial Sums

e Comparison Test
e Ratio Test

e Root Test

12.6 References

e Principles of Mathematical Analysis — Waiter Rudin, McGraw-Hill

e Real Analysis: Modern Techniques and Their Applications — Gerald B.
Folland, Wiley

e Real Analysis — H.L. Royden, P.M. Fitzpatrick, Pearson

12.7 Model Questions

1. Invertigate the convergence of the following series.

2) %{%)Z(%)Z +(2nn+1)2+

1/3
b) A series whose nth term is (n3+1) —n.
n
C) 22—,,
O 14l 13,135 1357 @b
2 24 246 2468 - (2n)
- 1

n=2 (log n)”

e)
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13.5 Summary

13.6 Keywords

13.7 Reference

13.8 Model Questions

13.1 Objectives

To explore the concepts of subsequences and Cauchy sequences, highlighting their
significance in convergence analysis and the completeness of real numbers.

13.2 Introduction

Subsequences help analyze convergence behavior, while Cauchy sequences characterize
completeness. Understanding these concepts is fundamental to real analysis, ensuring
rigorous treatment of limits and continuity.

13.3 Alternating Series

Leta, a,, a,,....be a sequence of positive numbers. A series of the form
a —a,ta —a ta —a + ..
is said to be alternating beacause of the alternating sign pattern. (The series
—a, +a,—a, t .. is also alternating, but it is more reassuring to start summation with
a positive term.)
The partial susm S_of an alternating series are evidently not monotone.
S, >S,S8,>S,S,>S,, ...
However, the subsequences of odd-numbered and of even-numbered partial sums
S,S.,S, ..., S,S,8S
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may exhibit monotonic behaviour. In fact, S, | and S, are monotone if and only if

the original sequence a , a,, a,, ....is monotone.

If convergent, an alternating series may not be absolutely convergent. For this case one
has a special test to detect convergence.

13.3.1. Alternating Series Test (Leibniz). Ifa, a,, a, ..... is a sequence of positive
numbers monotonically decreasing to 0, then the series
a, —a,ta —a +a —a *..
converges.
It is not difficult to prove Leibniz’s test. Indeed, since

a,2a,a; ..
we have
a,2a —a,ta;=2a —a,+ta;—a,+a;=..
a,—a,<a —a,;—a,<a —a,ta;—a,ta;—a,<..
which means that S, , is monotone decreasing and S, is monotone increasing.
Also S
and hence convergent. To see that and S,

=S, +a, , >8S, foreveryn, implying that both sequences are bounded

2n+l

,and S, converge to the same limit,

observe that lim . (s, ., —S, )=1lim__ a, , =0.Proof finished.

n—oo

13.3.1 Example : The alternating harmonic series

converges by Leibniz’s test. Indeed, the sign pattern is + — + — + .... and, as

1
n — oo the term 0 monotonically decreases to 0.

To illustrate the error estimate, observe for instance that

1—l+l—l+l—l+l—l+lz.746
2 3 45 6 7 8 9

is larger than the true sum but by no more than 0.1.

13.4 Absolute convergence

Definition : A series )" a, is said to converge absolutely, if ' |a, | converges.

Theorem 13.4.1 : Every absolutely convergent series converges.
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Proof. Suppose Z:Zla is an absolutely convergent series. Let s and o, be the n-

n

th partial sums of the series "~ a, and » " |a | respetively. Then, for n > m, we have

n
24,

j=m+l

n

SZa

j=m+l1

Gn—6m|.

sn—sm|=

n

Since { o, } converges, it is a Cauchy sequence. Hence, form the above relation it
follows that {s } is also a Cauchy sequence. Therefore, by the Cauchy criterion, it
converges.

Definition : A series )" a, is said to converge coditionally " a if converges,

but not absolutely.
Example 13.4.1 : We observe the following :

n+l
» (1
(1) The series an( ) is conditionally convergent.

n

n+l
(1) The series z;% is absolutely convergent.

=

l)n+1
n!

(i11) The series z;( is absolutely convergent.

) » sin(na) .
Example 13.4.2. : For any ¢ ¢[] , the series ZHZI s absolutely convergent

: Note that

sin(na)

n2

SLZ Vnell.
n

sin(nat)
n2

. o 1 . &
Since ZH:IF converges, by comparison test, Zn:l

also converges.

Theorem 13.4.2 : Suppose Z;an is an absolutely convergent series and (b ) is a
sequence obtained by rearranging the terms of (a ). Then z;bn is also absolutely

convergentand »'” a =>"" b

n=l N °
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13.5 Summary

We analyzed alternating series, the Alternating Series Test, and absolute convergence.
Absolute convergence implies convergence, but not vice versa.

13.6 Keywords

Alternating series, Absolute convergence, Alternating Series Test, Conditional
convergence, Convergence criteria.

13.7 References

e Principles of Mathematical Analysis — Waiter Rudin, McGraw-Hill

e Real Analysis: Modern Techniques and Their Applications — Gerald B.
Folland, Wiley

e Real Analysis — H.L. Royden, P.M. Fitzpatrick, Pearson

13.8 Model Questions

1.  To the following alternating sets convergent?

il (-1)"-1@.

. -1)"
2. Show the series Zu converges to uy
1+2n 4

oc (_l)n
3.  Show that converges.
wihat 3, - converg
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14.1 Objectives

To introduce the concept of power series, explore its properties, and determine its
radius of convergence, enabling students to analyze the behavior of infinite series in real

analysis.

14.2 Introduction

Power series are infinite series of the form >.a,,(x — ¢)" Understanding their convergence
is crucial in mathematical analysis, particularly for function approximations. The radius of
convergence determines where a power series converges absolutely, playing a vital role in
applications across calculus and complex analysis.

14.3 Power Series

A power series (centered at 0) is a series of the form

where the a_are some coefficients. If all but finitely many of the a_are zero, then the
power series is a polynomial function, but if infinitely many of the a_are nonzero, then we
need to consider the convergence of the power series.

0

n __ 2
Dax"=a,+ax+ax’ +...
n=0
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The basic facts are these : Every power series has a radius of convergence () <R < oo
which depends on the coefficient a . The power series converges absolutely in [x| <R and
diverges in [x| > R and the convergence is uniform on every interval [x| < p where
0 <p<R. IfR >0, the sum of the power series is infinitely differentiable in [x| <R, and
its derivatives are given by differentiating the original power series term-by-term.

Definition : Let (a,);_, be a sequence of real numbers and ¢ e[ . The power series

centered at ¢ with coefficient a_is the series,

Sa,(x-0)"

Here are some power series centered at 0 :

Zx“ =l+x+x2+x +x .

n=0

| 1 1 1

X "=l X+ =X+ =X+ —x"+....

“~n! 2 6 24

S Ny — 2 3 4
(nHx" =1+x+2Xx"+6x" +24x" +....

n=0

i;(l)“x2n =x x’+x'+x*+....
n=0

and here is a power series centered at 1 :

0 _1 n+l 1 1 1
Z( x-1D)"=(x-1)-=(x-1)+=(x-1)° ——(x-D*+....
= n 2 3 4

The power series in Definition 6.1 is a formal expression, since we have not said
anything about its convergence. By changing variables x — (x — ¢), we can assume without
loss of generality that a power series is centered at 0, and we will do so when it’s

convenient.

14.4 Radius of convergence

First, we prove that every power series has a radius of convergence
Theorem 14.4.1 : Let

ian(x —c)"

be a power series. There is an 0<R <e such that the series converges
absolutely for 0 < [x — ¢| <R and diverges for x — ¢ > R. Furthermore, if 0< p <R,
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then the power series converges uniformly on the interval |x — ¢| < p. and the sum of
the series is continuous in [x — ¢| <R.

Proof : Assume without loss of generality that ¢ = 0 (otherwise, replace x by x —
¢). Suppose the power series

o0
n
Zanxo
n=0

converges for some x, €[] with x # 0. Then its terms converges to zero, so they are
bounded and there exists M > 0 such that

<M forn=20,1, 2, ...

a,Xg
If |x| < |x,, then

n

. X
<Mr’, r=

X

<1I.

n n
a x"|=la,x,

Comparing the power series with the convergent geometric series Y Mr", we see
that > a x" is absolutely convergent. Thus, if the power series converges for some

X, €, then it converges absolutely for every x e[l with|x|<|x, |.
Let
R =sup {| x[20:2a x" converges}
If R = 0 then the series converges only for x = 0. If R > 0, then the series
converges absolutely for every x €l] with [x|<R, because it converges for some

x ell with [x|<|x | < R. Moreover, the definition of R implies that the series diverges
for every with [x| > R. If R = oo, then the series converges for all x <[] .

Finally, let 0 <p <R and suppose [x| <p. Choose ¢ > ( such that p <o <R. Then
Ya_c" converges, SO ‘anﬁn‘ <M, and therefore

n
a,c" L P Mr”,
)

n

X
ax"=aoc"—"<
)

where r = p/q <I. Since 24Mrn < oo the M-test (Theorem 5.22) implies that the

series converges unformly on | x | < p, and then it follows from Theorem 5.16 that the sum
is continuous on |x| < p. Since this holds for every 0 < p <R, the sum is continuous in x
<R.

Theorem 14.4.2 : Supose that a_ # 0 for all sufficiently large n and the limit

R = lim -2

n—oo an+1
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exists or diverges to infinity. Then the power series

ian (x ¢)"

has radius of convergence R.

Proof. Let
o la (x=c)™! . la
r:hmM :|x—cth“
n—w an(X—C) n—w an

By the ratio test, the power series converges if 0<r<l, or|x—c|<R, and

diverges if 1<r<oo, or |X—C| >R, which proves the result.

The root test gives an expression for the radius of convergence of a general
power series.
Theorem 14.4.3 : Hadamard The radius of convergence R of the power series

ian(x —c)"

~ 1
limsup, ., |a, |

is given by R

1/n

where R = 0 if the lim sup diverges to ©,and R = oo, if the lim sup is 0.

1
nfn

Proof. Let r = lim‘an(x—c) = |x—c|limsup|an|%
n—soo n—sco

By the root test, the series converges if 0<r<1,or|x—c|<R, and diverges if

l<r<ow,or|x—c[>R, which proves the result.
This theorem provides an alternate proof of Theorem 6.2 from the root test ; in
fact, our proof of Theorem 6.2 is more-or-less a proof of the root test.
Examples of Power Series
We consider a number of examples of power series and their radii of convergence.
Examples 14.4.1 : The geometric series

an =1+xX+x>+...
n=0

has radius of convergence

Rzlimlzl.

n—oo |
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so it converges for x < 1, to 1/(1- x), and diverges for x > 1. At x = 1, the series

becomes
1+1+1+1+.....

and at x = 1 it becomes
1 1+1 1+1...

so the series diverges at both endpoint x =+ 1. Thus, the interval of convergence of
the power series is (-1, 1). The series converges uniformly on [—p, p] for every 0 <p <
1 but does not converges uniformlyon (-1, 1) (see Example 5.20. Note that although the
function 1/(1 —x) is well-defined for all x # 1, the power series only converges to it when
Ix|<1.

Example 14.4.2 : The series

© ] 1,1, 1,
Z—x =X+ =X+ =X+ —x .
o h 2 3 4

has radius of convergence

R = lim /™ :lim(1+lj=1.
el /(n+1) noe n

At x = 1, the series becomes the harmonic series

=1 1 1
Y —=lt—t =+
n=1 11 2
which diverges, and at x =—1 it is minus the alternating harmonic series

zﬂzh += ...
) 2 3 4

which converges but not absolutely. Thus the interval of convergence of the power
series is [—1, 1). The series converges uniformly on [—p, p] for every 0 < p < 1 but does
not converge uniformly on (-1, 1).

Example 14.4.3 : The power series

=], 11,

='n! 2! 3l
has radius of convergence
! !
R =lim—"" him O i1y oo
n—wo | /(Il + 1)1 nso 1l n—>o0

so it converge for all x €[l Its sum provides a definition of the exponential function

exp : [J — [](see Function 6.5.)
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Example 14.4.4 : The power series

z( 1) l—lxz+lx4+....
(Zn)' 2! 4!
has radius of convergence R = o, and it converges for all x <[] . Its sum provides

a definition of th cosine functioncos: [] — [
Example 14.4.5 : The series
z G x> = x—lx3 +lx5 +.eee
e (2n+1)! 3! 5!
has radius of convergence R =0, and it converges for all x <[] . Its sum
provides a defintion of the sine function sin : [] —» [J
Example 14.4.6 : The power series

i(n!)x“ =1+x+2Nx+GNxX’ +@Hx* +....

n=0
has radius of convergence

!
R = lim—" = lim—— = 0,
n—)w(n+1)| n—)oon+1

so it converges only for x = 0, if x # 0, its terms grow larger once n > 1/x and

(nHx" > ooasn—o.
Example 14.4.7 : The series

Z( I)HH(X )" (X_])—%(X—l)z+%(X—1)3....

n=l
has radius of convergence
(-D™"/n ..on 1

R =1lim > =lim =lim =1,
oo (=)™ /(n+1) n>en+1 m>el+1/n

so it converges if (x—1) < 1 and diverges if (x—1) > 1. At the endpoint x = 2, the
power series becomes the alternating harmonic series.

which diverges. Thus the interval of convergence is (0, 2)
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Example 14.4.8. : The power series
Z(—l)nx2n =x—x"+x —x*+x"—xP 4.
n=0
with
1 if n=2"
an = . k
0ifn=2
has radius of convergence R = 1. To prove this, note that the series converges

for [x| < 1 by comparison with the convergent geometric series | x|", since

_¥xr if n = 2"

0<|x " ifn=2"

n
x

If [x| > 1, the terms do not approach 0 as , so the series diverges. Alternatively,
we have

a

n

U/n 1 ifn=2k
0 ifn=2"

S0,

limsup|a, [""=1

n—oo

and the root test gives R = 1. The series does not converge at either endpoint
X = =*1, so its interval of convergence is (-1, 1).

14.5 Summary

In this unit, we have introduced the concept of infinite series, the convergence of series,
alternating series, absolutely convergent series, power series, and its radius of convergence.
Many essential results, along with their application, have been discussed in this unit. Some
problems have been given at the end of this unit.

e A formal sum of a sequence is called a series

e If the sequence of partial sum of the sequence is convergent, then the series is
convergent; otherwise, the series is divergent.

e The series is said to be absolutely convergent if the series is convergent.

e If converges then.
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e Sum of two convergent serieses is convergent.
e Every absolutely convergent series converges.
e A series of the form is called a power series with center at and coefficient.

e The radius of convergence of a power series is the radius of the largest disk in
which the series converges.

e The radius of convergence of a power series is either a non-negative real number
or infinite.

14.6 Keywords

Series, convergent series, divergent series, geometric series, d” Alembert’s ratio test,
Cauchy’s root test, alternating series, absolutely convergent series, power series, the radius
of convergence.

14.7 References

1. Apostol, T. M. Mathematical Analysis, Narosa.

2. Bartle, Robert G, and Donald R. Sherbert. Introduction to Real analysis. New
York: Wiley.

3. Kumaresan S. A Basic Course in Real Analysis, CRC Press.
4. Mapa S. K. Introduction to Real analysis, Sarat book distributors, Kolkata.

5. Rudin, Walter. Principles of mathematical analysis. Vol. 3. New York: McGraw-
hill.

14.8 Model Questions

A. (1) Letb, be a convergent series of non-negative terms. Let (a ) be sequence such

<Mb, for n >N, for a fixed N and M > 0. Show that Zan is

convergent.

that

aﬂ

(2) If (a) and (b ) are sequences of positive terms such that a /b, —¢>0.

Prove that Zan and an either both converge or both diverge.
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)

(4)

)

(6)

(7)

(8)
©)

(10)

(11)

(12)

(13)

(14)

As an application of the last item, discuss the convergence of
(a) >.1/2n, (b) D 1/(2n-1) and (c) Y 2/(n*+3).
Assume that z a, is absolutely convergent and (b ) is bounded. Show that

z‘anbn 1s convergent.

Show that the sum of two absolutely convergent series and a scalar multiple
of an absolutely convergent series are again absolutely convergent. Hence

conclude that the set ¢' of all absolutely convergent series is a real vector
space.

Let Zan be a convergent series of positive terms. Show that Zai 1s

convergent. More generally, show that Zaﬂ is convergent for p > 1.

n”

Let p > 0. Show that the series 2 e

is convergent. Can we take p = 0?

Find the values of x e [O, 27‘C] such that the series ZSin“(x) 1S convergent.

Let Zan and an be convergent series of positive terms. Show that

2 \/a,b, is convergent.

Give an example of a convergent series 2 a,_ such that the series Zaﬁ is
divergent.

Give an example of a divergent series Zan such that the series Zaﬁ is
convergent.

Let (a ) be a real sequence. Show that 2 (a,—a,, ) is convergent iff (a ) is

convergent. If the series converges, what is its sum?
When does a series of the form a + (a+b) + (at+2b) + ... convergent?

2
Assume that an+1|g n

~ for nel] . Show that the series Zan is
a, | (n+1)

absolutely convergent.
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(15)

H‘S2|an|'

(16) Prove thatis |x| <1,

T+x2+x+x +x+ X+ xP+x+x7+. L

-x°

(17) Prove that if a convergent series in which only a finite number of terms are

negative is absolutely convergent.

(18) If (n’a,) is convergent, then 2 a, is absolutely convergent.

(19) Assume that (a ) is a sequence such that znai is convergent. Show that

2 a is absolutely convergent.

B. Solved Questions :

1.

Ans.

Ans.

In each of the following cases determine whether or not the series converges.

=

(a)

:1
We could show convergence here by using the ratio or root test or more simply
by using the comparison test by noting that

1 1
12"

The upper bound is a term from a convergent geometric series.

0<

z4n -n+3
n°+2n

(b)
This is divergent.

_4n’-n+3_ 1. _4-Un+3/n’

= = = —4 asn — oo,
" p*+2n n ™" 1+2/n®

¢, —4 implies that there exists N such that ¢ >3 for n >N . Hence for

n >N wehave a_ =3/n and since z 1/n diverges we have by comparison that

z a, diverges.
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© 2“+f~

Ans. This converges.

_n+\/H_ 1 1+1/</n

1
= Tl o STy 0 B

¢, — 1/2 implies that there exists N such that ¢ <1 for n > N . Hence for

n>N we have a < 1/n’ and since z:l/n2 converges we have by

comparison that Zan diverges.

(@  Xnte"
n=1
Ans. By the root test

n

_ 4 —n? I/n _ 1/n 4 -n Un_ 1/n 4 -n
a =ne ,a  =(n e =(n e —>0 asn—eo

Here the results is as a consequence of n'’® — 1 and e™ — 0. By the root test

the series converges.

2. For each of the following series determine the values of x €[] such that the
given series converges.

@ X

Ans. Let a, =x"/k! and use the ratio test. We have

k+1 |
Lo X /k(k+1)'= X _ _50ask— oo
a, x /k! k+1

By the ratio test the series converges (absolutely) for all x el .

(b) In the following ¢ e[] is not an integer.

oa(o—=1)...(aa—k+1) oo=1) -
;( i ) =l+ox+—=-—=> X+
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Ans.

(©

Ans.

(d)

Ans.

(e)

Let a, = oot —1)...(a.—k +1)x* /k!. Using the ratio test

ak+1_a_k _Oﬂ/k—l

= = - k — oo,
a,  k+l  1+lU/k 0 ®

Thus the series z a, converges absolutely if | x | <1 which in turn implies that the
series converges for | x | < 1.

If | x | > 1 then the terms of the series are unvounded and thus the series diverges.
What happens when x =—1 or x = 1 needs more refined tests to determine if the
series converges or diverges and the outcome depends on a. This will not be
considered further here.

=

The root test is the easiest test to use here. With a, = k’x*/3" we have

1/k (kl/k)3|x|
A AL

x|
2,

%_

3 3 as k— .

By the root test the series converges (absolutely) if | x| < 3, it diverges if
|x|>3.If|x|=3 then |a | = k’ and since these terms become unbounded
it follows that the series diverges when | x | = 3.

=

Zkkxk.

k=0

The root test is the easiest test to use here. With a_= k*x* we have
1/k
‘ak ‘ = kx| .

This only converges if x = 0 and is unbounded for x # 0. Hence the series only
converges when x = 0.

Zakxk =14+2x+x2+2x° +x1 + ..,
k=0

ie.witha =landa, =2fork=0,1,2, ...

2kt
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Ans. Letb, = ax* The ratio test does not give any information here as a , /a_does
not have a limit as k — «. However we can still use the root test. Since

1<a, <2, 1<a/*<2"" 51 ask — oo

Thus |bk|1/k = af(/k |X| - |X| as k — oo,

The series converges (absolutely) if [x| < 1 and diverges if [x| > 1. By inspection
the series diverges if x = 1 as the terms of the series do not tend to 0 as
k — o . It can be shown that the series also diverges when x = —1.
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15.7 Excercise

15.1 Objectives

This unit gives
e Various types of functions and their classification
e Sequence of real number and its convergence
e Concept of limit of a real function

e Various properties of limit of a function such as algebric operation on limits,
sandwich property, etc.

15.2 Introduction

The limit of a function is a fundamental concept in analysis concerning the
behaviour of that function near a particular point. Although implicit in the development
of calculus of the 17th & 18th centuries, the modern idea of the limit of a function
goes back to Bolzano who, in 1817, introduced the basic of the epsilon-delta technique
to define limit of functions. The motion of a limit has many applications in modern
Calculus. In particular, the many definitions of continuity employ the limit. It also
appears in the definition of the derivative.
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15.3 Pre requisites

(or Recapitulation of prior elementary ideas that are needed to introduce the concept
of limit):

A. Functions
(i) Let A and B be two non-void subsets R & f:4— B is a rule of

correspondence that assigns to each x € A, a uniquely determined ye€ B or y= f (x) :

The set of values of x for which / can be defined is known as Domain of f,
denoted by D, and the corresponding collection of y’s (as mentioned above) is known
as Range set of f* generally denoted by R .

A few examples of f, D, and R, :

2
i f(x)z [logc 5x4x}

5x —x?

f can be defined for those x for which 21 and this gives | < x<4

so D, =[1,4]

(i) /(x)= (x—ij

1-x

f can be defined only when x—lizo = l<x<eo & D;=(1, o)
—x

3
(ii)) £ (x)=cos™ ; Here we must have -1 < ———— <1
4+2sinx 4+2sinx

& for this D, E[—%+2kn,%+2kn} where k=0,+1,+2 ...
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Note that D, may be a closed and bounded interval, may be an open interval

(bounded or unbounded), union of intervals and so on.

(Readers are requested to verify the validity of D, as mentioned in above

examples and as well as to look for other functions and their domain).

[
(i) Consider the function f:[-1, 1]— R defined by f(x)=1 x~ x#0
0, x=0

2

Here D is an interval [-1, 1] but R, ={-1,0,1} which is not an interval.

(i) Consider the function f:(~1, 1)— R defined by f(x)= Vxe(-11)

2 +1

1 1
Re=|—=,1 —<x<1
f (2 } or 5 X :
Note that in D,, —1 and +1 are not included but 1 is included as right hand end

point in R .
We are interested to learn the reason for such differences of nature of D & R ..

Equal functions : f, g : D— R are same (or equal) when f(x)=g(x) for

each xe D.

2

X
Note that x and — are not same.
X

Operations on Functions : Let f and g be two functions having domain
D;(cR) and D, (c R) respectively. If DD, #06,then f+g, fg canbe defined

on DD, by

() (ftg)x=f(x)tg(x) Vxe D, D, and
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(&)(x)=7(x) g(x) VxeD,ND,

Again deleting those points of D, (if any) for which g(x)=0, we can define

\‘\

~
=

—

(ij(x)=T here x e D, D, \{x:g(x)=0}.

S——’

Composition of functions : Let / and g be two functions such that
xeD;= f(x)eD,. Inother words R, < D, . Then we can define
(g-/)(x)= [ (¥)]¥reD,

go f is called the composite of two functions f and g.

Similarly, we can define (f o g)(x) with appropriate restrictions.

In general (f o g)(x)# (g° f)(x). For example, f(x)=x’ g(x)=sinx

Then (g f)(x) = g (f(x)) =sin>* & ( * £)(x) = f (g(x)) = f(sinx) =sin’x

Injective (one-one), Surjective (onto) and Bijective functions :
Let f:D— R where DcR.

Iffor x,yeD, f(x)=f(y)= x=y, fis called injective or one-one function

, xR is not Injective.

f(x)=3x+4, xeR is Injective but g(x)=|x
Let f:D— E where D,Ec R, obviously f(D)c E. Butif f(D)=E, we

say that fis surjective or onto function. f:[1,2]—[2,3] defined by f(x)=x+1 is
onto function.

But f:[L 2]—>[2, 4], f(x)=x+1 isnot so,

7 7 5
Ee[z, 4] and E=x+1:>x=56£[l, 2],

fis bijective if it is both injective and surjective.
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Invertible functions : Let f: X — Y where X,Y c R be such that for each
yeY, there exists a single value of x such that f(x)=y. Then this correspondence

defines a function x=g(y). We say that f is invertible and x = g(y)is the inverse
function. Note that if / be bijective, then fis invertible.

For example, if y =log,, (x+\/x2+l), a>0,a#1, then

1

X = E(Cly —Cl_y) or sinh(ylna)

Increasing function & Decreasing function :

Let f:D — R where D c R . If for each pair x, ye D,
x>y= f(x)2 f(y) or f(x)> f(y), we say that fis increasing function.

Butif x>y = f(x)< f(») orf(x) < f(y), we say that fis decreasing function.

f(x)=sinx is increasing in [O, g} but is decreasing in |:ETE:|

Periodic function :

A function f: D — R(D < R) is periodic if there exists a number p such that
f(x+p):f(x)‘v’xeD.

The smallest positive p for which f(x+ p)= f(x)Vx holds, is called the period
of f.
Bounded and unbounded functions :

f:D—R(DcR) is said to be bounded above if there exists A € R such that
f(x)<AVxe D, we say that fis bounded above (by A). If there exists e R such

that f(x)>uVxe D, we say that f is bounded below (by p). If £ be both bounded
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above & bounded below, then fis bounded on D (= D). In other words, If there exists

K €R such that |f(x)| <K forall xe D, we say that fis bounded on D. For future

course of discussion the following concepts are useful.

Let f:D— R(D cR) be bounded above.

Then A(€R) is said to be the least upper bound or supremum of fin D if 34 e R

such that (i) f(x)<AVxe D and (i) for any €>0,3ye D such that f(y)>A-e
(or in other words, no real < }, is an upper bound of /) this ) = sup £ If f be bounded

above, then sup f (e R) exists.
If fis unbounded above we say that sup f =

Let f:D— R be bounded below. Then u(e R) is greatest lower bound or
infimum of f'in D if

(i) f(x)zp forall xe D & (ii) if for any € >0,3 y e Dsuch that f(y)<u+e,
then W = inf f (in other words, no real > L is lower bound of /). Then u = inf £, If f be
bounded below, then inf / (€ R) exists.

If f be unbounded below, we write inf f = —eo

Sup f—inf £ 1s known as oscillation of function f on D.

15.4 Sequences in R

(1) 4 function f:N — R is known as a sequence (note that N is the set of natural

numbers).
Examples : {(—1)"} {%} {i::j}{nz}n etc.

Symbolically, {Ctn}n (n %Ctn). Note that the range set of {(—1)n}n is the set

{-1,1} where as the range sets of the next three are infinite sets.


Mampi Howlader
Typewriter
15.4
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A sequence {a,, }n is bounded if its range set is bounded.

n 3n+4

n

Range sets of {(—l)n} , {l} ; {4n+3} are bounded but range set of {n2 } is

not bounded.

(ii) Note that N is unbounded above, as there is no real A€ R for which
n<h VneN.
So an interesting question is that when n becomes arbitrary large without any

bound, then what will be the fate of {a,} ?

Consider the above examples : As » becomes larger and larger, 1 becomes
n

1
smaller & smaller we say that, the difference between - and O decreases steadily.

1
Neither - coincides with zero nor it goes to the left side of 0. We say 1 — 0 (tends
n

2

to zero) as n — . But note that as n becomes arbitrarily large. n° increases more

rapidly & we say that #°> — co as 1 —» oo In case of {(—l)n} , it is either +1 or —1.

n

Limit of a sequence in R : A sequence {Ctn}n is said to converge to a limit

I(e R) if for arbitrary g > 0, there exists natural number 2 (e N) such that |an -1 | <g

forall n=2m .

lim a, = if for all G> 0 there exists me N such that a,>G Vn>m. We
n—>0

say that {Ctn}n diverges to oo.
o .. 1 . .
To explain this definition, we take @, =— as mentioned earlier. We have seen
n

that leo as 1 —> .
n
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7
let €=——_ Then
1000

0l< ! ,ifn>@ :1429
1000 7 7

so m = 143 & for this <

1
—-0
n

7
, =143
00

n

3439

8 8 3439 7
Let us change € =—— Then 0]< if n> =429—
3439 8 8

1
—-0
n

So m =430 & then <

8 if n=430
9

These two simple examples exhibit the dependence of m on the arbitrary positive
value of ¢ .

We state the following results without proof at this stage :

(a) A Convergent sequence in R is necessarily bounded but a bounded sequence
may not be convergent (EX. {(—1)n} ) .

(b) Limit of a sequence, if exists, is unique.
(c) Cauchy's general principle of convergence : A necessary & sufficient condition

for the convergence of {Ctn}n is that given €>0, there exists natural number

m (e N) such that <e Vn=m, peN.

an+p —d,

(d) Sandwich rule : Let a, <5, <c, for all #>m (or for all n) and {a, }n, {c, }n

both converge to same limit /(¢ R). Then lim b, exists & =/.
H—>0

(ii1) Monotonic sequences in [R

A sequence {a,} in IR is said to be monotonic increasing if a,,, 2 a, for all n,
n

+1

butif a,,, <a, foralln, {Ctn }n is said to be monotonic decreasing sequence in R .
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We state the following results without proof :

(a) A monotonic increasing sequence {Ctn}n in R is convergent if and only if

{Ctn}n is bounded above and a, —>supa,. If {Ctn}n be unbounded above, then

Iim a, =< ({j oo
Lm d, (diverges to o)

(b) A monotonic decreasing sequence in R is convergent if and only if {an }n is

bounded below and and a, > infa,. If {Ctn}n be unbounded below, then

lim a, = —o (diverges to —°)
n—>00

(iv) The following results are easily deducible following definition and basic

results :

If lim a, =/(€R), lim b, =m(cR), then

n—>0 n—>®

lim (a,+b,),=1<m, lim (a,b,)=Im,

n—>0 n—>0

n—>w0 m

lim [a—”j _ ! provided b, #0 Vn and m#=0.

(¢) Accumulation point (or limit point) of a set
Let S(cR) beasetand EcR. & is said to be an accumulation point (or limit

point) of § if there exists a sequence of distinct elements {xn }n of § such that x, > &

as n—>oo. ‘0’ 1s limit point of S:{—:neN}. 1 is limit point of T{l+l:neN}
n n
etc. Note that 0¢ S, 1¢ 7.

Note that a finite set has no accumulation point. The set [/ = {nz; ne N} has no

accumulation point in [R .
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(D) Neighbourhood of a point & Interior point of a set :

(i) Let xe R. By a & -neighbourhood of x, we mean the interval (x—3§, x+38)

where 8> 0. This is denoted by N (x,8) or Nj(x).

The set N(x,8)—{x}is called the deleted §-neighbourhood (or & —nbd) of x,

denoted by N’(x,8) or Nj(x). U(cR) isnbd of x€ R if 3 an open interval I such

that xe/ c U for example, (l—l, l+l) is a neighbourhood of 1. The set R (of
n n

all real numbers) is a neighbourhood of each of its points. The situation is different in

case of O, the set of rational numbers for if £ € O, then every (i -0, §+6) contains

rational as well as irrational points also. So ( is not a neighbourhood of its points.

(ii) Let D cR . We say that xe D is interior point of D if there exists a

neighbourhood of x, say (x—8, x+8), which is contained in D.
For example consider [a,b]={x:a<x<b}

Let a<c<b. wetake 0<d<min{c—a,b—c} &so (¢-8,c+8)c(a,b),s0c
is interior point of the set but a, b are not interior points of it.

Accumulation point can also be defined as follows :

Let SCc Rand&eR. If every deleted neighbourhood of &, N’(£,8)NS =0,

then & is accumulation point of S.

This can be shown that N’(£,8)S is an infinite set. On the basis of this

approach, it obviously follows that a finite set (C R) has no accumulation point.

On the basis of these pre-requisites, we are now in a position to introduce the
concept of limit of a function.
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15.5 Limit of function

Let f:D(cR)— R and p be an accumulation point of D.

(A) Sequential approach : lim f(x):l(e R) if for every sequence {xn}

b
X—>p #

x,eD foralln, x;#x, if i# j, x, # p, converging to p, the sequences { f (x )}n

converge to same limit /(e R).

If on the otherhand, { Vi (xn)}n converge to different limits for different {x,, }n s

we say that the limit does not exist.
To explain the matter, let us consider the following examples :

Example :

" - .1 2 2
(i) lim sin— : Note that the sequences s — and {———— both converge
x>0 X 2nm) (2n+)m]

’ ; T :
to zero. But {smn Tt}n converges to zero whereas {sm (mt + 5)} 18 not convergent,

n

(n even and n odd give different limits). So by above definition, llr% sin— does not
Xx—> X

exist.

(2) lim 1 sinl
x—0 X X

.1
For x, :%n(ﬁo),—sm—ao but for y, -1

SO (2043 ]

1 1
li =lim| 2n+— in| 2n+— [T =00
,,flf(y") nl_rg( n 2)75 s1n( n 2)75


Mampi Howlader
Typewriter
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o1 1 )
So lim —sin— does not exist.
x—0 x X

(B) (e -8 approach) let £ >0 be any number. If corresponding to such ¢, there

exists 0 >0 such that ‘f(x) —l‘ <& whenever x € N'(p,8)ND. we say that lim £ (x)
xX—>p
exists and =/ (e R).

Here xeN'(p, 8)N\D can be written as 0<|x—p|<8 or p-8<x<p,
p<x<p+d,xeD.

(C) The two definitions stated in (A) and (B) are equivalent :

Proof : Let lim f(x)=/(eR) in the sense of ¢ —§ definition.

x>p
Then for arbitrary ¢ > 0, there exists § > (0 such that
‘f(x)—l‘ < & wherever 0<|x—p|<8 (i)
As p is accumulation point of D, so there exists a sequence

x4, (xn eD Vn, x;#x; if i# j, x,# p for all n) which converges to p.

Hence corresponding to above ¢ > 0, there exists natural number m such that

O<|xn—p|<6 forall n=>2m (2)

Combining (1) & (2),

f(xn)—l‘< e forall n>m
Note that m depends on ¢ (as m depends on § & § depends on ¢).

So lim f(x,)=1/(e k) and {f(xn)}n converges to /(€ R).

n—>c0

Next let lim f(x)=1/(e R) following sequential criterion.
x—=p
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If possible let lim f(x)=1/ does not hold in the sense of €-8 definition.

xX—p
Then for some number ¢ > 0, the corresponding & does not exist. That indicates,

however small 8>0 may be, there exists always at least x’(# p) for which
0<|x'— p| <5 nonetheless |f(x")—/|z¢.

Let us consider a decreasing positive termed sequence {Bn }n converging to zero
. . 1 ,
(in particular, 6, =— for all neN). Then for every 9,, x,, can be found such that
n

0<

X;, —p| <9, nonetheless |f(x;)—l‘ 2e. 8, — 0= x, — p by Sandwich rule. By

assumption, { f (x;)}n converges to /. But | f (x;)—l |>€.

Thus we arrive at a contradiction. So €—0 definition follows from that of
sequential approach. Thus the two definitions are equivalent.

(D) One sided limits
(1) Let p be an accumulation point of D from the left (i.e.

x, = p,x,<pVn,x,eD etc) or f has been defined in some left-deleted

neighbourhood of p. If for arbitrary €> 0, there exists §> (0 such that ‘ f (x)—l‘ <E

whenever p—8<x<p, we say that lim f(x) (or lim f(x)j exists and

x—p— x—=>p-0
=/ (€ R). This is commonly known as left hand limit of f(x)as x— p.
(i) Let p be an accumulation point of D from the right (i.e x, — p, x, > p Vn,

x, €D etc.) or f has been defined in some right deleted neighbourhood of p. If for

arbitrary €> 0, there exists 8>0 such that |f(x) —12| < ewhenever p<x< p+35,

we say that xl—i>r2+f(x) (or lim f(x)j exists and =/, (e R). This is commonly

x—>p+0

known as right hand limit of f(x)as x— p.
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(E) In this connection, the following result is useful in determining the existence
of limit. Let f: D — R where D cR and let p be (both sided) accumulation point
of D (or f has been defined in both sided deleted neighbourhood of p).

Then lim f(x)=/(cR) if and only if lim f(x)= lim f(x)=1/

xX—=>p x—p— x—p+0

Proof : let lim f(x)=/(eR)

X—>p

Following ¢ —§ definition, corresponding to arbitrary g > (, there exists §> 0

such that | f(x)—/|< & whenever 0 <|x—p|<8,xeD
= |f(x)-I| <& whenever p—8<x<p aswellas p<x<p+3.

= lim f(x)=l= lim f(x)

X—p— x—=p+

Converse let lim f(x)=/= lim f(x)
x—p+

X—=p—

Let €>0 be any number. Corresponding to ¢, there exists 0, >0,5, >0 such

that | f(x)—1/|< & whenever p—38, <x<p & |f(x)-I|<& whenever p<x< p+38,

Let =min{3,,8,}. Thenfor 0<|x—p|<3d, | f(x)-I|<e=>lim f(x)=/
x—=p

3x+7, x<1
2x+11 x>1

Examples (i) f (x) = {

Here lim f(x)=10, lim f(x)=13 & so lim f(x) does not exist.
x—1- x—l+ x—1

Tx+3, x<2

8x+1, x>2

@ f<x>={
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Here xlglzl_ F(x)=17, lim f(x)=17

x—2+

Let €>0 be any number. Corresponding to ¢, there exists 6, >0, 5, >0 such

. € . .
that [7x+3-17|<e ie. |x-2|< - whenever 2—-06;, <x<2 &s0 §, =% is admissible

€
& [Bx+1-17|<¢ ie. lx—2|< g Whenever 2<x< 2+8, &s0 8, =§ is admissible.
Taking &=min {5,,8,}, we get lim f(x)=17
x=2

(F) Cauchy Criterion for the existence of limit

Let f:D — R where D c R and p be an accumulation point of D.

A necessary and sufficient condition for the existence of lim f(x) is that given
xX—>p

€ > 0, there exists a deleted neighbourhood of p, N’ ( p,8) such that
|7 (x)- 7 (y)|< & whenever x,y e N’ (p,8)N D

Proof : Let lim f(x)=1/(eR)

x—=p
Let ¢ > 0 be any number. Corresponding to ¢, there exists a deleted neighbouhood

N’(p,8) such that |f(x)—l‘<% whenever xe N’ (p,8)ND

If moreover y e N’(p,8)N D,

f(y)-1< % As aresult,

17 (x)=f ()| <|f(x)=1|+|f (¥)-1| <& holds.

Converse : Let for given €> 0, there exists a deleted neighbourhood N’(p,8)

such that ‘f(x)—f(y)‘ <& whenever x,y e N’(p,8)ND
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Let p be accumulation point of ID. So there exists {xn }n (xn eDV,,x #x; if

i%j, x, # p) which converges to p. Hence corresponding to above 8(> 0), there

exists me N such that x, e N’(p,8)N\D forall n>m.

f(xn)—f(xk)‘<8 forall n, k>m.

Therefore,

So by Cauchy’s general principle of convergence of a sequence, { fx )} is

convergent and so lim f (x) exists.
x—p

1, if xis rational

Dlustration : Let f:(0,1) — R be defined by f(x)= {—l \f v is irrational

Let a<(0,1). Note that for any 8 >0, N’(a,8)((0,1) contains both rational as
well as irrational points. If such rational be x & such irrational be vy,

then ’f(x)—f(y)‘ = ‘1—(—1)’ =2 ¢ arbitrary £ >0.

So by Cauchy Criterion, )lcl_fgf (x) does not exist.

(G) Infinite limits and Limit at infinity

(i) Infinite limits :

Let /:D— R and p be an accumulation point of D(<R). Then f(x) is said to

be tend to oo as x — p, if given any (5 > 0 (as large as we please), there exists § >0
such that

f(x)>G whenever xe N’'(p,8)ND.
If we opt for sequential approach, if for {xn }n (xn eDVn,x;#x;ifi# j,x, # p)

converges to p, {f (Xn)}n diverges to oo, we say that liin f(x)=e0
x=p

|
IMustration ;: im —=c
x0T X
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i 1
For any G>071>G 1fx<5(%0asG%oo).
x

If for given (G > 0 (as large as we please), there exists § >0 such that f(x)< -G
whenever xe N’(p, 8)( D, we say that li_r)n S (x)=—
x—p
(i) Limit at infinity
Let f:D — R where D is unbounded above.

If for given ¢ >, there exists (G > 0 such that

‘f(x)—l‘<8 whenever x (G, )D,
We say that )lcflf(x) =I(eR) ex~gr°1°; =0.
Next let f: D — R where D is unbounded below.

If for given ¢ >, there exists (G > 0 such that

‘f(x) —l‘ < & whenever x e (-, G), we say that xli_}rif(x) =l(eR)

: 1Y
Hlustration (1) lgn (1+ ;j =e,xeR
X Lol

To solve this, we will assume the very standard limit of sequence

lim (1+ljn _e(cR).

H—oo n
We can take x >1. There exists natural number » such that

n<x<n+l

n+l x n
:>(l+lj >(l+l) >(l+—l j
n X n+l1
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lim l+l n+1—lim l+l n(l+l) =¢
n—>00 n n—>00 n n and

n+l
. LY (g
11m(1+—) = 1m%=
n—eo n+1 noe 14
lx
So, lim (l+—) =e
X—yoo X

. 1Y
(2) lim (l+;) =e

X—y—o0

We take x=—y and So y — o and x — —oo

x -y y y-1
1 1
(1+1) = l—l 2| =1 — Jl+——=|—¢€ as y—>eo.
X y y—1 y—1 y—1
In this connection, we state the following result :

Let f: (a, oo) — R, Then )lcfolof(x) exists if and only if for every g >0, there

exists X (>a) such that |f(x)—f(y)|< eVx,y>X.

(iii) Infinite limits at infinity
Let f/:D— R where D(cR) is unbounded above.
Let G > 0 be any number, as large as we please.

Corresponding to G, there exists K (e R) suchthat f(x)>G forall x> K , we say

that lim f(x)=co.

X—>00

Let D be unbounded below, if corresponding to G > 0 (as large as we please), there

exists K (e R) such that f(x)>G forall x <K, we say that lim Sf(x)=co.
X—>—o0

Butif f(x)<-G forall x< K, wesay lim f(x)=—co.

X——00
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Example : limlog, x=00, a>1
X—>o0

Let G > 0 be any arbitrary number. If we take a® =M , then

x>M =log, x> . Hence ii_r)rolologax =,
(H) Some standard limits :

b lim S0y
(l) x=0 X B

Gy tim 12821 ¥)

=log,e where a>0,a#1
x—0

X

. at-1
Gii) limZ—=Ina,a>0
x—0 X

n n
—d n—1

. . X
(iv) lim
x—=a X—d

(I) Algebra of limits :
Let g, f: D —> Rwhen D c R and p be an accumulation point of D.

Let lim f(x) =l(e ]R), lim g(x) =m(e ]R).
xX—p x—op

Then (i) lim{f(x)tg(x)}=/tm
x=>p
(i lim {7 (x)g (x)} = m
. I
(iii) hmm=; where g(x)#0 and m#0.

Proof: (i) Let ¢ > 0 be any number. Corresponding to €, there exists 8, >0, 6, >0

such that |/ (x)—/] <§ whenever 0<|x— p|<8&;, xe D and g (x)-m| <§ whenever
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0<|x-p|<d,,xeD.
Let & =min {8, 8,}. So for 0<|x— p|<8, xe D both hold.
Hence [ (x)% ()} ~{1 £ | ()~ || (s)-m| <
whenever 0<|x— p|<8, xe D

= lim {f(x)ig(x)} =/tm=lim f(x)i lim g(x)
x—op x—op xX—p

Note : (1) This result can be generalised for finite number of functions.

(2) The converse of the result is not true, in general

1,if x is rational 0, if xis rational
g(x)=

Let /(9=

ch e an ch e e
0, if x is irrational 1,1f x is irrational

Let pe R . Every deleted nbd of p contains both rational (say a) and irrational b

(say) points. Then in case of both fand g, | f (a) —f(b)| or |g(a) —g(b)‘ =1¢ arb e.

So neither lim f(x)nor lim g(x) exists. But f(x)+g(x)=1 and

x—=p x—=p

1im{f(x)+g(x)} =1

x=p

(ii) To establish it we will first show that as )lcg)n g(x) exists, so there exists a
deleted neighbourhood of p, in which g is bounded. ’

There exists 8 >0 such that |g(x)—m|<1 where O<|x—p|<&, xeD
(or xe N’(p,8)ND)

= |g(x)| <l+|m| in N’(p,8)ND

= g is bounded in N’(p,8,)ND
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| (x) g (x) = tm] =g (x){ £ (x) =1} + (g (x) = m)| < |g (x)|L £ (x) =]+ il g () = m

As lim g(x) exists, so there exists 8, >0 such that |g (x)| < A for some L € R" in
x—p

N'(p,8)ND .. (1)

Let € >0 be any number, corresponding to ¢, there exists 8, >0, 83 > 0 such that

|f(x)—l|<% whenever xe N'(p,8,)ND...(2)

and ’g(x)—m’< whenever xe N’(p,8;)ND...(3)

2(71+1)

Let =min{3,8,,8;}. Thenin N’(p,8)ND, by (1), (2), (3)

€ €
‘f(x)g(x)—lm‘<kﬁ+|l|m

:>|f(x)g(x)—lm|<8 in N’(p,8)ND

X—p X—p X—p

= lim £(x)g(x) = Im = (lim f(x)) (lim f (g))

Note : (1) This result can be generalised for finite number of functions.

| . 1
(2) limsin— does not exist but lim xsin—=20
x—0 X x—0 X

Let e> O be any number S | X | < € Whenever X e N,(O, 6) ﬂDf Where

xsinl—O
X
5=5(¢).

(3) If g(x) be bounded on D and lim f(x) =0, then lim f(x)g(x)exists =0.

X—=p X—=p
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/
(ii1) ? -

mIf () =1+ 111]g (x) - m]
i [m||g (x)

()

As lim g(x)=m(#0), there exists &, >0 such that

X—>p

’g(x)—m‘<@ whenever xe N'(p, §,)ND ... (2)

D‘g(x)‘>@ whenever xe N'(p, §,)ND

Let € >0 be any number.

As lim f(x)=1, corresponding to &, there exits 8, >0 such that

X—>p

|f(x)—l’<# whenever xe N'(p, 8,)ND ... (3)

As lim g(x)=m, corresponding to &, there exists 55 >0 such that
X—>p

2
‘g(x)—m‘<% whenever xe N'(p, 8;)ND ... (4)

Let 5=min{5,, §,, 83}. So whenever xe N'(p, 8)ND, (2), (3) (4) hold.

8.|m|2 .\ |l|.8|m|2
4 4(|l|+ 1)

2

prf

1.

g(x) m

Recalling 1.
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= ) <& whenever xe N'(p, §)ND
glx) m

B
m L) L AN
x—>p g(x) m lim g(x)

X—>p

) .1 N ) ) )
Note : Neither lim — nor lim sin— exists, but hmxsml exists & = 0.
x=0Xx x—0 X x—0 X

So the Converse of (iii) is not, in general, true.

- (ex—l)tanzx . tanx—sinx
Ilustration : Evaluate (1) lim ) hm——

x—0 x3 x—0 X
. (s
Simnf x—-—
6

®) il_i% (\/5 —2cos x)
6

lim e’ -1 (sinsz( 1 )2
M 750 x U x ) \cosx

C e =1 .. (sinx) .. 1 As all exi
=1lim lim lim — |=1 (As all exist)
=0 X x—0 X x>0\ cos” x

So limit is 1.

2sin? X
__sinx(I-cosx) . |sinx 1 5,
(2) lim 3 =lim : :

x—0 X" Ccosx x>0 X COsx X

2
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X
- sin —
TS LG RN g
x>0 x cosx | X 2 2 2
2

T T
(3) (Method of substitution) Put ¥ — e ! and so X — 5 =t—0,

Given limit = lim sin’ = lim sin
0 T 0 1
= \/§—ZCOS(Z+6J - 3+\/§cosl+s1nl

1 1 1
281N — COS — COS—
= lim 12 21 -=lim Z2 =1
t—>0\/— .2 . =0 .
3| 2sin“ — |+ 2sin —CcoS — 381N —+ COS —
[ 2} 2 2 2 2

(J) Neighbourhood properties :
(a) Let f:D—R,DcR and p be an accumulation point of D. Let
lim f(x) =/(€R). Then

(1) fis bounded in some deleted nbd of p

(i) If / be greater than some real number K, then there exists a deleted nbd of p
in which f(x)> K .

(1i1) If / be less than some real number LI, then there exists a deleted nbd of pin
which f(x)<u.

Proof : (i) Proved earlier in I(ii)

(i) Let 0 <e</—- K . Corresponding to this €, then exists § > 0 such that

|f(x)-I|<e forall xe N'(p,8)ND
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=l-e< f(x)<l+eVxe N'(p,5ND

Considering the above choice of €, f(x)> K in N'(p,d)(1 D

(iii) As in (ii), taking O<e<u—/.

(b) Let f,g:D — R where D(c R)& p be an accumulation point of D.

Let lim /()= (€ R), limg() = BEe R).

If A < B, then there exists a deleted neighbourhood of p in which f(x) < g(x).

Proof : Let A<C < B.

As }Ci_fgf(x) =4, there exists § >0 such that |f(x)—4|<C—-4 for all
xeN'(p,3)ND.

As }Ci_rgg(x) =B, there exists 3,>0 such that |g(x)-B|<B-C for all
xeN'(p,d3,)ND.

Let 3=min{3,8,}. Soin N'(p,8)N D, both hold.

In N'(p,3)ND, f(x)<C-A+A=C=B-(B-C)<g(x) holds.
(c) Sandwich property :
Let f,g,h: D — R where D(CR). Let f(x)<g(x)<h(x) forall xe D &letp

be an accumulation point of D. Given that }Cl_ff;f (x)=1, £i_r>r;h(x) =l(leR).
Then limg(x)=1.
x>p

Proof : Let ¢>(0 be any number. Corresponding to this g, there exists

3,>0,8,>0 suchthat | f(x)-/|<e in N(p,3)ND &|h(x)—I|<einN'(p.8,)ND .
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Let 8=min{3,8,}. Soin N'(p,8)ND,

I-e< f(x)< g(x)<h(x)<l+e=|g(x)—I|<e in N'(p,8)ND

So limg(x) =/,

(d) f,g:D— R where D(C R), p be accumulation point of D and

let lim f()=/(€ ), limg(x) =m(ER) It f(x)<g(x) in D, then /< m.

m
10 ~

Proof : If possible let />m& let o<e< corresponding to such g, there

exists 3,8, > such that | f(x)-1|< e in N'(p,8)ND &|g(x)—m|<einN'(p,8,)ND.

If § =min{3,,8,}, thenin N'(p,8)N D, both hold.

In N'(p,8)N\D, I-e< f(x)<g(x)<m+e=1-m<2e=>10e <2 — absurd

as ¢>0.

Sol<m.

[You can take f(x)=1-x, g(x)=1+x where x>0. f(x)<g(x) forallx and

lim f(x)zlz lim g(x),]

x—0+ x—0+

K. Infinitesimal :

(a) f:D—>R(DcR) is said to be infinitesimal as x > a if lim f(x)=0.

Xx—>a
(b)If f,g:D — R are infinitesimals, then f + g, fg are also so.
() If f:D—R be infinitesimal as x —a and g:D — R be bounded, then fg

is infinitesimal.

(d) Wesay f = 0( g) (or fis of little —oh of g over D) if
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F(x)=a(x)g(x) where a(x) is infinitesimal.
(e) Wesay f = O(g) (or fis of big —oh of g over D) if f(x) = B(x)g(x)
where B(x) is bounded on D.

(f) The functions f and g are of same order over D(c R), if f :O(g) and

g=0(f) simultaneously.

15.6 Summary

In this unit, we have defined the term functions and classified various type of
functions. We have defined real valued sequences and study limit of a real sequence.
We have explaind the concept of limit of functions and study some criterian for the
existence of limit. We also introduced the concept of infinite limits, limit at infinity,
neighbourhood properties. We have explained the Sandwich property and the concepts

of infinitesimal.

15.7 Exercise

1. Find the limits (if exist)

x3 x2
lim -
@ 52324 3x+2

2x% +|x
(b) limﬂ
x—0 X
) 1 ) 1 ) 1 1
© li“(— *3} li“[—lj and li“{[—ﬂ—l}
V(3x)-3

RN i

. : .. !
(e) Apply Cauchy’s principle for the existence of limit to evaluate llr% 1+_x .
~0]l—x
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2. Choose the correct one : lim m
x—0 [x]

(a) the limit exists and is 1

(b) the limit does not exist.

(c)ifat x=0, f (O) =0, the limit will exist

(d)ifat x=0, f(O) =1, the limit will exist.

NSOU e CC-MT- 08



Unit- 16 [ Continuity of Functions

Structure

16.1 Objectives

16.2 Introduction

16.3 Definition

16.4 Neighbourhood properties

16.5 Properties of functions continuous in a closed and bounded
interval [a, b]

16.6 Uniform continuity

16.7 Summary

16.8 Excercise

16,1 Objectives

This unit gives
e The concept of continuity of a real fuction
e Classification of discontinuity
e Neighbourhood properties of a continous function

o The behaviour of continuous function in a closed and bounded interval

e The concept of uniform continuity

16.2 Introduction

A general function from R to R can be very convoluted indeed, which means
that we will not be able to make many meaningful statements about general functions.
To develop a useful theory, we must instead restrict the class of functions we consider.
Intuitively we require that the functions be sufficiently ‘nice’, and see what properties
we can deduce from such restrictions. The study of continuous functions is a case in
point by requiring a function to be continuous, we obtain enough information to deduce

35
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powerful theorems, such as the Intermediate value theorem. However, the definition
of continuity is flexible enough that there are a wide, and interesting, variety of
continuous functions. Indeed, many functions that come up in real-world problems
are continuous, which makes the definition pleasing from both an aesthetic and practical
point of view.

16.3 Definition

I. (a) A function f:D—)R(DCR) is said to be continuous at pe D if
given any ¢ >(, there exists §>( such that

|f(x)—f(p)|<e or f(x)eN(f(p), 8) whenever xe N(p,8)ND.

If £ is not continuous at p, then f is discontinuous at p.

(b) Let f/:D—>R(DcR) and peD.

(1) If p is an isolated point of D (i.e. not a limit point of D), then f is
continuous at p (ii) if p be limit point of D i.e. pe D(\D" (' is the collection of

limit points of D) and if lim f(x)=f(p), then fis continuous at p.
x—>p
(c) Continuity in an interval [a, 5] or in {x:a<x<b}.
£ is continuous in [a, b] if (i) xl_i)zr}rof(x):f(a) (ii) xgrbllof(x) = f(b) and

(it}) if a<c<p, then lim f(x)= lim f(x)=7(c)

x—c+0

x, for xe{l—l:neN}

Examples. 1. Let f(x)= n

I, forx=1

be defined on S:{l—l| neN}U{l},
n
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The only accumulation point of S is 1 and all other points of § are its isolated

points. Here lin} f(x)=f(1)=1= f is continuous at 1, f is also continuous at the
x—>

: : 1 : :
isolated points 1-—:n e N. Hence f is continuous on S.
n

2. Let f(x)=

(1 ) , x#1. Find the points of discontinuity of
-Xx

y=f[f(7(x)].

x=1 is a point of discontinuity of f (x)

If x=1, f[f(x)]= = _l,x¢0:>x:0 is a point of

discontinuity of f [ f (x)}

If x20, x#1, y= =Xx 1s continuous everywhere.

X1
x

So points of discontinuity of the given composite function are x=0, x=1.

(3) Let E:{l—l‘neN]}U[l, 2] and f:E —>R be defined by f(x)=x".
n

Each l—l is isolated point of £ and so by definition, f is continuous at all such
n

points.

Let pell, 2]. Then pe ENE' (' derived set of E) and then x? — p? or

F(x)= f(p). So fis continuous at p.
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Thus f is continuous on F.
(Continuation of definiton (d)) f:D — R where D(c R) and pe DND".

f1s continuous at p if for every sequence

{xn}n(anD Vn, x; #x; 1f i# ], xn:tp) converging to p, {f(xn)}

n

converges to f ( p) .

Examples (1) Let A={xeR|x>0} and let f:4—R be defined by

0, if x 1s irrational

2

/(%)= l, it x=" where mneN and (m,n)=1
n n

To examine the continuity of £ in A.

We require the following lemma :

Let 7 be any irrational number between 0 and 1.

Let p, g, n be any positive integers such that p <g<m and » is fixed. Then
there exists a neighbourhood of 7 which has the property that no rational number of

P
the form g belongs to it.

. P
Proof of lemma : Let d be the least of the differences ' — | for all p, ¢ such

that p<g<mn.Let § be chosen so that 0 <§ <4 . Then (i—6, i+6), a nbd of i,
which has the property stated above.

Let us now examine the continuity of f.

Let b be any irrational number and let ¢ >0.

Now there exists 71, € N such that n,e >1 (known as Archimedean property of

real numbers). By above lemma, §>(Q can be chosen so small that the nbd

(b—38, b+38) contains no rational number with denominator <.
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If then follows that for |x—b| <&, xe A, we have

|f(x)—f(b)| = |f(x)| <Les fis continuous at irrational point .
Ty

Let ae€ A be any rational point. Let {xn}n be any sequence of irrational

numbers in A that converges to a. Then ylll_?gof (xn) =0 where as f (a) >0. Hence

f is discontinuous at all rational points.

(2) (Dirichlet’s function) f:R — R be defined by

1, if x be rational

0, if x be irrational

f(x)={

Applying sequential approach, it can be shown that f is discontinuous
everywhere.

(3) Let f (x)={X7 if x is rational

1—x, if x is irrational

To investigate the continuity of f on R .

Let ¢ >0 be any number.

. x—%, if x is rational
o)
2 1 . ..
l-x——|=|x——|, if x is irrational
2 2
1 1 1
So f(x)—f E = x‘z <€ whenever x‘a <5(:8).

. . 1
f is continuous at x = 5



40 NSOU e CC-MT- 08

1 . . —
Next let x;ﬁz and x is rational. Let {xn}n be a sequence of irrationals such

that limx,=x.So f(x,)=1-x,>1-x as n—>w.

H—>0

1 C .
As x:tz, so x#1—x and f is discontinuous on Q—{%}.

Next let x be irrational number and let {y,,}n be a sequence of rational

numbers such that lgnyn:x. Here f(y,)=»y,—>x as n—>w. But f(x)=1-x.

So lim f(y,)# f (lim yn) = f is discontinuous at all irrational points.
n—>w n—>w

. . 1
Consequently f is continuous only at x = 5

Classification of discontinuities :

Let f be not continuous at p(e Df). This discontinuity of f at p may be due to
different reasons which may be classified into two types / kinds.

Definition : (a) Let f be defined in both-sided neighbourhood of point
pleDy).

Let xl—i>r2+ f (x) and xl_i)r;}_ f (x) both exist finitely but are unequal, then x = p
is known as jump discontinuity of f.

f(p+o)-f(p-o) is known as height of the jump. If f has jump discontiuity
on the right at a, the height of jump is f(a+o)—f(a) and similarly at b, it is

F(b)-f(b-o0), if it is left discontinuous at b.
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Example : let:[0,1] >R be defined by

0, if x=0
1
——x, if O<x<l
2 2
) 1
j(x%: }/: if xZE
3
——x, if —<x<l1
2
1, if x=1

1 1 1 1 1
O+)===f(0), f| =—0|=0, f|=+0|=1s0 f|=—0|=f|=+0
/( )2f()f[2 j f[z j f[z jf[z j

f (1—0):%7&1 so, O, %, 1 are points of jump discontinuity of f.

If f(p-0), f(p+0) both exist and are equal but = 1 (p),

then p is removable discontinuity of f (i.e lim f(x)= f( p)]
xX—>p
S5x+7, x<2
Example : f(x)=4 13, x=2
4x+9, x>2
f(2-0) =17 = f(2+0) but f(2)=13

x=2 is removable discontinuity. These two types of discontinuity are known
as discontinuity of first kind or ordinary discontinuity.
(b) (1) If f 1s defined in both sided nbd of p including p and at least one of

f(p-0) & f(p+0) fails to exist finitely though f is bounded in some deleted
neighbourhood of p, then p is discontinutiy of second kind with finite oscillation.
sin l, x#0

Example : f(x)=9 «x
0 x=0

2
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Neither lirg f(x) nor lim £(x) exists & but f is bounded in nbd of 0.
x>0+ Xl
(ii) f is unbounded in every nbd p and lim f(x) or lim f(x) is
x—>P+0 x—>p-0

+00 or —oo. Such a discontinuity is known as infinte discontinuity.

1
Example : f(x) =1 x’
2

16.4 Neighbourhood properties

Let f:D—R where D(C R) and p be an accumulation point of D as well

as an element of . Let f be continuous at p.
Then the following results hold :
(1) There exists a neighbourhood of p in which f is bounded.

(i) If f(p)=0, there exists a neighbourhood of p in which F(x)& f(p)

have the same sign.
(iii) If in every neighbourhood of p, f (x) assumes both positive & negative

values, then f(p)=0

The first two properties follow from the neighbourhood properties for the
existence of limit.

For (i) if f(p)>0, by (ii) there exists nbd of p in which f(x)>0 for all
xe N(p,é) ND. But f(x) have both signs in every nbd of p & so f(p)}O.

By similar logic, f(p) 0. Hence f(p)=0.

|x
The converse of (iii) is not true. For example, f(x) L B2

O =

x=0

b
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Continuity of some special types of functions
(1) Let f:D —R be monotone function (increasing or decreasing). Then at

every point ¢ of D, both f(c+0) & f(c—O) exist. So if ¢ be any point of

discontinuity, then that discontinuity is of first kind. In other words a monotone
function can not have any discontinuity of second kind (for proof, see Apendix).

(i) Polynomial function ayx”+ax""+ +a, x+a, (@, eR Vi ay#0) is

. . . X . .
continuous on R . Rational functions M are continuous for all xe R for which

q(x)

sinx and cosx are continuous an R . tanx & secx are continuous for all

the functions can be defined.

T
X # (2n+1)5 and cotx, cosec x are continuous for all x #nmn (n is integer in both

cases)

(i) a*,a >0, is continuous for all xeR. logx, x>0 is continuous for all

x>0,
(iv) For even positive integer n, the function g:x — 1y is continuous for all
X€E [O,oo) and for an odd positive integer n, g is continuous for all x e (—00, 00).
(v) Limit of composite function :
Let f:(a,b) >R be continuous at c¢e(a,b). Suppose that g:I—>(a,b)

where / is an open interval and x, /. If lim g(x) exists and is equal to c. then
X=X,

lim f(g(x))=/(c).

XX,

Proof : Continuity of f at ¢ implies that for each pre-assigned € >0, there

exists & >0 such that ‘f(y)—f(C)‘<8 whenever |y—c|<8, (ye(a, b)) ...... (1)

As lim g(x) =c, so corresponding to above &, we can find n>0 such that
X=X,

|g(x)—c|<6 for O<|x—x|<n ... )
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By (1) and (2) for O<|x—xo|<n, we have |f(g(x))—f(c)‘<8, O<|x—xo|<n

Hence lim f(g(x)) = f(c) follows.

XX,

Corollary : Let /, J be open intervals, g:/ —.J be continuous at x, /. If

f:J—>R is continuous at g(xo)eJ then fog:/ — R is continuous at x,. In
other words, the composition of two continuous functions is continuous.
Note : Continuity of f at ¢ in (v) is needed.

Let f,g:R—>R be defined by
3,y=1
=7 =1 for all x.
/() {4jy¢1g(x)

Note that as y%l,f(y)%4 & g(x)%lasxeo

For all x, f(g(x)):f(l):3 & so it is not true that f(g(x))—>4 asx—0

Ilustration :
(1)

To evaluate lim [ I+x j (1=x)

x=I\ 2+ x

1+x 1- \/;
Let X)= , X)=

f( ) 2+x g( ) 1—-x

lim f(x) 22 (f is continuous at x =1) & lim g(x)=Iim L
x—l1 3 ¥l 11 l+\/; 2

I g(x) (2 %
Hence lim [/ (x)] _[Ej

¥ lim g(x) In f(x)
(Note that 111’1} |:f(X):|g( ) = ex_>1 = eBlnA = AB if
X—>

lim f(x)=A>0 and Lig}g(x):B)

x—l1
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(vi) Piecewise Continuous function :
Let f:[a,b] >R be such that it is continuous in [a, b] except for a finite
number of points, at each of which f has jump discontinuity. Then f is said to be

piecewise continuous function in [a, b]

Mlustration : Let f:[0,3]—> R be defined by f(x)=[x]

0, 0<x<l
L, 1<x<2

2, 2<x<3
3, x=3

Then f(x) =

Note that f has jump discontinuity at 1, 2, 3 only & is continuous in (0, 1),
(1, 2) and (2, 3)

Example : Let f(x) =[x], xeR"
Then f is not continuous at any point of 7 but is continuous on R*\7.

() Let CeZ.

Note that C—l—>C as n— . f{C—lj:C—l for all <7 . But
n n

f(C):C. So 7115130 f(C—%jif[}li_fi}o (C—%ﬂﬁf is not continuous at any
point of 7, .

(i) Let CeR"\Z

We take O<e<min{C—[C],[C]+l—C}

Let lim x, =C. So corresponding to above €, In, €7 such that
H—>0

|xn —c| <& whenever n>n,



46 NSOU e« CC-MT- 08

Above choice of & implies [C]<x, <[C]+1 for all n2n,
Then f(x):[xn]:[C] for all n>n,

Therefore f (xn)% f (C ) as n — oo. Hence the result follows.

Examples of piecewise continuous functions
(1) f(x) =x- [x], xXe [0,4]

2n
. 5
(i) f(x):ig}o );2”:17 xe[-2,2]

2x+1 05 x<1

i £ 5, x=1
x)=
(iit) 3x+2,1<x<2
7 x=2

2

16.5 Properties of functions continuous in a closed and
bounded interval |a, b]

Theorem (1) : Let f:[a,b] >R be continuous in the closed and bounded
interval [a, b] & f(a)f(b)<0. Then there exists at least one point ¢ < (a,b)

such that f(c)=0.

[To prove this, we require the following result, known as Nested interval
property

If{[an, b”]}n be a sequence of closed and bounded intervals such that each is

contained in the preceeding. Then [ [an, bn]¢¢

If more over lim (b,—a,)=0 then if pe[a,,b,], p is unique.]

n—>0
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Also lim a,=p=1m b,
H—>w n—>w

Proof : We assume that f(a)<0, f(5)>0
For the sake of convenience, let [a,b]=[a, ] =1,

a +b

Let us bisect /, at ¢, = , A f (cl): 0 the result is proved

If f(¢)#0, either f(c;)>0 or f(¢)<0
If f(cl)>0 we take [a, ¢ ]as/, so that f(al)f(cl)<0
& if f(c)<0, we take [¢;, b ]asI,. I, =[a,,b,]

a, +b,

Let us bisect [ay,b,] at ¢, = If f(c,)=0 the result is proved.

Otherwise, we assume that sub-interval as [as, by] =15 for which f(a3)f(b;)<0
This process is continued indefinitely & we get a sequence {]n}n of closed &
bounded intervals [a,, b,] for which

@) 1,,c!, forall neN

=0

(i) tim |1,|= lim (b, -a,)= lim b-a

n—ow n—>0 n—ow 2n—1

Also f(a,) f(b,)<Ofor all neN

By Nested interval property, D]n ={c} Also lim a, =c = lim,

H—>co n—yco

By construction, f (an) <Oand f (bn) >0 forall n

By continuity of f, lim f(a,)<0 & lim f(b,)=0
n—><0 n—>0
:>f(1iman)so &f(limbn)zo

n—>co n—yeo

:>f(c)£0 & f(c)ZO :>f(c):O
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Note : This theorem is due to B. P. J. N Bolzano (1781-1848)

Theorem (2) : Let f:[a,b] >R be continuous in [a,b] and f(a)= f(b).
If k be any real number such that f(a)<k < f(b)then there exists ¢ < (a,b) such
that f(c)=k.

Proof : Let ¢:[a,b] >R be defined by ¢ (x)=/(x)—k

Continuity of fin [a, b]= continuity of ¢ in[a, b]

0(a) 6 (b)={/(a)-k}{/(5) -k} <0

Then by Bolzano’s theorem, there exists ce(a,b) such that
d(c)=0ief(c)=k

Note : (i) This property is known as Intermediate value (1.V.) property of f in
[a, b]

(i) I. V. property does not hold in case of functions defined on a set.
Let S=[0,1]U[2,3] & f:S >R be defined by f(x)=x

3
f is continuous on § but f does not attain the value 5 on S.

(i) Continunity of f in[a, b]= validity of I V property by f on [a, b]

but the converse is not true

Example : f:[0,1] >R be defined by f(x)= %, xZ%
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f assumes every value between f (O) &f (l), f 1s not continuous in [O,l] & so

the validity of 1. V property by a function in a closed & bounded interval does not
characterise the continuity of the function. In this connection, we state the following
two important results :

(1) Let f: [a,b] >R obey the Intermediate value property in [a,b] & let f
be monotonic in [a, b]. Then f is continuous on [a, b].

(2) Let f be stictly monotonic function in the interval [a,5]. If f([a,b]), the
range set is an interval, then f is continous on [a, b].

Theorem (3) : Let f:[a,b] >R be continuous and assume each value

between f(a)and f(b) just once. Then £ is strictly monotonic in [a, b].

Proof : Let f(a)<f(b). We propose to show that f is strictly increasing
function.

Let a<x; <b. As f(x) assumes each value between f(a) and f(b) just
once, so f(x)=f(a) or, f(x)=£(b) is not possible. ............ (1)

If f(x)<f(a) (<f (b)), then by 1. V. property f(x) must assume the value
f(a) for some xe(x,b). As a result f(x)=f(a), once at x=a & for some
xe(x;,b). This contradicts the hypothesis that f(x) assumes each value between
f(a) & f(b) just once. So f(x)<f(a) is not possible. ............ )

By similar logic, f(x,)> f(b) is not possible. .............. 3)

In that case, f(x) assumes the value f(b)at least twice — once at b &
another in (a, x;) by 1. V. property.

By (1), 2) & 3), f(a) <f(x) <f(b)

This leads to the conclusion that if a<x <x, <b then

fla)<f(x)</(x)<f(b)
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= f is strictly monotonic increasing in [a, b]
If at the outset, we assume that f (a) > f (b), then arguing in a similar way f
is strictly monotonic decreasing in [a, b].

X2 _cosx

Examples : f:[0,2] >R be defined by f(x)= lim -

noe I+ x
Show that f(0) f(2) <Obut f(x) is never zero in (0,2). Explain why.
When 0 <x <1, in -0 & when l<x<?2, xzn NS

Here f(0)=-1. When O<x<1, f(x)=-cosx

2 C0sx

1 . 2n
f(l):_[l_COSI]. When 1< xSZJ f(x): Iim —x:x2
2 n—>o0 1
1+ P
X
_17 x:O
—COoS X, O<x<«l

So f(x)= %(l—cosl), x=1

xz, l<x<2

So f(0) f(2)=-4<0, but f(x) is never zero in (0,2). The reason is that f

is not continuous in [0, 2] & I V. Property is not applicable.
(2) Let f: [o, ﬂ >R be defined by

10g(2+x), 0<x<l

f(x): %(log3—sinl), x=1

—sin x, l<x£%
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Here f(0) f[gj =(log2)(~1)<0 but f(x) is never zero in (O, %) The

reason is f (x) is not continuous in [O, gj & so 1. V. property is not applicable

here.

(3) Let f: [O, 1] — R be continuous function and assume only rational values

in the entire interval. If f(x)=5atx= %, show that f(x)=5 everywhere.

If possible, let there exist ¢ €[0,1], ¢ ;t% and f(c) =KeR.

If K5, then by I. V. property of continuous function, f (x) must assume
every value between K & 5. Between K & 5, there are rational as well as irrational

points also. But f(x) assumes rational values only. So f(x) =5 throughout [0,1].

(4) Let f:[0,1]—>R be continuous function and f(0)= f(1). Show that

. 1
there exists y €[0,1], such that \x—y\=5 and f(x)=f(»).
. . . l
Let us consider the function & 075 —> R defined by

1
Continuity of fin [0,1]= continuity of g in {Oa 5}

«0e(3)=(1(3)-r0] [70-1(3)]<o

. . . 1
By Bolzano’s theorem on continuous function, there exists ¢ e (O, Ej such that
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g(c):0:>f£c+%j:f(c) we get x, y€[0,1], |x—y|:% for which

f(x)=1(»).

(5) (Fixed point property) Let f :[a, b] —[a, b] be continuous function. Show
that for some &¢e[a, ], f(£)=& holds.

If f(a)=aor f(b)=b, the result is established.

We take f(a)>a, f(b)<b. (as f:[a,b]—>[a,b])

Let g:[a,b]—> R be defined by g(x)=f(x)-x

Continuity of fin [a,5]= continuity of g in [a, 8].

g(a)g(b) ={f(a)-a}{f(b)-b}<0. So by Bolzano’s theorem, there exists

Ec (a, b) such that g(i) =0 or f(i) =£.
Notes : (i) The condition of continuity of f can not be dropped

f:[O, 1]—>R be defined by f(x): . .
Lx L
2 2 2
(i1) The result may fail if the interval be not closed and bounded :

1+x

(a) f:[0,1) >R be defined by f(x):T

(b) f:[l,)— R be defined by f(x):x+%

(ii1) f must be defined on some interval (C R)
f:S—R be defined by f(x)=-x where xeS(E [-2,-1] U4, 2])

Also f:R —R be defined by f(x):x2+l
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Exercise :

1. Show that x.2" =1 has a solution in [0,1].

2. Let f:[a,b] >R be continuous function & the equation f(x)=0 have
finite number of roots in [a, 5] & arranging them in the ascending order, these are

A<X <Xy <..<X,<X.<..X, <b
Prove that in each of (x,_;,x,) f(x) must have the same sign.

3. If f:[a, b]—)R be a continuous function &f(x) be always a rational

number, then f (x) is a constant function.

. x? —2x, when x is rational
4. Examine for the continuity of J/ ./ (x)=

3x—6, when x is irrational

5. Does the equation sin x—x+1=0 have a root ?

3
. I
6. Does the equation f(x)= 7 sin tx + 3 take on the value 2% within the

interval [-2,2]?
7. Show that there exists x e (O, gj such that x =cosx

Theroem (4) : Let f:[a,b] >R be continuous in [a,b]. Then fis bounded
in [a,b] & attains its bounds in [a, b].
Proof : If possible let f be not bounded in [a, b]. So corresponding to ne N,

there exists x, €[a,b] such that |/ (x,)|=7.

All such x,’s are in [a,b]. So we get a sequence {x,} in [a,b] Hence
{x,} is bounded in [a,b].

By Bolzano-Weierstrass theorem on subsequence, there exists a convergent sub
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n

sequence {x }n (say) of {xn}n, which converges to l(e R). This le[a, b] as
[a,b] is closed. Due to continuity of ./, {f(xrn)}n should converge to f(x).
Every convergent sequence is necessarily bounded. So {f (xrn )}n is bounded. But

by construction, 2rn, & as {Fn}n is strictly increasing sequence of natural

/(%)

>2n

numbers, so 7, >n. Conequenctly,

/()
This contradicts {f (xrn )}n is bounded.

This £ is bounded on [a, b]

Let M =sup f, m=inf f
[a. 5] [a. 2]

If possible, let there be no point x in [a,b] at which f(x)=M . So
f(x)<Min [a, b].

We construct ¢:[a,b] >R defined by ¢(x)= for all x€[a,b].

1
M =1 (x)
Continuity of f in [a,5]= Continuity of ¢in[a,b]. So ¢ is bounded in [a,b].
Let G >0 be any number, as large as we please.

As M =sup f, there exists at least one point &&[a, b] such that

[a. 5]
&)= -—
G
1
= ——>G = ¢(&)>G. This contradicts the fact that ¢is bounded in
[a. 2]

So there exists a point in [a, 5] at which f(x)=M .
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Similarly, it can be shown that there exists a point in [a, b]at which f(x)=m
holds.

Corollaries : (i) If f:[a,5] >R be a non-constant continuous function, then

f (x) assumes every value between its infimum & supremum.

By above theorem, there are points ¢, ne[a, b] such that f(i):M,
f(n) =m. By 1. V. property of continuous function, applied to f in [i, n] (or
[n, i]) the result follows.

(i1) Let ](C R) be a closed and bounded interval & let f:/ — R be non
constant continuous function in 1.

Then the set f(]): {f(x) X€ ]} is a closed & bounded interval.

If M =sup f, m:[ing]f, then me(x)SM forall xel
[a.5] a

= f(1) c[mM] .1

Let & be any element of [m, M]. Then by Corollany 1, there exists ¢ €/ such

that f(c)=ke f(I)

So [m,M]c f(I) ... (2)

By (1) and (2), f(I)=[m,M]

Note : The result fails if the condition of continuity be dropped.
|x 0
f:I=[-L1] >R be defined by f(x)=1 x’ X

X
0, x=0

2

7 (I) is not an interval.
2. The continuous image of an open interval may not be open.

1
x’+1

Let f:(-1,1)— R be defined by f(x)=
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Here f(I)=(%,1] which is not open interval
3. The continuous image of an unbounded closed interval may not be closed.

Let f:1=[0,00)— R be defined by f(x):x2+1

Here f (1)=(0,1] which is not closed.
Example (1) : Let f:[a,b] >R be continuous in [a, b]

Let x, x,,.....x, € [a, b]. Show that there exists a point & in [a, 5] such that

As fis continuous in [a, b], there are points o, B€[a,b] such that

f(oc)gf(x)gf(B) for all xe[a, b]

n

=nf(a)<D f(x;)<nf(B)

i=1

= 7)< /() </ 9)

I =

By LV. property of continuous functions, there exists & e [a, b] such that

&= ()

(2) Let f,g:R—>R are continuous on R . Show that
A={xeR|f(x)>g(x)}. B={xeR|f(<g®}, C={reR|f(x)#g(x)}
are open sets in R whereas D ={xeR|f(x)=g(x)} is a closed set in R.

Let ¢(x)=f(x)-g(x), xeR. As f, g are continuous, so ¢(x) is continuous
in R.

@) A:{xeR|(|)(x)>O}
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Casel: If (I)(x)SOinR. Then 4=¢ & So A4 is open set in R .

Case II : If (I)(x)>0 in R. So A=R & R being open set, 4 is open set
in R .

CaseIIl : Let ACR.

Let pe A4, So ¢ ( p) >0 & by neighbourhood property of continuous function,

there exists 8>0 such that xeN(p,8)= ¢(x)>0

Thus N(p, 6) c A & so p is interior point of 4. This is true for all pe 4.
Consequently A is open set in R.
Arguing in a similar way, B is open set in R .

Set C =AU B so C is union of two open sets in R & so C is open set in R .
D is the complement of open set C & hence D is closed.

(3) Let / (C R) be a given open interval. Let f:/ — R be continuous on /.

Let o be an arbitrary real constant.

Then ][f<oc]z{xe]:f(x)<oc} and J[f>oc]:{x e]:f(x)>oc} are
open sets.

If f (x) =afor all x, / and J are void sets & so are open sets in R .

Next let I[f(x)<oc}¢¢

1
So there exists pel ie. f(p)<o. Let 0<8<E[0ﬁ—f(17)} :

Continuity of f at p = corresponding to above chosen g, there exists & >0
such that |f(x)—f (p)|<e whenever xe N (p,8)N1..(1)

By hypothesis, 7 is open set & p is interior point of /. By definition of interior
point, there exists r,0<r <8, such that N(p,r)c1..(2)

1

By (1) & @), f(x)<f(p)+e<f(p)+5(a=F(p))
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:>f(x)<oc where xeN(p,r)ﬁN(P,V)Cl[f<0‘]

= [[f <a] is an open set in R .
Following similar argument, J[f > o] is also open set in R .

(iv) Let f, g:[0,1]—>[0,%0) be continuous functions satisfying

sup f(x) =sup g (x)
[0.1] [0.1]

Show that there exists ¢ €[0,1] such that f(c)=g(c)

Continuity of £, in [0, 1] = boundedness & their attainment of bounds in [0,1].

Let M =sup f(x)=sup g (x)
[0.1] [0.1]

If both f & g attain M at the same point, the result is established.
Otherwise : Let f(£)=M and g(n)=M for some & nel0,1],

So g(&)<M, f(n)<M

We construct h:[0,1] >R by h(x)=f(x)—g(x). Then 4 is continuous in
[0, 1] & by above A(E)= f(E)-g(£)=M —g(€)>0 and

h(n)=7(n)-g(n)=/(n)-M <0.So h(E)h(n) <0

— By Bolzano’s theorem, there exists ¢ (£, n)<(0,1) such that A(c)=

& (
(

or in other words, f(c)=g(c).
Continuity of Inverse function :

Theorem : Let f:[a,b] >R be strictly monotonic and continuous on the
closed and bounded interval [a, b]. Then there exists an inverse function
g:f[a, b]—)R such that (i) g is strictly monotonic in f[a, b] and (i1) g is

continuous in f [a, 5]
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Proof : Let f be strictly increasing in [a, b] ..... (D)
Continuity of f'in [a, 5]= boundedness of fin [a, b] & attainment of bounds

in [a, b]. So sup f =7 (b), inf f=7(a) .
[a.5] [a.2]

Therefore, here f([a,b])=] f (a), f (b)]... (1)

As f is strictly increasing, so for any distinct pair of points x, x, €[a, 5],
F(x)# f(x)<=x#x,. Sofis injective. ... (2)

Consequently by (1) & (2) f is bijective. So /7~ =g exists where
g: f([a.b]) >[a,b]. where f(x)=y=>x=g(y),xe[a,b],ye f[a,b]

Let y, , € f[(a,b)]. So there are x;, x, €[a, b] such that

n=rf(x).y=1(x)

f being strictly increasing in [a, b], V<V = X< X,
As a result, y, <y, = g(yl) < g(yz) — g is strictly increasing in f ([a, b])

Let y, be any point between f(a) and f(b) & x, be the corresponding
value of x.

Let £>0 be arbitrary number such that x,—¢, x,+€ are in [a,b]. Let
g(yo-m)=x—¢ and g(y,+m,)Ex,+€ such that m;,m, >0 exist by above.
Let n be such that 0<mn<min{n;, n,}. Then

|x—x0|<8 whenever |y—y0|<n,n depends on g.

So g(y) is continuous at y,. and this is true for all y, € [f (a), f(b)}
Hence the result follows :

Note (i) Continuity of Inverse function is preserved only when the domain is
closed and bounded.

Let 4 :[O, 1)U[2,3] and f:4—>R be defined by
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X, xe[O,l)
x—1,xe[2,3]

f(x){

f_l( ) x,x<[0,1)
x)= IR ] _
x+1, xe[l,2] = f 1 discontinuous at x = 1.

Theorem : If f:[a,b] >R be continuous, injective function, then f is strictly
monotone function.

If possible, let f be not strictly monotone function in [a, b] though f is
continuous & injective in [a, b]. So we say that there are three points

p.q.r €[a,b] where p<gq<r nonetheless f(q) does not lie between f(p) and
/(). Consequently, either f (r) lies between f(p) and f(q) or f(p) lies
between f(g) and f(r). For definiteness, let f(p) be between f(g) and
().

By hypothesis, f is continuous in [¢, 7] <[a, b]. By 1. V. property, there exists

se(q,r) such that f(s)=/f(p).

So p<s but f ( p) =f (s) This contradicts the injectivity of f.

Similarly if we assume that f (r) lies between f ( p) and f (q), we would
arrive at same type of contradiction. So f is strictly monotone.

Corollary : A continuous function f :[a, 5] —R is injective if and only if f is
strictly monotone in [a, b].

Example : Assume that 7:R — R satisfies f(f(x)) = f? (x)=-x for all

xeR.
Then f can not be continuous.
First we propose to show that f is injective.

f(xl):f(xz)ﬁfz(xl):fz(xz)ﬁ—xl =X ==X
If f be continuous then it would be either strictly increasing or strictly

decreasing. In both cases, fZwould be increasing.
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For if p<q, then f(p )</ (¢) (in case fis increasing) & f(p)>f(g) (in
case f is decreasing). In the first case, f ( f ( p)) <f ( f (q)) & in the second case
f(f(p))<f(f(q)). So in any case, f2(p)<f(q)

—>—p<-—q absurd as p<gq

So f can not be continuous.
Exercise :

0 ifx=0o0rl

2

2x—1if xe(0,1)
1. Let f:[0,1]] >R be defined by f(x)=

Choose the correct answer :

(a) f 1s unbounded function (b) f is bounded function and attains its bounds
there in (c) f is bounded function but does not attain its bounds.

2" +1, for-1<x<0

—_— X —_—
2 Let f(x)— 2%, forx=0
2% -1, for 0<x<1

Choose the correct answer :
(a) f is bounded in [-1,1]

(b) f is unbounded in [-1,1]
(c) f is continuous in [-1,1]

(d) f has jump discontinuity in [-1,1]

16.6 Uniform Continuity

Recall our €—-0& definition of continuity of function. The following example
will illustrate that the & mentioned in the definition depends not only on ¢, but on
the point also.

f(x)=x" is continuous on R . Let us consider the continuity of x”atx=0.

Let 8:%. Then ‘f(x)—f(O)’<é:>]x‘<%. So we get 6:% such that


Mampi Howlader
Typewriter
16.6
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1
|f(x)—f(0)|<§ wherever |x—O| <0 . Our point is that 8 :% is permissible

here.

Let us examine whether this § serves for all points of R .
f (x) is continuous at x =1. If the above § serves for x =1 also, we would

have |f(x)—f(1)|<é whenever |x—1|<6[: %j

1
Note that x=1.3 satisty |X—1| <§. But then

1

£ (x)- £ (1)|=69¢ 5(:§j
So the §, obtained in case of x=0, does not serve the purpose for x=1
. 1.
Let us consider another example f(x)= ” in (0,1)
If possible, let there exist 6 >0 such that ‘f(x)—f(y)‘<l wherever

|x—y|<8, x,ye(O,l)

8 3
Let *=15Y = 2(1+9) (both € (0, 1)).

)
Note that for these, x—y| = 2(1+6) <9.
1+0
But 1709/ () =152

So the above O is not applicable here.

Our observation is that the &, appeared in the € -3 definition for continuity,
depends both on ¢ and the point itself. At this stage, our purpose is to investigate

whether there exists § > (0 which depends only on ¢ so that the & can serve for all

points of D.
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Let A= {S(p, ) pe Df} where each §>0. This set A is non-void bounded

below subset of R and has inf §,(say). Then 6,>0.

If 6,>0, then for any pe Dy,

x—p|<8,=|f(x)-f(p)|<e. So this §,
serves for all points of D,. As the &, serves for all points of D/, then the
continuity is known as uniform continuity & f is said to be uniformly continuous
on D

(Note : Uniform Continuity is of global character)

Definition : A function f:D — R(D - R) is said to be uniformly continuous
on D, if given €>0, there exists &>0. depending on ¢ only, such that for any

pair of points x, y of D satisfying |x—y| <0, we have |f(x)—f(y)| <€

Example I : if f:D—R is a Lipschitz function, then f is uniformly
continuous on D.

As f:D —R is a Lipschitz function, there exists a constant A >0 such that
‘f(x)—f(u)‘sk‘x—u‘ for all x,ueD

€

Let € >0 be any number. Taking 0 =5, we get

£ (x)—f(u)| <€ for all x,yeD satisfying |x—u|<5

= f is uniformly continuous on D.

Uniform Continuity in closed and bounded interval [a,b].

Theorem : Let f:[a, 5] >R be continuous in [a, b]. Let £>0 be any

number. Then the interval [a, b] can be divided into finite number of sub-intervals

in such a way that

| f(x)-f (xl)‘<8 whenever x; & x, are any two points in the same sub-

interval.
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Proof : If possible, let the theorem be false in [a, b]=[a, b ].

a, +b,

We bisect [a,, b ] of ¢ = . Then the theorem is false in at least one of

[a1,¢] and [c, B]. We designate that sub-interval as [as, b,] in which the theorem
is false. Again we bisect [a,, b,] at ¢,= % & let [a, by be the sub-interval in
which the theorem is false.

Proceeding in this way, we obtain a sequence of nested intervals {[Cln, b”]}n

: . b-—
such that (i) each is contained in the preceeding (ii) lim (b, —a,,) = lim 9_0

e psoo DML
Also the theorem is false in each [an, bn].
By Nested interval theorem, Elie[dn, bn] for all n,& is unique and
lima,=&=1mb,
n—e n—oo

L a<&<b

By hypothesis, fis continuous at . So given g >(, there exists § >0 such

that |f(x)—f(§)|<% wherever |x—§|£6.

As lim (bn —an) =0 and e [an, bn] for all n, so for sufficiently large n,

H—>0
n> -n

say for n=ny(eN),[a,,b,] lies wholly in [£-8,&+38]

Let X X, be any two distinct points in [an, bn] for n=mn,

SO ‘f(%)‘f(&)k%;

F ()= F (@) <5 =]f ()= f () <e

So the theorem is true in [a”o’ b”o J Thus we arrive at a contradiction.
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II. Let £E=a

Arguing as before and noting that for sufficiently large values of n.
[a,.b,]=[a, b,] <[a,a+8], we will arrive at a similar type of contradiction.

ML Let £=5

Here for sufficiently large values of n,

[a,.b,]=[a,.b]<[6—-8,b] & arguing as before, we will arrive at a similar
type of contradiction.
Hence the theorem follows.

Corollaries (I) Let 6 be the least of the lengths of the sub-intervals mentioned
above.

Let us consider two points x;, X, of [a, b] such that |x1 —x2| <& . Then two

cases may arise :

(1) x, and x, belong to the same sub interval

(i) x; and x, belong to two consecutive sub-intervals.

f(x;)-f(x) <& holds.

(i1) Let ¢ be the point which separates the two sub intervals.

(1) In this case, by the theorem,

Then x;,c are in one sub interval & ¢, x, are in another same subinterval.
f(xl)—f(c)|<% and ‘f(c)—f(xz)’<%
S (e2) = f(n)| |/ (x2) = f(e)|+]f (x) - f (¢)| <& holds.

So given £ >0, there exists § >0 such that if

So by the theorem,

As a result,

[ —x,| <8, then | f(x)— f (x,)| <& holds.

(I) Let n, denote any sub-interval of [a, 5] such that the length of m,.is less

then 8, where 6> 0 is as above. If x, x, be any two points of n_then

|x1—x2|<6:>‘f(xl)—f(x2)|<8
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let M, =supf, m.=inf f. As fis continuous in M _, these bounds are attained
M, My
inn_.Let ¥ and X" be the two points in M where M, = f(x'), m, = f(x")

7

Then by above, M, —m,.<¢.

So if fis continuous in [a, b] & ¢ be any positive number, there exists § >0

such that the oscillation of f in every sub-interval of length less than §, is less than
€.

Theorem : If f is continuous in the closed and bounded interval [a, b], then f
is uniformly continuous in [a, 5].

Proof : If possible, let / be not uniformly continuous in [a, b]. Hence there
exists g, >0 for which there is no 6 >0 with the property that

|f(x2)—f(xl)| <g, for all pair of points x,, x, of [a, b] satisfying |x —x | <®.

In other words, for all each positive integer n, there is a pair x), x of [a, b] such

n>n

that

1
x,'l —x;‘ <; nonetheless |f(x;l)—f(x;) 285 ... (D)

As x|, €[a,b] for all n, {x,—x,} is a bounded sequence in R. By Bolzano-

Weierstrass theorem on subsequence, there is a subsequence {x,'( } of {x;, }n which
n)n

converge to x, and X, €[a,b] as [a,b] is closed.

1
Since |X; —X; |<—, we see that X —X, as h—>©
n n n n
({x,’é }is subsequence of {xj} )
n n

Due to continuity of £, f(x;;n)% f(xo),f(x;c,',)ﬁf(xo»

So coresponding to above g, there are natural numbers my,, m, such that
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‘f(x;cn)—f(xo) <§ for all n=>my &‘f(x"kn)—f(xo)

>
<A for n>m,.

£l )-7 (%)

Hence for all n>m=max{m,,m,}, both hold & we get <§g

for all n>m .
This last inequality is in contradiction to (1). Hence f is uniformly continuous

in [a, b]
Uniform Continuity in open interval (a, b)

Theorem : Let f be continuous in (a, b), then f is uniformly continuous in
(a,b) if and only if x—1>g}rof (x) and ngbllof () both exist finitely,

Proof : Let f be continuous in the bounded open interval (a, b) and
lim £(x) and lim £(x) both exist finitely.

We construct g:[a,b] >R as follows :

g(x) = f(x) for all xe (a, b)

g(a) = xli—>r2+f(x) and g(b) = lim f(x)

x—b—

Then lim g(x)=lim f(x)=g(a) and xgrbllog(x) = xli_g)l_f(x) =g(b)

roat x—a+r
Along with this, considering the continuity of f in (a, b), we say that g is
continuous in [a,b] & so g is uniformly continuous in [a,b] & (a,b). But g and f
are identical in (a, b). So f is uniformly continuous in (a, b).
Converse : Let f be uniformly continuous in open interval (a, b).

We propose to show that both lim f(x) & lim f (x) exist finitely.
X—>a+ x—=b—

If possible, suppose that lim f (x) does not exist. Then there is a sequence
x—>a+



68 NSOU e CC-MT- 08

{xn}n in (a,b) with x, —a such that the sequence { f (xn)}n does not converge

& hence is not a cauchy sequence in R . Then there exists some g, (> O) with the

property that there is no natural number n, for which

ij =M D‘f(xi)_f(xj)‘<80~
Consequently we can find arbitrary large i, jeN for which

‘f(xi)—f(xj)‘zeo. Now since the sequence {x,} is a cauchy sequence in R,

we have lim
i, j—>o©

xl.—xj|:0. Clearly for this g,, we can find a pair of points

x;, X; €(a, b) which are arbitrarily close and for which ‘f(xl.)—f(xj)‘ >g,. This

implies that f is not uniformly continuous in (a,b).

A similar argument can be in the case when lim f (x) exists but lim f (x)
x—a+ x—>b—

fails to exist.

Mlustration : Let f(x)=l in (0,1). lim f (x) does not exist finitely & so f
x

x—0+

is not uniformly continuous in (O, l).

An imporant non-uniform continuous criteria

A function f:D —>R(D - R) is not uniformly continuous on D if and only if

there exist sequences {xn}n and {ln}n in D such that

@ |x,—1,| >0 @) |£(x,)-f ()P 0

Examples : (a) 1 s not uniformly continuous in (0, 1)
X

1
choose the sequences X, = and 7, = 2, € N
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(b) x? is not uniformly continuous on R

1
choose the sequences x,=n, {,=n+—, neN
n

N . . .
(c) sin— is not uniformly continuous in (O, 00)
x

1 2
choose the sequences x, = t, = neN

2nm " (4n+l)n’

(d) sin x* is not uniformly continuous on R .

In In
choose the sequences X, = E(n+l) &t, = En ,heN

(e) e% is not uniformly continuous on (O, l).

1
Inn’ 'n = 1n(n+l)

Choose x, = , neN-{1}

(f) xsinx is not uniformly continuous on (0,00)

choose x, =2nm, 1, = 2nn+%, neN

Examples :

() If f,g:D—)R(DCR) be both uniformly continuous on D & D be

bounded, then fg is uniformly continuous on D.

To solve this we will use the following result (which is being stated here
without proof).

If f:D —>R(D - R) be uniformly continuous on a bounded set D, then f is
bounded on D.

/. g are bounded on D. So there exists A € R* such that | f (x)‘ <A,
for all xeD.

g(x)|< A

Let x, ye D then
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1/ (x)g(x)-f (M) g)|=|f x)g(x) =g +g WIS )7 ()] o (D)

Let £ >0 any number. As £, g are uniformly continuous on D, corresponding to

above g, there exists 0, >0,d, >0, both depend on ¢ only, such that for any pair

of points x, y of D satisfying [x—y|<8;, we have |f(x)~ f()|< i and
x—y| <3, 3\g(x)—g(y)\<28—x ........... @)
Let 5=min{§,,8,}. Recalling (1) & (2)
|f(x)g(x)—f(y)g(y)‘<k.%+k.% for any pair of points x, y of D
satisfying |[x—y| <3
— fg is uniformly continuous on D.

Note the result fails if D be not bounded. This is evident from the example x*

on R.
(2) Every uniformly continuous function maps a cauchy sequence onto a
cauchy sequence.

Let {xn}n be a cauchy sequence in R.

Let ¢>0 be any number. Since f is uniformly continuous on D, corresponding
to above g, there exists §>0 (§ depends only on g) such that for any pair of

points x, y of D that satisfy |x—y|<3, we have |f(x)—/f(y)|<&....(1)

Since {xn}n is a cauchy sequence in R, corresponding to above O, there

exists me N such that <d forall n2m, peN.... )

xn+p — Xy

By (1) and (2), | (%,e, )~ /(%)

<g¢ forall n>m, peN

= { f (xn)n} is a cauchy sequence.

Note : The result fails if f be only continuous on D.
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Consider f(x):l in (0,1) and xn:l(neN).
x n

Here f(x,)=n and {f(x,)} is not cauchy sequence.

n

16.7 Summary

In this unit, we have defined the terms continuity and discontinuity and given
various examples. We have studied various types of discontinuities and their properties.
We have explained the most important properties of functions continuous in a closed
and bounded interval [a, b], such as, Intermediate value property, Fixed point property.
We have also shown the relation between continuity and monotonicity. We have further
study the maximum-minimum property. We have introduced the notion of uniform
continuity and shown that in a closed and bounded interval [a, b] this concept is same
with the concept of continuity. We also studied the uniform continuity on an open
interval (a, b), and give an important non-uniform continuity criteria. We have also
shown that every uniformly continuous function maps cauchy sequence into a cauchy
sequence.

16.8 Exercise

1. Prove or disprove : If f:S—>R, g:7—>R(S,7cR) are uniformly

continuous and f(S) <7, then the composite function go f:5— R is uniformly

continuous on §.

2. Show that e* cosl is not uniformly continuous on (O,l).
x

(Hints : You can consider the sequences { L } & ! )
2nm ), (2n+l)n .,

3. Let f(x)= Jx, x[0,2]
Choose the correct answer(s) :

(1) f 1s Lipschitz function in [O, 2]

(i) £ is not Lipschitz function in [0, 2]
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(iii) f is uniformly continuous in [0, 2]

(iv) f is not uniformly continuous in [O, 2]

4. Correct or justify : xsin®x is uniformly continuous on R .
5. Let f:[0,1]] >R be defined by f(x)= X €08 —, x %0

2x’
0,x=0

Examine whether f is uniformly continuous on [O, l].

6. Let f:[a,b] >R be continuous on [a,b] and let the equation f(x)=0
have finite number of roots in [a,5]. Arrange them in the ascending order.

a<x <x <.<x,_,<x,<..<x, <b

Prove that in each of the intervals (a;,x),(x, x,), (x._;,x,)(x,,5) the

function f(x) retains the same sign.
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