
PREFACE 

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,” 

the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations 

for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and 

Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based 

credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this 

entire exercise shall leverage the potential of higher education in three-fold ways – learner’s personal 

enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively 

therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising 

individual attainments towards the enhancement of our national goals.  

     In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of 

an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in 

upholding the qualitative parameters. It is time to acknowledge that the implementation of the National 

Higher Education Qualifications Framework (NHEQF) and its syncing with the National Skills 

Qualification Framework (NSQF) are best optimised in the arena of Open and Distance Learning that is 

truly seamless in its horizons. As one of the largest Open Universities in Eastern India that has been 

accredited with ‘A’ grade by NAAC in 2021, has ranked second among Open Universities in the NIRF in 

2024, and attained the much required UGC 12B status, Netaji Subhas Open University is committed to 

both quantity and quality in its mission to spread higher education. It was therefore imperative upon us to 

embrace NEP 2020, bring in dynamic revisions to our Undergraduate syllabi, and formulate these Self 

Learning Materials anew. Our new offering is synchronised with the CCFUP in integrating domain 

specific knowledge with multidisciplinary fields, honing of skills that are relevant to each domain, 

enhancement of abilities, and of course deep-diving into Indian Knowledge Systems.  

     Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open 

University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s. 

From our mandate of offering quality higher education in the mother tongue, and from the logistic 

viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English. 

All our faculty members are constantly engaged in this academic exercise that combines subject specific 

academic research with educational pedagogy. We are privileged in that the expertise of academics across 

institutions on a national level also comes together to augment our own faculty strength in developing 

these learning materials. We look forward to proactive feedback from all stakeholders whose participatory 

zeal in the teaching-learning process based on these study materials will enable us to only get better. On 

the whole it has been a very challenging task, and I congratulate everyone in the preparation of these 

SLM’s. 

I wish the venture all success.      

 

Professor Indrajit Lahiri 

Vice Chancellor 
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Unit 1 Preliminaries
Structure
1.1 Objectives

1.2 Introduction

1.3 Sets

1.4 Functions or Mappings

1.5 Summary

1.6 Keywords

1.7 References

1.1 Objectives
The aim of this unit is to recall some definitions and useful results for studying

and understanding clearly the next units 2, 3 and 4.

1.2 Introduction
Real analysis is a development of the set of real numbers and real valued

functions. Therefore the concept of set and function are very much needed to study
real analysis. For that purpose, in this unit, some basic terms and results about set
and function are discussed.

1.3 Sets
A set is a well defined collection of distinct objects. Here well defined means it

must be possible to tell without any ambiguity whether a given object belongs to that
collection or not. Sets are usually denoted by capital letters A, B, S, ...etc.

If an object x is a member of a set S, then we write x  S and read as ‘x belongs
to S’ or ‘x is a member of a set S’. If y is not an element of S, we write y  S and
read as ‘y does not belongs to S’.

Example : The collection of the letters of the word ‘logic’ is a set as it is a well
defined collection of distinct objects. If we denote this set by S, then

S = {l, o, g, i, c}.
We can also write the set as

7
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S = {x : x = a letter of the word logic}.
The first form of S is known as tabular form, where the second one is known as

set-builder form of S. The order, in which the objects of a set are taken is immaterial.
Some special sets are denoted as
IN = the set of all natural numbers.
�  = the set of all integers.
�  = the set of all rational numbers.
IR = the set of all real numbers.
C  = the set of all complex numbers.
Finite and Infinite set : If the number of elements of a set is finite (respectively

infinite) then set is called finite (respectively infinite) set.
For example, the collection of all prime numbers between 10 and 20 is a finite

set. If we denote this set by P, then P = {11, 13, 17, 19}, which contains only four
(finite) elements. Again the set F = {x : x is a fraction and 0 < x < 1} is an infinite
set as it contains infinite number of elements. Above IN, , ,� � IR and �  are all
infinite sets.

Null Set : A set is called null (or void or empty) set if it has no member in it.
It is denoted by  and written as  = { }.

For example, the set of all prime numbers between 32 and 36 is a null set.
Sub set and super set of a set : If every element of a set A is also an element

of a set B, then A is said to be a subset of B. We write this as A  B. Here A is
contained in B.

Thus A  B if x A x B.   
If A  B then B is said to be a superset of A. We write this as B  A. Here

B contains A.

For any set A, we have A   and A A . The sets  and A (entire set) are
called improper subsets of A. Any other subset of A, if exists, is called a proper
subset of A.

It may be clear that a set S is called a proper subset of A, written as S  A, if
for any x S x A   , but y A   such that y S.

Moreover, two sets A and B are said to be equal, written as A = B, if A  B
and B  A.

Singleton set : If a set consists of exactly one element then it is called singleton
set.
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For example, the set {1} is a singleton set.
Universal set : If all the sets under study are subsets of a particular set, then that

particular set is called the universal set.
Power set of a set : Let A be any set. The set of all subsets of the set A is called

the power set of A and it is denoted by P(A).
For example, if A = {a, b, c} then

P(A) = { ,{a},{b}, {c}, {a, b}, {b, c}, {c, a}, A} .
Note that if A contains ‘n’ elements then P(A) contains 2n elements.
Set operations : Some important operations on sets are :

Union and Intersection of sets : If  is any arbitrary index set then i{A : i }
is called an arbitrary collection or family of sets. The union of the above arbitrary

family of sets, denoted by i
i

AU , is defined by

i i
i

A {x : x AU for at least one i  }

and the intersection of the above arbitrary family of sets, denoted by

i i
i

A {x : x A for every i  }.

Thus for any two sets A and B, the union of A and B, denoted by AB, is
defined by

 AB = {x : x A or x B or x both A and B}   .
The Venn-diagram representation of it as
The intersection of A and B, denoted by A B ,

is defined by A B {x : x A and x B}.   

It’s Venn-diagram representation is
Disjoint sets : Two sets A and B are called

disjoint if A B   . That means the disjoint sets
have no common element.

Difference of sets : Let A and B be any two sets. The difference of B from A,
denoted by A – B, is defined by

A – B = {x : x A but x B}  .

A B

A B

A B

A B
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Its Venn-diagram representation is
For example, if A = {0, 1, 2, 3, 4} and
B = {2, 4, 6, 8} then
A – B = {0, 1, 3} and B – A = {6, 8}.
Thus A – B  B – A and it is true in general. The symmetric difference of A and

B, denoted by A  B, is defined by A  B = (A – B) (B – A).
Complement of a set : Let  be an Universal set and A  U. The complement

of A, denoted by A' (or Ac), is defined by
cA {x : x and x A}.  

Its Venn-diagram representation as
It is clear that

Also for any two sets A and B, c cA B B A .
Laws of Algebra of sets

(i) Idempotent laws : For any set A, A A A, A A A.  

(ii) Identity laws : For any set A, A A, A A. 

(iii) Commutative laws : For any sets A and B, we have

A B B A, A B B A.   

(iv) Associative laws : For any three sets A, B and C, we have

(A B) C A (B C), (A B) C A (B C)        

(v) Distributive laws : For any three sets A, B and C, we have

A (B C) (A B) (A C),A (B C) (A B) (A C).         

(vi) De-Morgan’s laws : For any two sets A and B, we have
cc c c c c.(A B) A B , A B A B   

Cardinality of a set : For any set A, the number of elements of A is called the
cardinality of A and it is denoted by n(A).

It may be noted that n() = 0 and n(B) =   for an infinite set B.
For any two finite sets A and B, we have

n(A B) n(A) n(B) n(A B).   

A B

A–B

A cA
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Also for any three finite sets A, B, and C, we have

n(A B C) n(A) n(B) n(C) n(A B) n(B C)       

 n(A C) n(A B C).  

Cartesian product of sets : The cartesian product of any two sets A and B,
denoted by A × B, is defined by A × B = {(a, b) : a  A and b  B}.

Similarly we can define B ×A = {(b, a) : b  B and a  A}.

In general, A × B  B × A.

For any set A, we have A ×  =  =  × A.

The cartesian product of any three sets A, B and C can be similarly defined as

A B C {(a,b,c) : a A, b B, c C}     

Similarly the cartesian product of n sets A1, A2, ...., An is defined as

1 2 n 1 2 n i iA A ... A {(a , a , ..., a ) : a A ,1 i n}.       ,

where (a1, a2, ...., an) is known as an ordered n-tuple.

If IR is the set of real numbers, then IR2 = IR × IR = {(x, y) : x IR, y IR} 
represents the set of all ordered pairs of real numbers, i.e., the cartesian plane.

Similarly 3IR IR IR IR {(x, y,z) : x IR, y IR,z IR}       represents the three
dimensional space, i.e., the Euclideam space.

And n
1 2 3 i

IR IR ... IRIR {(x , x ,..., x ) : x IR,1 i n}(n times) represents the
n-dimensional Euclidean space.

1.4 Functions or Mappings
Let X and Y be any two sets. A function or mapping f of X to Y is a rule which

associates to each element x in X, a unique element y in Y and it is written as f :
X  Y. Here X and Y are called respectively the domain and codomain of f. Also
y is called the f-image of x and written as y = f(x), while x is called pre-image of
y. The set of all f-images of (the elements of) X, denoted by f(X), is called the image
of X under f or range of f. of course f (X) Y.

Types of functions : There are many kind of functions such as :
One-one function A function f : X  Y is said to be one-one (or injective) if
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distinct elements of X have distinct images. Thus f : X  Y is injective if for all

1 2 1 2 1 2x ,x X, x x f (x ) f (x )  or equivalently 1 2 1 2f (x ) f (x ) x x .  

x
x
x

1

2

3

f(x )   = y
f(x )   = y
f(x )   = y

1 1

2 2

3 3

X
f

Many one functions : A function f : X  Y is called many one function if

1 2x ,x in X, 1 2x x such that f(x1) = f(x2).

x
x
x

1

2

3

X
f

Into function : A function f : X Y is called an into function if f (X) Y.

In this case, we say that f maps X into Y.

X

f

f(x)

Onto function : A function f : X  Y is said to be onto (or surjective) function
if f(X) = Y.

In this case, we say that f maps X onto Y.
A function f : X  Y is called bijective if f is injective and surjective, i.e., one-

one and onto.
Constant function : A function f : X  Y is called constant if

f (x) c x X, where c is an element in Y. Here f(X) is a singleton set.
Identity function : A function f : X  Y is said to be identity function if

f (x) x x X   . Such a function on X is denoted by Ix or simply I.
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Equal functions : Two functions f : X  Y and h : X  Y are said to be equal
if f(x) = h(x) x X.In this case, we write f h.

The sum, difference and the product of two functions f : X  Y and h :
X  Y are defined as

(f + h)(x) = f (x) h(x) x X  

(f – h)(x) = f (x) h(x) x X  

and (fh)(x) = f (x) h(x) x X  .
If h(x) 0 x X   , the quotient f/h is defined as

(f / h)(x) f (x) / h(x) x X.  

Also (cf )(x) cf (x), c IR. 

Restriction and Extension of a function : Let f : X  Y be a function and
A( ) X.    The function h : A  Y defined by h(x) f (x) x A,   is called the
restriction of f to A and it is denoted by f/A. Thus h = f/A.

If h : A  Y is a restriction of f : X  Y then f is called an extension of h to
X.

As the f-images of the elements of X – A can be choosen arbitrarily, the
extension f of h to X is not unique.

Composite function : Let f : X  Y and g : Z  W be two functions such that
f (x) Z.

X

Y

Z

W

g
gof

f f(x)

Then the composite of f and g is a function g of : X  W defined by

(gof )(x) g(f (x)) x X.  

Thus the composite function g of : X  W is defined only when f(X) is a subset
of the domain of g.

The existence of gof does not ensure the existence of fog.



14 NSOU  5CC-MT-02

Property of composite functions : Some important properties regarding composite
functions are as follows :

(1) For two functions f : X   Y and g : Y  X, both gof : X X and fog :
Y  Y are defined. However, gof  fog, in general, i.e., the operation of composite
function is not commutative.

(2) For three functions f : X  Y, g : Y  Z and h : Z  W, h o (gof) = (hog)of,
i.e. the operation of composite function is associative.

(3) If f : X  Y and g : Y  Z are both bijective functions then gof is also
bijective function. However, the converse of this statement may not be true.

Inverse of a function : Let f : X  Y be a bijective function. Then f is said to
be invertible if  a function g : Y  X such that Xgof I  and Yfog I . This g is
called the inverse of f and written as g = f –1.

It may be noted that the inverse of an invertible mapping is unique. Also if
f : X  X is an invertible mapping then 

1 1
fo f I f of

 

  , where I is the identity
mapping on X.

Properties of Inverse functions :

(1) For an invertible mapping f : X  Y, 
11

f f .

(2) Let f : X  Y and g : Y  Z be two bijective mappings and 
1

f : Y X


  and
1

g : Z Y


  be their respective inverse functions. Then the function gof : X  Z is

also invertible and 
1 1

1(gof ) f o g
 

  .

1.5  Summary
 Sets are well defined collection of distinct objects.
 If a set contains no element then it is called empty set.
 The complement of complement of a set is itself.
 The number of elements of a set is called the cardinality of that set.
 For any two sets A and B, A × B  B × A, in general.
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 Functions are, in all, of four kinds :
(i) One-one into functions
(ii) One-one into functions
(iii) Many-one into functions
(iv) Many-one onto functions.

1.6  Keywords
Sets, union, intersection of sets, complement, cardinality of a set, cartesian

product of sets, Function or mapping, injective and bijective mappings, restriction
and extension of a mapping, composite functions, inverse of a function.
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Unit 2 Real Numbers

Structure

2.1 Objectives

2.2 Introduction

2.3 Algebric and Order properties of IR

2.4 Countable sets, Uncountable sets and Uncountability of IR

2.5 Summary

2.6 Keywords

2.7 References

2.8 Model Questions

2.1 Objectives

One of the important branch of mathematics is real analysis which is consisted with set
of real numbers. Thus to study real analysis it is necessary to know the properties of real
numbers. That is why the object of this unit are as :

 To study algebraic, order and completeness properties of IR.

 To study the concept of rational numbers, irrational numbers and construction of
real numbers from system of rational numbers.

 To know the concept of neighbourhood of a point, limit point of a set, open set,
closed set in IR.

 To study Blozano Weierstrass theorem which states the sufficient condition for the
existence of limit points of a set.

16
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2.2 Introduction

It is know that IN � �, where IN, �  and �  are respectively the set of natural
numbers, integers and rational numbers. The concept of real numbers IR is systematically
developed from IN via the construction of �  and � . The set of real numbers and their
properties are discussed in this unit. The set of real numbers can be described as a
complete ordered field. The analysis, due to set of real numbers is known as real
analysis, which is one important branch of mathematics. We discuss the limit point of a
set, open set, closed set etc. as a basic part of real analysis. It is known that a finite set
has no limit point, while an infinite set may or may not have a limit point. Thus the necessary
condition for the existence of a limit point is that set must be infinite. We have studied
Bolzano Weierstrass theorem, which tells the sufficient condition for the existence of limit
point of a set.

2.3 Algebraic and Order properties of IR

This section deals with some algebraic and order properties of real numbers, which
can be derived by Field axioms and order axioms.

Field Axioms : It is known that the set of real numbers IR is a field with respect to
two operations addition and multiplication, denoted by ‘+’ and ‘.’ respectively. That means
these two operations ‘+’ and ‘.’ on IR satisfying the following axioms, known as Field
axioms.

Addition Axioms :

(A1) Closure law : a b IR , a, b IR .
(A2) Associative law : a + (b + c) = (a + b) + c, a, b, c IR.

(A3) Existence of additive identity : The real number 0, called the additive identity
such that a + 0 = a = 0 + a, a IR.

(A4) Existence of additive inverse : For each a IR,   an element –a IR , called
the additive inverse of a such that a + (–a) = 0 = (–a) + a.

(A5) Commutative law : a + b = b + a, a, b IR. 



18 NSOU  5CC-MT-02

Multiplication Axioms :

(M1) Closure law : a.b IR, a, b IR  

(M2) Associative law : a.(b. c) (a. b). c, a, b, c IR

(M3) Existence of multiplicative identity : The real number 1, called the multiplicative
identity satisfies a.1 = a = 1. a, a IR. 

(M4) Existence of multiplicative inverse : For each a IR ,   an element
1a IR,  called the multiplicative inverse of a such that a . a–1 = 1 = a–1.a.

Here we may also denote 1 1a by .
a



(M5) Commulative law : a.b = b.a, a, b IR. 

Distributive laws
(D1) a. (b + c) = a.b + a.c  a, b, c IR. 

(D2) (b + c) . a = b.a + c.a a, b, c IR. 

Subtraction and Division in IR
The subtraction of a real number ‘b’ from a real number ‘a’, denoted by a – b, is

defined by a – b = a + (–b).
The division of a real number ‘a’ by a non-zero real number ‘b’ denoted by a/b, is

defined by a/b = a.b–1.

Algebraic property of IR
The set of real number satisfies Field axioms. Moreover, some algebraic properties of

IR are as follows :

For a, b, c, IR , we have
(i) a + c = b + c  a = b and c + a = c + b  a = b,
(ii) a + b = 0  b = –a,
(iii) –(–a) = a,
(iv) if c  0 then a . c = b . c  a = b and c.a = c.b  a = b,
(v) a. b = 1  b = a–1,

(vi) if a  0 then 1 1(a ) a   ,
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(vii) a. 0 = 0,
(viii) a  0, b  0  a. b  0,
(ix) a. b  0 = a = 0 or / and b = 0,
(x) a. (–b) = –(a.b) = (–a). b,
(xi) (–a) (–b) = a . b ; (–1).a = –a,
(xii) (a.b)–1 = a–1.b–1, provided a  0, b  0.
(xiii) the equation x + a = b has a unique solution x = b – a in IR.
(xiv) for a 0, the equation a.x = b has a unique solution x = b/a in IR.

Order Axioms : The set of real numbers IR is an ordered field, i.e., IR is ordered with
respect to order relation ‘>’, called greater than. That means the relation ‘>’ between pairs
of real numbers satisfies the following axioms, known as order axioms.
(O1) Law of trichotomy : For all a, b IR , one and only one of the following is true

a > b, a = b, b > a.

(O2) Transitivity law : For all a, b, c IR , a > b and b > c  a > c.
(O3) Monotone property for addition :

For all a, b, c IR , a > b  a + c > b + c.
(O4) Monotone property for multiplication :

For all a, b, c IR and c > 0, a > b  a.c > b.c.

Remark : (1) The order relation ‘<’, called less than, is defined as a < b if
b > a. The order axiom can also be stated with the relation ‘<’ instead of ‘>’.

(2) The relation a   b means either a < b or a = b and a  b means either
a > b or a = b.

(3) A real number ‘a’ is said to be positive or negative according as  a > 0 or
a < 0. The set of positive (respectively negative) real numbers is denoted by IR+

(respectively IR–).
Order property of IR : Beside the order axioms, IR satisfies the following order

properties :
(i) For each real number a, one and only one of the following holds :

a > 0, a = 0, –a > 0.
(ii) a < 0 <=> –a > 0
(iii) a > b <=> a – b > 0 for all a, b  IR.
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(iv) For all a, b, c IR, if c < 0 then a > b  ac < bc.

(v) For a, b, IR+, 1 1a b .
a b

  

Extended real number system : We can extend the system of real numbers by
adjoining   and – . The enlarged set is called the extended real number system.

If a IR, we have –  < a <  .
a +   =   =   + a, a – = –  = –  + a,

a , if a 00, a a , if a 0a

Also   ×   =   = (– ) × (– ) =   +  .
  × (– ) = –  = (– ) ×   = –  –  .

However,   –  , –  +  , 0 ×  ,   × 0,  are meaningless.

2.4 Countable sets, Uncountable sets and Uncountability of
IR.

This section deals with countable sets and uncountable sets through which infinite set
may classify two ways :

Countably infinite set and Uncountably infinite set.

Countable and Uncountable sets : A set S is said to be enumerable or denumerable
if   a bijection from IN onto the set S.

A set S is called countable if either S is finite or S is enumerable. A set S is called
uncountable if it is not countable. Thus an uncountable set must be infinite. The empty set
 is countable as it is assumed a finite set.

Examples :
(1) The set E = {2n : n IN} is denumerable, as there is a bijection f : IN  E. Here

E is the set of even natural numbers. It is an infinite set, but countable. So, E is countably
infinite set.

(2) The set (of odd natural numbers) O = {2n – 1 : n  IN} is also denumerable and
hence O is countable.
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(3) The set Z of all integers is countable as Z is denumerable.
(4) The set of real numbers in the interreal (0, 1) is uncountable.

Theorem : Any subset of a countable set is a countable set.

Proof : Let B be a subset of a countable set A. We show that B is countable.
If possible, let us suppose that B is uncountable. Then every injective function f : IN

 B must be into, not onto, i.e. f (IN)  B. Since B  A, therefore f(IN) A.
Thus for every injective function f : IN  A, f (IN)  A.
So, A is an uncountable set, which is a contradiction. Hence B must be countable.
Theorem : A countable union of countable sets is countable.
Proof : Let i{A : i IN}  be a countable collection of countable sets and let

i
i 1

A A




 .

Each countable set Ai , i  IN may be represented as

1 11 12 13 1n,A {a , a , a , ...., a .....}

2 21 22 23 2n,A {a , a , a , ...., a .....}

... ... ... ... ... ...

m m1 m2 m3 mn,A {a , a , a , ...., a .....}

... ... ... ... ... ...
There are two cases arises :
Case I : If the sets A1, A2, ...., Am, .... are disjoint, the elements of A can be

arranged as

11 12 21 13 22 31A {a , a , a , a ,a , a , ...} .
We may construct a one-one function f from IN onto A

such that mn
1f (m n 1)(m n 2) m a .
2

       
 

Then f(1) = a11, f(2) = a12, f(3) = a21, ....
So, A is countable.
Case II : If the sets A1, A2, .... are not all disjoint, consider the sets B1 = A1,

B2 = A2\A1, B3 = A3\A1UA2, ....., Bm = 
m 1

m i
i 1

A \ A



 .
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Then the sets B1, B2, ...., Bm are disjoint and i i
i 1 i 1

A B
 

 

  .

So, by Case I, i
i 1

B



 is countable and hence i

i 1

A



 is countable.

Corollary : The union of two enumerable sets is enumerable.

Corollary : The union of an enumerable number of enumerable sets is enumerable.

Theorem : The Cartesian product of two countable sets is countable.
Proof : Let A and B be two countable sets. We have to show that A × B is countable.
Since A and B are countable, we can write
A = {a1, a2, ..., ai, ....} and B = {b1, b2, ..., bj, ...}, i, j,  IN.

Then i
i 1

A B P




   where i i 1 i 2 i jP {(a ,b ), (a ,b ), ..., (a ,b ),....}.

The jth member of Pi is (ai, bj). Clearly Pi is countable for each i. So, by previous
theorem, A × B is countable.

Remark : If A1, A2, ..., An are countable sets them the cartesian product A1 × A2
× .... × An is also countable.

Proof : It can be proved by method of mathematical induction.

Rational Numbers : If a real number can be expressed in the form of 
p
q  , where

p, q  Z, q  0 such that gcd (p, q) = 1 (i.e. p and q are prime to each other), then
it is called a rational number. Otherwise, it is called an irrational number. The set of
rational numbers is denoted by � .

Let x, y  � , then we can write 
a cx , y
b d

  ,

where a, b, c, d  Z, b  0, d  0.
We now define the operations addition, subtraction, multiplication and division

are as
a c ad bcx y
b d bd


    ,

a c ad bcx y
b d bd


    ,

a c acxy .
b d bd

   and x a c ad ,
y b d bc
    provided c  0.
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Also x = y i.e. 
a c
b d
  iff ad = bc.

Properties of �  : Some important properties of �  are as follows :

(1) Algebric Property : The set �  forms a field with respect to addition and
multiplication defined as above. That means �  satisfies the field axioms, mentioned

in section 2.3. Here ‘–a’ is the additive inverse of ‘a’  �  and 1
b  is the

multiplicative inverse of b( 0)  � . The zero element and unity are respectively
0 and 1.

(2) Order Property : Further, one can check that �  satisfies the order axioms,
discussed in section 2.3. Thus �  becomes an ordered field.

(3) Density Property : It is known that if x, y  �  with x < y then x y
2

�   and

x yx y
2


  . That means between any two rational numbers there exists another rational

number 
1 (x y)
2

 . By similar way, it can be check that between

x and 1 x y(x y) (as x ),
2 2

 another rational number. Proceeding in this way, we can

conclude that between any two rational numbers x and y (where x < y) infinitely many
rational numbers. This property of �  is known as the density property of � . In this
case, we can say that �  is dense.

Problem : Show that there does not exist a rational number x such that x2 = 2.
Solution : If possible, let there exist a rational number x such that x2 = 2.

Since x is rational, so p, q , q 0� such that gcd (p, q) = 1 and x = 
p
q

.
2

2
2

p x 2
q

  

2 2p 2q ,  which implies that p2 is even and hence ‘p’ is even.
Let p = 2m, where ‘m’ is an integer.
Then p2 = 2q2 2 2q 2m ,  which also implies that q is even.
Thus p and q are both even which contradicts our assumption that gcd (p, q)=1.

Therefore, there is no rational number whose square is 2.
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Problem : Show that the set of all rational numbers is countable.
Solution : Let �  be the set of all rational number. Then we can write �  as

0 1 1 1 2 1 2 n 1, , , , , ...., , ,... ,...
1 1 2 3 3 n n n

�

 1 2 3 na , a , a , .....,a , ..... ,

where an contains all rational numbers where denominator is n. Hence the set �
is countable.

Geometrical representation of rational number, irrational number and real
number : Consider any directed straight line extending indefinitely on both sides.
We divide it into two parts and mark middle point by O. The right part of O is called
positive and left part of O is called negative.

Take any point ‘A’ on the positive part. Assume that the point O and A represent
rational numbers 0 and 1, so that the distance OA is unity.

Let p�  and q IN  and let us divide OA into ‘q’ equal parts. Then take ‘p’

numbers such subparts and we represent the rational number 
p
q  by the point P on the

directed line.

So, 
pOP
q

 .

If p > 0 then P lies to the right part of O and if p < 0 then P lies to the left part
of O. When p = 0, the point P lies on ‘O’.

Thus the point ‘P’ corresponds to the rational number 
p
q  and vice-versa. This

representation is unique. Here ‘P’ is known as rational points.
Note that between any two rational points closely enough on the line, there are many

points which does not represent rational numbers. Such points are called irrational points
and the corresponding numbers are called irrational numbers.

For example, if we consider the point B on the line such that OB is the diagonal
of a square of the side unity (i.e. OA) does not correspond to any rational number,
as there is no rational number whose square is 2. Thus we may conclude that

Dedekind— Cantor Axiom : Every real number corresponds to a unique point
on a directed line and every point on the directed line corresponds to a unique real
number.
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Remark : The above axiom shows that the set of real numbers is a continuum (means
without any gap). That is why the set of real numbers is called the Arithmetical continuum
and the set of points on a straight line is called linear or geometric continuum.

Dedekind section of rational number : Let Q be the set of all rational numbers. Å
partition of Q into two subsets L and R (called classes) satisfying the following conditions
is called a Dedekind section of rational numbers.

(i) L , R   

(ii) L R Q

(iii) L   and R     .
There are three types of Dedekind section.

Type-1 : Let us divide the set of all rational number Q into two classes L and R as
follows :

L = {x : x  Q and x   2}
R = {x : x  Q and x > 2}
Clearly it is a Dedekind section, because 2 L and 3  R such that L R = Q.

Also L 2      and R 2  

   .
In this section L class has greatest number 2, but R class has no least number.

Type-2 : Let us divide Q into two classes L and R as follows :

L = {x : x Q and x 3} 

R = {x : x Q and x 3} 

It is Dedekind section and in this section, least number of R class is 3 but L class has
no greatest number.

Type-3 : Let us divide Q into two classes L and R as follows :

L = 2{x : x Q and either x 0 or x 0 but x 2}   

R = 2{x : x Q and x 0, x 2}   .

Clearly 0  L and 2  R

L and R     .
As there is no rational number whose square is 2, it follows that LUR = Q.
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2L either 0 or 0 but 2         and 2R 0 and 2    

When 0 then      and when 20 then 2.   

2 < 2 and hence  < .
Thus it is a Dedekind section.
Now we shall show that L class has no greatest number and R class has no least

number.
If possible, let ‘m’ be the greatest number of L class, then m > 0 and m2 < 2.

Let us take n = 
4 3m
3 2m



Then 
2

2
2

m 2n 2 0
(3 2m)


  


 and hence n L .

Now 
24 3m 4 2mn m m 0,

3 2m 3 2m
 

    
 

i.e. n > m, which is a contradiction.

Therefore, L class has no greatest number.
If possible let ‘r’ be the least number of R class.
 r > 0 and r2 > 2 i.e. r2 – 2 > 0.

Let us put s = 
4 3r
3 2r



.

Then s > 0 and s2 – 2 = 
2 2

2
2

4 3r r 22 0 as r 2 0
3 2r (3 2r)
          

2s 2. 
 s  R class

Now r – s = 
24 3r 2(r 2)r 0

3 2r 3 2r
 

  
 

.

Therefore, r > s, which is a contradiction and hence R class has no least number.

Remark : Type -3 of Dedekind section about rational number shows that the
system of rational number has gaps. To fill up these gaps, Dedekind introduced new
numbers which are called irrational numbers. Thus irrational numbers are introduced
by section of rational numbers as follows :

Modified section of rational numbers : A division of set of all rational numbers
into two classes L and R satisfying the following condition is called the modified
section of rational numbers.
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(i) L ,R   

(ii) LUR = Q,
(iii) L and R     

(iv) L class has no greatest number.

Definition of real number by section of rational number : Every modified
Dedekind section defines a real number . If the section is (L, R), then we write
  (L, R).

The real number ‘’ is called the real rational number if ‘’ is the least number of R-
class and ‘’ is called an irrational number if R class has no least number.

Exercise : Define the following real numbers by Dedekind section of rational
numbers.

(i) 2 (ii) 3  (iii) 1
37 .

Section : (i) We define the real numbers 2 as 2 (L,R),

where L = {x : x Q and x 2} 

and R = {x : x Q and x 2}  .

(ii) We define the real number 3 by 3 (L, R),

where L = 2{x : x Q, either x 0 or x 0 and x 3}   

and R = 2{x : x Q, x 0 and x 3}.  

(iii) We define 1
37 (L, R),

where L = 3{x : x Q and x 7}   and R = Q – L.

Relative magnitude of real numbers : Let 1 1 2 2(L , R ) and (L , R )    be two

real numbers defined by section of rational numbers. We define     if and only if L1 is

a proper part of L2 i.e., 1 2x L x L     and there is 2y L but 1y L .

We also define     if and only if 1 2L L

and     if and only if 
i.e., if and only if L2 is a proper part of L1.
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Exercise : Prove that the following by Dedekind section :

(i) 1 < 2  (ii) 2 3  and (iii) 3 2 .

Ans. (i) Let 1 11 (L , R ),  where 1L {x : x Q and x 1}    and

2 22 (L , R ), where 2
2L {x : x Q, either x 0 or x 0 and x 2}     .

Then, 1x L x 1     and 2
2x L either x 0 or x 0 and x 2.

Thus 1 2x L x L .   

Let us take a number y = 
5 .
4  Then 2 25y 2

16
   and hence 2y L .

But y = 1
5 1, so y L .
4
 

 L1 is a proper part of L2. Consequently 1 < 2 .

(ii) Let 1 12 (L , R ),  where L1 = 2{x : x Q, either x 0 or x 0 and x 2}

and 2 23 (L , R ),  where L2 = 2{x : x Q, either x 0 or x 0 and x 3} .

Then 2
1x L either x 0 or x 0 and x 2     

and 2
2x L either x 0 or x 0 and x 3      .

Thus 1 2x L x L .   

Let us take 
3y
2

 . Then 2 2
2 1

9 9y 3, so y L , but y 2, i.e. y L .
4 4

     

Thus L1 is a proper part of L2 and hence 2 3.
(iii) Let us consider 2 23 (L , R ),

where 2
2L {x : x Q, either x 0 or x 0 but x 3}

and 1 1 12 (L , R ), where L {x : x Q, x 2}.
It can be proved that L2 is a proper part of L1 and hence 3 2.
Addition of two real numbers : Let 1 1 2 2(L , R ) and (L , R )     be two real

numbers, given by Dedekind section of real numbers. We define the number (L, R)   ,
where 1 2 1 1 2 2L {x : x x x , x L ,x L }     and R = Q – L.
Reciprocal of a positive real number : Let 0   be a real number, where

1 1(L , R )  .
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We define 
1 (L, R), where L {x : either x 0 or x 0 and   


1
1 1R so that
x x
 is not the least number of R1}.

Dedekind’s Theorem on real number : If we divide the set of all real numbers IR
into two classes L and R satisfying the following conditions :

(i) L , R   

(ii) L R IR

(iii) L and R      ,

then there is a number   separating the two classes such that all numbers L  class
and all numbers > R  class.

The number   may belong to either class. If L  then  is the greatest number of
L class and if R then  is the least number of R class.

2.5 Summary

This chapter discusses the algebraic and order properties of the real numbers R
examines countable and uncountable sets, and proves the uncountability of R.

2.6 Keywords

Real numbers, algebraic properties, order properties, countable sets, uncountable sets,
uncountability of R.

2.7 References
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2.8 Model Questions

1. What are the algebraic properties of R?
2. Describe the order properties of R.
3. Explain the difference between countable and uncountable sets.
4. Prove that R is uncountable.
5. How do the algebraic and order properties of R relate to each other?
6. Provide an example of a countable set and an uncountable set.
7. Suppose that S and T are sets and TCS. Show that if T is infinite, then S is also

infinite.
8. Show that the power set P(N) of N is uncountable.
9. It F[Q] be the set of polynomices having rattional coefficients. Show that F[Q] is

countable.
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Unit 3  Bounded property
Structure
3.1 Objectives
3.2 Introduction
3.3 Intervals
3.4 Bounded and Unbounded Sets
3.5 Supremum and Infimum
3.6 Summary
3.7 Keywords
3.8 Reference
3.9 Model Questions

3.1 Objectives

This chapter aims to introduce fundamental concepts of real analysis, including
intervals, bounded and unbounded sets, and supremum and infimum. Students will learn to
classify different types of intervals, distinguish between bounded and unbounded sets, and
understand the least upper and greatest lower bounds. These concepts form the foundation
for further studies in real analysis, particularly in limits, continuity, and sequences. By
mastering these topics, students will develop essential analytical skills for advanced
mathematical reasoning.

3.2 Introduction

Real analysis provides a rigorous foundation for calculus and higher mathematics. In
this chapter, we explore intervals, which describe subsets of real numbers, and the
distinction between bounded and unbounded sets. Further, we examine supremum (least
upper bound) and infimum (greatest lower bound), which are crucial for understanding
limits and convergence. These fundamental ideas play a significant role in defining continuity,
differentiability, and integration. Through this chapter, students will strengthen their logical
thinking and problem-solving abilities.

31
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3.3 Intervals
Let a, b  IR such that a < b. Then the  open interval and closed interval are

respectively defined as
(a, b) {x IR : a x b}     and [a, b] {x IR : a x b}.   
The points ‘a’ and ‘b’ are known as end points. The closed interval contains end

points, while the end points are not included in open interval.
Also the sets
[a,b) {x IR : a x b} and (a,b] {x IR : a x b}        are called semi-open or

semi-closed intervals. There are also known as closed-open and open-closed intervals
respectively.

Since the length of each above intervals is equal to b – a ; which is a finite positive
real number, there above intervals are called finite intervals. Infinite intervals are the
intervals of infinite length.

For instance, the sets (a, ) {x IR : x a}     and ( ,a) {x IR : x a}    are
known as infinite open intervals, while

[a, ) {x IR : x a} and ( , a] {x IR : x a}         all known as infinite closed
intervals. The entire set IR is also considered as an infinite open interval by taking
IR = ( , )  .

Absolute value of a real number : The absolute value (or modulus) of x IR ,
denoted by |x| is defined as

x, if x 0x x, if x 0

For example 5 5 and 5 ( 5) 5.     

For any x, y IR  the distance between x and y is |x – y|.
Observations

(i) 2 2x 0 and x x 

(ii) x x 

(iii) x max{x, x} 

(iv) x min{x, x}  

(v) x·y x y
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(vi) 
xx , y 0

y y
 

(vii) x y x y  

(viii) x y x y    and x y y x  

Consequently, x y ( x y )

(ix) x a x (a ,a )     and x a x [a ,a ]    

(x) x y x y ,    while the reverse implication does not hold.

3.4 Bounded and Unbounded sets
Let S IR.  If M IR  such that x M x S,   then S is called bounded above. This

M is called an upper bound of S.
Again, if m IR such that x m x S  then S is called bounded below and

such m is called a lower bound of S.
If S is bounded above as well as bounded below then S is said to be bounded.

Thus S is bounded if m, M IR  such that
m x M, x S    (2.6.1)
If M 0,  taking m = –M, the relation (2.6.1) reduces to

x M x S.  

Hence S is said to be bounded if M O  such that

x M x S.
Consequently, a subset S is called unbounded or not bounded if it is either not

bounded above or not bounded below.
Examples :

(1) The set 
1 : n IN
n

  
 

 is bounded. Here 0 and 1 are lower bound and upper bound

respectively.
(2) Let a, b IR. Then (a, b), [a, b], (a, b] and [a, b) are bounded.
(3) The set IN is bounded below by 1 but not bounded above.
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(4) The set IR {x IR : x 0}    is bounded below but not bounded above, whereas

the set IR {x IR : x 0}     is bounded above but not bounded below.
(5) The set Q, IR are unbounded.
Greatest and Smallest element of a set : Let S IR.    If S contains a largest

element M, i.e. x M x S,  then M is called the maximum (or largest or greatest)
element of S. And if S contains a smallest element m, i.e., x m x S,   then ‘m’ is
called the minimum (or smallest or least) element of S. In this case, we write Max
S = M and min S = m.

For example, if S = {0, 2, 4, 6, 8, 10}, then max S = 10 and min S = 0.

Again for S = 
1 : n IN ,
n

  
 

 max S = 1, while S does not contain the minimum

element.

Remark :
(1) For S = [a, b] a, b IR, a b,   max S = b, which is also upper bound of S.

And min S = a, which is also lower bound of S.
(2) The set S = (a, b) does not contain the maximum and minimum element,

though S is bounded.
(3) Note that a bounded set S of IR may not contain an upper bound and (or) a

lower bound. But if S has an upper bound (respectively a lower bound) then it will
have infinitely many upper bounds (respectively lower bounds), because if M is an
upper (respectively lower) bound of S, then every number greater (respectively less)
than M is also an upper (respected, a lower) bound. Thus we get a set of upper
bounds (respectively lower bounds) for a bounded above (respectively bounded
below) set of IR.

We now define the following :

3.5 Supremum and Infimum
Let S IR.    If M is an upper bound of S and any real number less than M is not

an upper bound of S, then M is called supremum or least upper bound (lub) of S. Here,
we write sup S (or lub S) = M.

Hence a real number M is supremum of S if
(i) M is an upper bound of S
and (ii) M  K for every upper bound K of S.
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Similarly, if ‘m’ is a lower bound of S and any real number greater than ‘m’ is not a lower
bound of S then ‘m’ is called greatest lower bound (glb) or infimum of S.

Here, we write inf S (or glb S) = m.
Hence a real number m is infimum of S if
(i) m is a lower bound of S
and (ii) m k  for every lower bound k of S.

Note : The supremum and infimum of a non empty subset of IR are unique, if
they exist.

Examples :
(1) Let a,b IR  with a < b and S = [a, b] and T = (a, b).

Then sup S = b = Sup T and inf S = a = inf T.

(2) For S = 
11 : n IN
n

   
 

, sup S = 2 and inf S = 1.

(3) The supremum of IN does not exist, while inf IN = 1.
(4) The set �  has neither supremum nor infimum.

Theorem : Let S IR    and let M IR . Then M is the supremum of S if and
only if

(i) x M x S.
and (ii) for each 0,   a real number x S  such that x > M – 

Proof : Let 0  be arbitrary. Since M M, by definition of supremum, it
follows that M = sup S

 M is an upper bound of S and M –  is not an upper bound of S,
i.e. x M x S  and x M  for some x S.

Theorem : Let S IR   and m IR . Then m is the infimum of S if and only
if (i) x m x S  and

(ii) for each 0,   a real number x S  such that x m .

Proof : Since m m   for arbitrary 0.  So, by definition of infimum, the result
follows :

Problem : Find the supremum and infimum of the following sets :

(i) 
1 1S { 2, 2} 1 : n IN 1 : n IN
n n
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1 12,2,1 , 1 : n IN
n n

       
 

3 3 4 4 5 52,2, , , , , , ......
2 2 3 3 4 4,

 
     
 

.

Let 0  be arbitrary.
x S x 2 and 2 S, 2 2      

sup S 2
Similarly we find that inf S = –2.

(ii) Consider n 1T ( 1) 1 : n IN
n

       
  

 3 4 5 6 72, , , , , , ...
2 3 4 5 6

     
 

.

We find that 
3x T x .
2

   

Let  be an arbitrary small + ve number. Then 
3 3
2 2
   and 

3 T
2
 .

So, sup 
3T and inf T 2.
2

  

Properties of Supremum and infimum : From the definition and above results one
can prove the following :

(i) For any bounded set S, inf S   sup S.
(ii) Sup S = max S, if max S exists and inf S = min S, if min S exists.

(iii) For A IR and B IR,     

inf(A B) min{inf A, inf B}

and sup (A B) max{sup A, sup B}

Further if A B then inf B inf A sup A sup B

Problem : Let S IR and T {x : x S}.     

Show that supT = inf S and inf T = – sup S.

Solution : Let sup S = B and inf S = b.
Let 0   be arbitrary small number. Then

x S x B x B       
and there is a member x S  such that x B x B .     
Thus x T x B
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and there is some x T   such that x B .    

inf T B sup S.    

Similarly we can prove that sup T = – b = – inf S.

3.6 Summary

This chapter covered key concepts in real analysis, including intervals, pounded and:
unbounded sets, and the notions of supremum and infimum. Intervals were. categorized
based on their endpoints, while bounded sets were distinguished from unbounded ones.
The concepts of least upper bound and greatest lower bound were explored, emphasizing
their importance in mathematical analysis. These ideas are essential for deeper studies in
real analysis and provide a basis for understanding limits, continuity, and convergence in
various mathematical contexts.

3.7 Keywords
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3.9 Model Questions

1. Define an interval. Give examples of open, closed, and half-open intervals.
2. What is the difference between bounded and unbounded sets? Provide an

example of each.
3. Explain the concepts of supremum and infimum with suitable examples.
4. Why is the supremum considered the least upper bound and not just any upper

bound?
5. State and explain the completeness property of real numbers.
6. Determine whether the set S = {x  R | O < x < 5}, is bounded. Justify your

answer.
7. Find the supremum and infimum of the set

                                                     1                                              A = {— | n  N}.                                                     n
8. Is the set of natural numbers N bounded? Explain your reasoning.
9. Give an example of a set that has a supremum but no maximum element.
10. If a set has an infimum, does it always have a minimum? Justify with an example.



NSOU  5CC-MT-02 39

Unit 4  Bounded property
Structure
4.1 Objectives

4.2 Introduction
4.3 Completeness property of IR
4.4 Archimedean Property of IR

4.5 Summary
4.6 Keywords

4.7 Reference
4.8 Model Questions

4.1 Objectives

This chapter introduces intervals, the completeness property of R\mathbb {R} R,
and the Archimedean property. Students will understand these fundamental concepts
and their significance in real analysis, particularly in limits and convergence.

4.2 Introduction

Real analysis builds upon rigorous foundations of real numbers. This chapter explores
intervals, the completeness property ensuring every bounded set has a supremum, and the

Archimedean property, highlighting the density of natural numbers in R\mathbb{R} R.

4.3 Completeness property of IR
In similar to field axioms and order axioms, the set of real numbers satisfies another

important axiom, Known as Completeness axiom, as follows :
Every non-empty bounded above subset of IR has a supremum in IR.
With the above axiom, we can say that the set of real numbers is a complete ordered

field. As a consequence of completeness axiom, we have the following theorem :

39
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Theorem : Every non empty bounded below subset of IR has an infimum.
Proof : Let S IR    such that S is bounded below. Then K IR  such that

x K x S  

Define a set T IR by T {x : x S}.   

Clearly T as S    . Then by just previous problem, T is bounded above by –K.
So, by completeness axiom, T has a supremum in IR, say M and by previous problem,
–M is the infimum of S. Hence, the theorem is complete.

We have already seen that the set of rational numbers Q is an ordered field. However,
Q does not satisfies the completeness axiom. Thus Q is not a complete ordered field. For
this, it is sufficient to construct a non-empty bounded above subset of Q which does not
have a supremum in Q.

Define 2A {x Q : x 2},   where Q+ is the set of all positive rational numbers.
2x A x Q and x 2 x 2,       which implies that 2 is an upper bound of A.

Thus A is a non-empty bounded above subset of Q.
If possible let ( Q)   be the supremum of A. Then 1 and so Q .  

There are three cases arises :
2 2 22, 2, 2.     

The case 2 2   is not possible as there is no rational number whose square is 2. So,
sup A  in this case.

Now choose 3 4 Q
2 3

 
  

 
.

Then 
23 4 2( 2)

2 3 2 3
   

     
   

 and 
2 2

2
2

3 4 22 2
2 3 (2 3)
           

If 2 2   then from above we get 2and 2     , which implies that sup A. 

Again if 2 2   then by similar way as above, it follows that 2and 2,      which
implies that  is not an upper bound of A. Thus sup A.   Hence the supremum of A
does not exist in Q. Consequently, Q is not complete.

Remark : The completeness axiom distinguishes between Q and IR as IR is complete
while Q is not.
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4.4 Archimedean property of IR
If x and y are any two positive real numbers with y < x then n IN  such that ny

> x.
Proof : If possible let ny  x.
Set S {ny : n IN}  . Then S    as y S.  Also S is bounded above by x. So, by

the completeness property of IR, sup S exists, say = M.
Now we have ny M n IN (n 1)y M      as n 1 IN 

ny M y n IN.
This means that M – y is an upper bound of S and M – y < M, which is a

contradiction to the fact that M = sup S.
So ny > x for some n IN.
From the above property, the following results are immediately holds :
Result 1 : If y is a +ve real number and x is any real number then there exists

a positive integer ‘n’ such that ny > x.
Result 2 : For any real number x, there exists a +ve integer n such that n > x.
Theorem 4.4.1 For any  x IR, m,n  �  such that m < x < n.

Proof : From Result 2, we have for any x IR, n   � (set of +ve integers)
such that x < n ....(2.9.1)

Since x IR, x IR, so     a +ve integer p such that p > –x.
i.e. –p < x m x   by taking –p = m. ...(2.9.2)
From (2.9.1) and (2.9.2), the result follows.
Theorem 4.4.2 For any x IR,  there exists a unique integer n such that n x n 1.  
Proof : Set [x] = n, where [x] is the integral part of x.
Then n x ...(2.9.3)
We claim that x < n + 1. If not,  x n 1,   which is an integer.
So, [x] n 1 n n 1,      which is absurd.
Thus x < n + 1 ...(2.9.4)
The result follows from (2.9.3) and (2.9.4).

Theorem 4.4.3 For any x IR,  there exists a unique integer n such that
x – 1  n < x.

Proof : By theorem 2.9.1, for x IR,   two integers m and p such that
m < x < p.
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Choose n = max{r N : r x}  ...(2.9.5)
Then by Theorem 2.9.2, we get n 1 x   i.e. x 1 n  ...(2.9.6)
(2.9.5) and (2.9.6) gives the theorem.
By density property of Q we have seen that there are infinitely many rational

numbers between any two rational numbers, which can be extended as the
following :

Theorem 4.4.4 : There is at least one rational number and hence infinitely many
rational numbers between any two distinct real numbers.

Proof : Let x, y IR  such that x y and x y  .
So, y – x > 0.
By Archimedean property for y – x and 1 IR, a ve    iteger n such that

n(y–x) >1
i.e. n x + 1 < ny ...(2.9.7)
It is clear that nx IR.  So, by theorem 2.9.2, there exist a +ve integer ‘m’ such

that
m 1 nx m   ...(2.9.8)

m nx 1 ny    , ...(2.9.9)
using (2.9.7)
From (2.9.8) and (2.9.9), we get nx < m < ny

i.e. x < r < y, where 
mr Q
n

 

Thus we get a rational number lying between x and y. By similar argument, we
get rational number r1 between x and r and another rational number r2 between r and y
such that

x < r1 < r < r2 < y.
Proceeding in this way, we can find inifintely many rational numbers lying

between x and y.
For the case of irrational numbers,
Theorem 4.4.5 : There is at least one irrational number and hence infinitely many

irrational numbers between any two distinct real numbers.
Proof : Let x, y IR  such that x y  and x y . Then x p y p    for arbitrary

irrational number ‘p’. Since x p, y p IR   and x p y p,     a rational number r such
that

x – p < r < y – p, by just previous theorem,
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i.e. x K( r p) y.   
Here K must be irrational number as it is the sum of a rational number and an

irrational number.
Thus we get an irrational number K between x and y. By similar argument as

above, we get irrational number K' between x and K and another irrational number
K" between K and y such that

x K ' K K" y.   
Proceeding in this way, we can find infinitely many irrational numbers lying

between x and y. Hence the proof of the theorem is complete.
By virtue of Theorem 2.9.4 and Theorem 2.9.5, we can state the following :

Theorem 4.4.6 There is at least one real number and hence infinitely many real
numbers between any two distinct real numbers.

4.5 Summary

This chapter covered intervals, the completeness property ensuring supremum and
infimum exist, and the Archimedean property stating no infinitely large or small real numbers
exist, reinforcing foundational real analysis principles.

4.6 Keywords

 Open and closed intervals
 Supremum and infimum
 Completeness property
 Least upper bound property
 Archimedean property
 Bounded sets
 Rational and irrational numbers

4.7 References

1. Principles of Matheinatical Analysis - Waiter Rudin, McGraw-Hill

2. Real Analysis: Modern Techniques and Their Applications - Gerald B.
Folland, Wiley
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3. Real Analysis - H.L. Royden, P .M. Fitzpatrick, Pearson

4. Understanding Analysis - Stephen Abbott, Springer

5. Real Analysis for Graduate Students - Richard F. Bass, American Mathematical
Society

6. Introduction to Real Analysis - Robert G. Bartle, Donald R. Sherbert, Wiley

4.8 Model Questions

1. Define an interval. Give examples of different types of intervals.

2. State and explain the completeness property ofR.

3. What is the Archimedean property? Provide an example.

4. Prove that there is no smallest positive real number.

5. Explain how the completeness property relates to the existence of supremum and
infimum.
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Unit 5  Limit point
Structure
5.1 Objectives
5.2 Introduction
5.3 Neighborhood of a point
5.4 Limit point of a set
5.5 Summary
5.6 Keywords
5.7 Reference
5.8 Model Questions

5.1 Objectives

 Understand different types of intervals and their properties.
 Define and explore neighborhoods of a point in a metric space.
 Identify and analyze limit points of a set.

5.2 Introduction

This chapter explores fundamental concepts in real analysis, including intervals,
neighborhoods, and limit points. These ideas form the basis for continuity, convergence,
and the structure of real numbers.

5.3 Neighbourhood of a point
A set N is called a neighbourhood (abbreuiated by nbd) of a point p IR if there

exists an open interval I containing p and contained in N, i.e., p I N. 

The set N {P}  is called a deleted neighbourhood of p.

Examples :
(1) The set IR is a nbd of each of its points, because

x IR, x (x , x ) IR       for  every  0.  The open interval

(x , x )   is known as npd bd of x.

45
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(2) The set Q of rational numbers is not a nbd of any of its points, since if
x Q, then (x , x )   contains an infinite number of irrational points and hence
(x , x ) Q    for every 0.

Properties of Neighbourhood

Theorem 5.3.1 : Every open interval is a neighbourhood of each of its points.

Proof : Let ‘p’ be an arbitrary point of the given open interval (a, b). Since every set
is a subset of itself, we can write p (a, b) (a,b), 

which means that (a, b) is a neighbourhood of p. As p is an arbitrary point of
(a, b), so (a, b) is a neighbourhood of each of its points.

Corollary : Any closed interval [a, b] is a neighbourhood of each point in it except
the points a and b.

Hints : p (a, b) [a,b]. 

Theorem 5.3.2.  Any superset of a neighbourhood of a point is also a neighbourhood
of that point.

Proof : Let N be a neighbourhood of a point p and let M N .

Since N is a neighbourhood p, so an open interval (a, b) containing p such that

p (a,b) N M,  

which implies that M is a neighbourhood of p.

Since p and M are choosen arbitrarily, the result follows.

Theorem 5.3.3 : The intersection of two neighbourhoods of a point is also a
neighbourhood of that point.

Proof : Let N1 and N2 be two neighbourhoods of a point p. So, 1 0   and 2 0 
such that

1 2 1p (p ,p ) N     and 2 2 2p (p ,p ) N    .

Choose 1 2min{ , }    so that

1 1 1p (p , p ) (p , p ) N      

and 2 2 2p (p , p ) (p , p ) N       ,
which follows that
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1 2p (p , p ) N N .    

Hence 1 2N N  is also a neighbourhood of p.

Note : By repeated applications of the above theorem, we can state the
following :

The intersection of finitely many neighbourhoods of a point is also a neighbourhood  of
that point.

However, the intersection of an infinite number of neighbourhoods of a point may not
be a neighbourhood of that point.

For example, for every 1 1n IN, ,
n n

   
 

is a neighbourhood of 0.

But 
n 1

1 1, {0}
n n





   
 

 , which is not a neighbourhood of 0, as {0} is finite set.

Theorem 5.3.4 : The union of two neighbourhoods of a point is also a neighbourhood
of that point.

Proof : Let N1 and N2 be two neighbourhoods of a point p IR. So,   open intervals

(a1, b1) and (a2, b2) such that 1 1 1p a ,b N  and 2 2 2p (a , b ) N  .

Choose a3 = min {a1, a2} and b3 = max {b1, b2}.

Then 1 1 2 2 3 3p (a , b ) (a ,b ) (a b ). 

Also 1 1 1 2 2 2 1 2(a , b ) N N and (a ,b ) N N  

3 3 1 1 2 2 1 2(a ,b ) (a ,b ) (a ,b ) N N .   

Hence 3 3 1 2p (a ,b ) N N ,  

which shows that 1 2N N is a neighbourhood of p.

Note : By repeated applications of the above theorem, we can state the
following :

The union of a finite number (or arbitrary number) neighbourhoods of a point  is
also a neighbourhood of that point.
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5.4 Limit points of a set
Let S IR.    A point p IR  is called a limit point (or limiting point) of S if every

deleted neighbourhood of p contains atleast one point of S.
Thus a point p IR is a limit point of S if
(N {p}) S ,  

where N–{p} is the deleted neighbourhood of p.
A limit point of a set is also sometimes known as an accumulation point or a

condensation point or a cluster point of the set.
Isolated point : A point of a set is called an isolated point of the set if it is not a limit

point of that set.

Examples : The set 1S : n IN
n

   
 

has only a limit point 0, which is not a

member of the set. However, each point in the set S is an isolated point of the set.

Remark : A limit point of a set may or may not be a member of the set. Moreover,
a set may have no limit point, a unique limit point, or a finite or an infinite number of limit
points.

Theorem 5.4.1 : Let S IR   . A point p IR  is a limit point of S if and only if
every neighbourhood of p contains infinitely many points of S.

Proof : At first, let us take that every neighbourhod of p contain infinitely many points
of S. So, every neighbourhood of p contains a point of S other than p. Consequently, p
is a limit point of S.

Conversely, suppose that p is a limit point of S. We have to prove that every
neighbourhood of p contains infinitely many points of S.

If possible, let a neighbourhood N of p contains only finite number of points
p1, p2, ..., pn different from p.

Choose 1 2 nmin{ p p , p p , ....., p p }.

The  > 0 and (p , p )   is a neighbourhood of p which contains no point of
S other than p. So, p is not a limit point of S, which is a contradiction to our
assumption. Hence every neighbourhood of p contains infinitely many points of S.

Note : In view of the above theorem, the definition of limit point can be rewritten
as :

A point p is a limit point of a non empty set S in IR if every neighbourhood of
p contains infinitely many points of S.
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Thus the empty set and a finite set have no limit point. So, a set, having limit point,
must be infinite. Though there are so many infinite set which has no limit point. For example,
the set of natural numbers has no limit points even though it is an infinite set.

Theorem 5.4.2 : Let S IR    and S is bounded above. If S has no maximum
member then sup S is a limit point of S.

Proof : Since S is a non empty bounded above subset of IR, the sup S exists (by
completeness property) in IR and sup s = p(say). Clearly p S as S has no maximum
member.

Let 0 be arbitrary number.
Since sup S = p, so x S,   x p x p
and  an x s  such that x p .
Hence x (p , p )  and x p  as x s and p s .
This shows that every deleted -neighbourhood of p contains a point of S and hence

p, i.e., sup S is a limit point of S.

Theorem 5.4.3 : Let S IR   and S is bounded below. If S has no minimum
member then inf S is a limit point of S.

Proof : The proof is similar as above just using the concept of infimum instead
of supremum.

Derived set : The set of all the limit points of a set S is called the derived set
of S and is denoted by S'.

Examples :

(1) For n 1S ( 1) 1 : n IN , S' { 1,1}.
n

(2) For any finite set A, A', =  and hence ' = .
(3) (a, b)' = [a, b] and [a, b]' = [a, b].
(4) Q' = IR.

Exercise : Find the derived set of the set 1 1 1 : m, n, p IN
m n p

 
   

 
.
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Solution : Let 1 1 1S : m, n, p IN
m n p

 
    
 

Let  be an arbitrary small positive number.

Let us keep m, n are fixed and we choose p such that 
1
p
  .

Hence 1 1 1 1 1
m n p m n

 and also 
1 1 1 1 1
m n p m n
      .

Thus 1 1 1 1 1 1 1 ,
m n m n p m n
        

where 1 1 1 S,
m n p
  

which implies that 
1 1 S', m,n IN.
m n

Let us keep ‘m’ fixed and choose integers n and p such that 1 1,
n 2 p 2

 
  .

Therefore 1 1
n p
   , which implies that

1 1 1 1 1 1 1 1and
m n p m m n p m
         

Thus, 
1 1 1 1 1
m m n p m
       ,

which implies that 1 S', m IN
m

.

Again let us choose m, n, p such that 
1 1 1, and .
m 3 n 3 p 3

  
  

1 1 1
m n p

      and hence 1 1 10 0 .
m n p

This shows that 0 S'.
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Thus 1 1 1S' 0, , : m, n IN
m m n

Theorem 5.4.5 : The derived set of a bounded set is bounded.

Proof : Let S be a bounded set, So, sup S and inf S exists and let sup S = B and
inf S = b.

Therefore, x S b x B.    
We have to show that S' is bounded. If possible, let S' is not bounded above. Then

a S'   such that B. 

Choose B
2

 
  .         

As S',  therefore  is a limit point of S and hence the interval ( – ,
 + ) contains a member x  S, where x  .

As x lies in ( – ,  + ), therefore x > B, which is a contradiction to the fact
that x   B.

Thus the set S' is bounded above.
Similarly we can prove that the set S' is also bounded below. Hence the derived set

of a bounded set is bounded.
Problem : Let A and B be any two subsets of IR such that A B.

Show that A ' B'.
Solution : x A'    every deleted neighbourhood of x contains at least one point

of A.
             every deleted neighbourhood of x contains at least one point of

B (since A B. )
             x is a limit point of B
             x B'

Hence A ' B'.
Problem : For any two subsets A and B of IR, show that (A B) ' A' B'. 

Solution : Since A A B   and B AUB,  by above problem we have that
A ' (A B)' and B' (A B) '.  

Thus A ' B' (A B) '  ...(1)
Again x (A B) '  every deleted neighbourhood N (say) of x contains at least

one point of A B
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N contains at least one point of A or B.
 x A ' or x B' 

 x A' B' 

So, (A B) ' A' B'  ...(2)
From (1) and (2) it follows thle result.

Problem : Show that (A B) ' A' B'   for any two subsets A and B of IR.

Solution : Since (A B) A , we have (A B)' A ' and A B B,   we have
(A B)' B'  Thus (A B) ' A ' B'. 

Note : However, A ' B' (A B) '   in general. In fact A' B' (A B) '  , in general
For this, let A = (0, 1) and B = (1, 2). Then A' = [0, 1] and
B' = [1, 2].

Therefore A ' B' [0,1] [1, 2] {1},   while (A B) ' '    .

5.5 Summary

Intervals classify subsets of real numbers, neighborhoods describe proximity, and limit
points determine set boundaries. These concepts are essential for deeper studies in
topology, calculus, and mathematical analysis.

5.6 Keywords

Intervals, Open Set, Closed Set, Neighbourhood, Limit Point, Accumulation Point,
Metric Space, Real Numbers, Topology, Convergence.

5.7 References

1. Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
2. Real Analysis: Modern Techniques and Their Applications - Gerald B.

Folland, Wiley
3. Real Analysis - H.L. Royden, P .M. Fitzpatrick, Pearson
4. Understanding Analysis - Stephen Abbott, Springer
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5. Real Analysis for Graduate Students - Richard F. Bass, American Mathematical
Society

6. Introduction to Real Analysis - Robert G. Bartle, Donald R. Sherbert, Wiley

5.8 Model Questions

1. Find the limit points of the set
Q = [1, 2, 3, 4, ...........].

2. What is the limit point of the set?
                                1                         S = {— | n  N}.
                                n2

3. To the sum of two limit point of a subset of R always a limit point of that subject?
4. For any fund P  N, how may subset, of R can you construct whose limit point

is P?
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Unit 6  Open sets and Closed sets

Structure
6.1 Objectives
6.2 Introduction
6.3 Open and Closed sets
6.4 Closure of a set
6.5 Bolzano Weierstrass theorem for sets
6.6 Summary
6.7 Keywords
6.8 Reference
6.9 Model Questions

6.1 Objectives

To explore fundamental concepts in real analysis, including open and closed sets, set
closure, and the Bolzano-Weierstrass theorem, essential for understanding the structure and
behavior of subsets in metric spaces.

6.1 Introduction

This chapter introduces open and closed sets, their closure properties, and the
Bolzano-Weierstrass theorem, providing a foundation for analyzing limits, accumulation
points, and compactness in real analysis.

6.3 Open sets and closed sets
Before defining open sets, first of all we define the following :
Interior point : Let  S IR and p S.  Then p is called an interior point of S if  

a neighbourhood N of p such that p N S.
The set of all interior points of S is called the interior of S and it is denoted by Int (S)

or Sº.

54
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It may be noted that Int(S) S. Since every neighbourhood of a point contains
infinitely many points, so no point of any finite set can be an interior point. Thus Int S =
 for any finite set S. Also Int  = .

Moreover, Int (Int S) = Int S, i.e., (Sº)º = Sº for any set S.
Examples :
(1) Int (a, b) = (a, b) and Int [a, b] = (a, b) for a, b IR  with a < b.
(2) Int IR = IR, since each point of IR is an interior point of IR.
(3) Int IN = , since every neighbourhood of P IR.  contains points not belonging

to IN, i.e. no point ‘p’ of IN can not be an interior point of IN.
(4) Int Q = , since every neighbourhood of p Q contains rational as well as

irrational points, i.e., p can not be an interior point of Q.
Boundary point : Let S IR  and  p IR.  Then p is called a boundary point of S

if every neighbourhood of p can intersect S & S' (same notation for derived and
complement of a set). The set of all boundary points of S is called boundary of S and it
is denoted by S.

It may be noted that S S.   '.
Examples :
(1) If S = (a, b) or [a, b], then S {a, b}. 

(2) If S = 2 2 2{(x, y) IR : x y 1},    then

Int S = 2 2 2 2 2 2{(x, y) IR : x y 1} and S {(x, y) IR : x y 1}.       

Remark : A boundary point of a set S may or may not be a point of S.
Open set  A non empty set G in IR is called an open set if every point of G is an

interior point of G.
Thus a non empty set G in IR is an open set if and only if for each point p G, 

a neighbourhood N [i.e., an open interval (a, b)] such that
p N G   (i.e., p (a, b) G). 
In other words, a non-empty set G in IR is called an open set if G is a

neighbourhood of each of its points.
Note that a finite set need not be open.

Examples :
(1) The entire set IR ( , )    is open as for each x IR,  IR is a neighbourhood

of x.
(2) Each open interval (a, b) is an open set, because every point of (a, b) is an

Int S

S
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interior point, while the closed interval [a, b] is not an open set as a & b are not interior
points of [a, b]. Similarly, (a, b] and [a, b) are not open sets.

(3) The null set  is open set, since  contains no points, so  satisfies the  defination
of open sets.

Theorem 6.3.1 : The intersection of two open sets in IR is open.

Proof : Let G1 and G2 be two open sets in IR. We have to show that 1 2G G is an
open set.

If 1 2G G    then 1 2G G  is an open set, as  is an open set.

So, let us suppose that 1 2 1 2G G and x G G .   

Then 1 2x G and x G  .
Since G1 and G2 both are open sets, x is an interior point both of G1 and G2 and

hence x is an interior point of 1 2G G .

Since x is arbitrary point of 1 2G G , so every point of 1 2G G  is an interior  point

of 1 2G G . Hence 1 2G G  is an open set.
Theorem 6.3.2 : The intersection of a finite number of open sets in IR is an open set.

Proof : Let G1, G2, ..., Gn be n open sets and let 
n

i
i 1

G G


 . We have to show that

G is open.
If G = , then G is an open set.

So, let us suppose that G    and take 
n

i
i 1

x G G


 

So, ix G  for each i = 1, 2, ..., n.
Since Gi is an open set, so, x is an interior point of Gi for each = 1, 2, ..., n.

Hence x is an interior point of 
n

i
i 1

G G


 .

Since x is choosen arbitrarily, every point of 
n

i
i 1

G G


 is an interior point of G. Hence

n

i
i 1

G G


 is an open set.
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Note : The intersection of an arbitrary family of open sets may or may not be an open
set.

For example, for each n IN, let nG (0,n) . Then each Gn is an open set.

Also n
n 1

G (0,1) (0,2) ..... (0, n) .... (0,1),




      which is open.

Again if we consider i
1 1G ,
i i

   
 

. Then for each ii IN,G  is an open set.

However, i
i 1

1 1 1 1G ( 1,1) , , ...... {0}.
2 2 3 3

  

which is a finite set and hence not open set.

Similarly if we take i
1B 0,1
i

   
 

, where i is any positive integer. Then each Bi,

being an open interval, is an open set, whereas i
i 1

B (0,1]




  is not open as the point 1

in i
i 1

B



  is not an interior point of  i

i 1

B



 .

Theorem 6.3.3 : The union of an arbitrary family of open sets is open set.

Proof : Let  iG : i  be an arbitrary family of open set, where ^ is an index
set.

Put i
i

G G




We have to show that G is an open set.
Let x G.  Then 

0i
x G  for some 0i  .

Since 
0i

G is open, so x is an interior point of 
0i

G and hence   a neighbourhood N of

x such that 
0i .x N G 

Since 
0i

G G,  we get x N G  , which implies that x is an interior point of
G. As x is arbitrarily choosen, so every point of G is an interior point of G.
Consequently, G is open.

Corollary : The union of two open sets is an open set.
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Theorem 6.3.4 : A subset G of IR is open if and only if it is a union of open intervals.

Proof : Let us suppose that G is open set and i{G : i } be an arbitrary family of
open intervals contained in G, where  is an index set.

We have to show that i
i

G G


 .

Evidently i
i

G G G.


  ... (2.12.1)

Again if x G,  then x is an interior point of G as G is open. So, there exists

some open interval  
0i iG in G : i  containing x, i.e. 

0i i
i

x G G


 

which implies that i
i

G G


 . ...(2.12.2)

From (2.12.1) and (2.12.2), it follows that i
i

G G .

Conversely, let G be a union of open intervals. Then since each open interval is an
open set, G is a union of open sets. Hence G is open.

Theorem 6.3.5 : Let S  IR. Then
(i) Int S equals to the union of all open subsets of S.
(ii) Int S is an open set.
(iii) Int S is the largest open subset of S.
(iv) S is open if and only if Int S = S.

Proof : (i) Let  iG  be the collection of all open subsets of S. We have to show that

Int i
i

S G

Let x  Int S. Then x must belongs to some open subset, say 
0i

G of S and hence

i
i

x G .

Thus Int i
i

S G . ...(2.12.3)

Now let us suppose i
i

x G  so that 
1i

x G , for some i1. Since 
1i

G is open, x

is an interior point of 
1i

G .
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But 
1i

G S  and hence x is an interior point of S, i.e. x  Int S. Hence

i
i

G Int S . ...(2.12.4)

From (2.12.3) and (2.12.4), we get Int i
i

S G .

(ii) From (i) we have Int i
i

S G , which is the union of arbitrary family of open

sets, so Int S is open.
(iii) Let {G i} be the collection of all open subsets of S. Then

i i
i

G {G } G G G Int S,      as Int i
i

S G . This shows that Int S is the

largest open subset of S.
(iv) If S is open, then S Int S,  as Int S is the largest open subset of S. Also

Int S  S always. Hence Int S = S.
Conversely, if Int S = S, then S is open as Int S is open by (ii).
Theorem 6.3.6. Let S and T be two sets such that S T .
Then Sº Tº .
Proof : Let p be an arbitrary point of Sº. Then

p Sº S   is a neighbourhood of p.
 T is a neighbourhood of p.
 p  Tº.

Thus p  Sº p  Tº and hence  Sº Tº .
Theorem 6.3.7 : For any two sets S and T, (S T)º Sº Tº. 

Proof : Since for any two sets S and T,
S T S  and S T T .
So, we have by Theorem 2.12.6 that
(S T)º Sº and (S T)º Tº  

Hence (S T)º Sº Tº  ...(2.12.5)
Again let p be an arbitrary point of (S T)º Sº Tº  .
Then we have
p Sº Tº p Sº and p Tº   

 S is a neighbourhood of p and T is a neighbourhood of p.
 ST is a neighbourhood of p.
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p (S T)º  

Hence Sº Tº (S T)º  ...(2.12.6)

From (2.12.5) and (2.12.6) it follows that (S T)º S Tº (S T)º Sº Tº 

Theorem 6.3.8 : For any two sets S and T, Sº Tº (S T)º  .

Proof : Since for any two sets S and T, we have
S S T and T S T.  

So, by virtue of Theorem 2.12.6, we have that
Sº (S T)º and Tº (S T)º Sº Tº (S T)º.      

Remark : In general  Sº Tº (S T)º.  In fact (S T)º Sº Tº ,   in general.
For this, let us consider S = [0, 1] and T = [1, 3].
Then Sº = (0, 1) and Tº = (1, 3). Also ST = [0, 3] and hence (ST)º = (0, 3).

But Sº Tº (0,1) (1, 3) (0, 3) {1}.   

Thus Sº Tº (S T)º   and hence Sº Tº (S T)º  .

Closed Set : A subset F of IR is called a closed set if all the limit points of F are
members of F, i.e. F' F, where F' is the derived set of F.

Examples :
(1) Any closed interval [a, b] is closed, while (a, b) is not.
(2) The sets [a, b) and (a, b] are neither open nor closed.
(3) Every finite set F is closed, since F' F.  
(4) The entire set IR is closed.
(5) The null set  is closed, since '     .

Remark : The words ‘open’ and ‘closed’ are not antonyms. Any set in IR may be
of four types such as

(i) open, for example the open interval (a, b) in IR.
(ii) closed, for example the closed interval [a, b] in IR.
(iii) both open and closed, for example the sets  and IR.
(iv) neither open nor closed, for example the intervals (a, b] and [a, b).
The relationship between open sets and closed set are characterised by the

following :

Theorem 6.3.9 : A set F in IR is closed if and only if its complement Fc is open.

Proof : At first, Let us take F is closed. We have to show that Fc is open.
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Let p be an arbitrary element of Fc. So, p F.

Since F is closed and p F , so ‘p’ is not a limit point of F. So   a neighbourhood

N containing p such that F N   , which means that cp N F . 
Consequently, p is an interior point of Fc. Hence Fc is open.
Conversely, suppose that Fc is open. We show that F is closed. For this, let p be

a limit point of F. Then every deleted neighbourhood of p contains at least one point
of F. Hence there is no neighbourhood of p, which is contained in Fc. So

c cp Int(F ) F  as Fc is open, by Theorem 2.12.5(iv). Therefore p  F. Since p is
arbitrary, we may conclude that F'  F and hence F is closed.

Corollary : A set G in IR is open if and only if its complement Gc is closed.

Proof : It follows from above theorem by just taking F = Gc and use (Gc)c = G, i.e.
complement of complement of a set is itself.

Theorem 6.3.10 : The derived set of every set is closed.

Proof : Let S be a set and S' be its derived set. We show that S' is closed. For this,
let us take  be a limit point of S'. We have to show that S' , i.e,  is a limit point
of S.

Let 0   be an arbitrary number.
Since  is a limit point of S', the interval ( , )      contains an infinite number of

members of S' other than .
Let ( , ) S'       and .  

Since S', therefore  is a limit point of S. So, the interval ( , )       contains
an element of S other than . This shows that  is a limit point of S and hence the theorem
is proved.

Theorem 6.3.11 : The intersection of two closed sets is a closed set.

Proof : Let F1 and F2 be two closed sets. Then Fc
1 and Fc

2 are open sets (by Theorem
2.12.9) and hence c c

1 2F F is an open set as union of two open sets is an open set.

Since c c
1 2 1 2F F (F F ), 

c, by De Morgan’s law. So, c
1 2(F F ) is an open set and

hence 1 2F F  is a closed set.

Theorem 6.3.12 : The intersection of an arbitrary family of closed sets is closed.

Proof : Let i{F : i }  be an arbitrary family of closed sets, where ^ is any index set.



62 NSOU  5CC-MT-02

Put i
i.

F F




Using De-Morgan’s Law, we have
c

c c
i i

i i

F F F
 

 
  
 
 

Since each Fi
c is open, so Fc is the union of an arbitrary family of open sets. So, by

theorem 2.12.3, Fc is open and hence by Theorem 2.12.9, F is closed.

Theorem 6.3.13 : The union of two closed sets is a closed set.

Proof : Let F1 and F2 be two closed sets.

So, c c
1 2F and F  are open sets, by Theorem 2.12.9.

c c
1 2F F   is an open set, by Theorem 2.12.1.

 c
1 2F F   is an open set, by De-Morgan’s law.

1 2F F   is a closed set, by Theorem 2.12.9.

Theorem 6.3.14. The union of a finite number of closed sets is a closed set.

Proof : Let F1, F2, ...., Fn be n closed sets. Then F1
c, F2

c, ..., Fn
c are open sets and

hence 
n

c
i

i 1

F

 , the intersection of a finite number of open sets, is an open set.

So, by De-Morgan’s law, 
cn n

c
i i

i 1 i 1

F F
 

 
 

 
  is an open set and hence 

n

i
i 1

F

 is a closed

set, by Theorem 2.12.9.

Note : The union of an arbitrary family of closed sets may or may not be closed.

For example, for each n
n 1n IN, let F 1,

n
     

. Then each Fn is a closed set.

Now n
n 1

3 4F [1, 2] 1, 1, .....
2 3





          
   = [1, 2], which is a closed set.

Again if we consider n
nS 0,

n 1
    

 for each n IN . Then each Sn is a closed set.
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However n
n 1

1 2 3F 0, 0, 0, ......
2 3 4





                
  

= [0, 1), which is not a closed set.

Problem : Let G be an open set and F be a closed set in IR. Show that
(i) G – F is open and (ii) F – G closed.

Solution : (i) Let x G F.  Therefore x G  but x F . Since x G  and G is
open, so x is an interior point of G. Thus there is a positive number 1 such that

1 1x (x , x ) G.   

Again since x F  and F is closed, so x cannot be a limit point of F. Therefore, there

exists a positive number 2  such that

2 2(x , x ) F   

Choose 1 2min{ , }.  

Then x (x , x ) G and (x , x ) F        ,
which implies that x (x , x ) G F.    
This shows that x is an interior point. Hence G – F is open as x is arbitrary.
(ii) Again let p be a limit point of F – G.
Since F – G  F, therefore p is a limit point of F.
So, p F  as F is closed
We now show that p G . If possible, let p G . Then there exists a positive number

 such that
p (p , p ) G    .
This shows that (p , p ) (F G) ,
which is a contradiction to our assumption that p is a limit point of F – G.
Thus p G  and hence p F G  , which means that F – G contains all its limit

points and hence it is closed.

6.4. Closure of a set

Let S be a subset of IR. The closure of S, denoted by S , is the intersection of all
closed supersets of S,
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i.e. S {F : F is closed and S F}. 

Note that S S  for any subset S of IR.

Also and IR IR.   

Theorem 6.4.1 : If S is any subset of IR then
(i) S  is closed
(ii) S  is the smallest closed superset of S.
(iii) S is closed S S. 

Proof : (i) From the definition of S , it is the intersection of some closed sets
containing S. Since intersection of an arbitrary family of closed sets is closed, so S  is
closed.

(ii) By definition of S  (closure of S) and using above (i), (ii) follows.
(iii) Let us suppose that S S.  Since S  is always closed, therefore S is closed.
Converely suppose that S is closed. Then clearly S is the smallest closed superset

containing itself. Consequently S S.

Note : Since for any set S in IR, S  is always closed. Thus S S  by above (iii).

Theorem 6.4.2 If S is any subset of IR, then 1S S S ,  ', where S' is the derived set
of S.

Proof : We now show that S S' is closed. For this, let x be any limit point of
S S' . Then x must be a limit point of S and (or) S'.

If x is a limit point of S, then x S'.  Again, if x is a limit point of S' then x S'  as
S' is always closed. Thus, in both the cases, x S' . Hence x S S',   and consequently
S S'  is closed.

Since S S'  is a closed superset of S, and S  is the smallest closed superset of
S, we have

S SUS' ... (2.13.1)

Again, since S  is closed, we have 'S S .

Now 'S S S' S S and S S  always, we may conclude that

S S' S . ... (2.13.2)
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From (2.13.1) and (2.13.2), it follows that S S S' 

Remark : The above theorem can be used as alternative definition of closure of a set.
We can also find the closure of a set using the formula in above theorem. For example,

(1) 'IN IN IN IN IN as IN ' 

(2) ' as '� � � �  � �

(3) IR IR IR ' IR IR IR as IR ' IR.    

(4) Q Q Q' Q IR IR as Q' IR.    

(5) For 1S : n IN , S' {0}
n

    
 

 and hence 1 1S S S 0,1, , , .... .
2 3



Theorem 6.4.3 : For any two sets S and T, S T S T.  

Proof : Let S T and x S. 

Then  x S S' x S or x S'   

x T or x T ', as S T S' T '     

x T T ' x T   

So, S T .
Theorem 6.4.4 : If S and T are two subsets of IR then S T S T  .

Proof : S T (S T) (S T) '   

(S T) (S T ), as (S T) ' S T    

(S S ) (T T ) S T    .

Theorem 6.4.5 : If S and T are two subsets of IR, then S T S T  .

Proof : Since S T S and S T T   .

Therefore, S T S and S T T    by theorem 2.12.17.

S T S T   .

Remark : However S T S T   in general, for any two subsets S and T of IR.
For this, let S = (1, 2) and T = (2, 3).
Then S [1,2] and T [2, 3]  .

S T {2} and S T ,     which implies that S T     .
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Thus S T S T  .

Some important sets :
(i) A set S is called dense in IR if S– = IR
(ii) A set S in IR is called dense-in-itself if S  S'.
(iii) A set S in IR is called perfect if S = S'.
For example,
(i) The set Q is dense in IR as Q IR . Also Q is dense-in-itself as Q Q '.

Similarly IR is dense-in-itself.
(ii) If we consider S (a, b) IR  . Then S' [a, b]. So S  S' and hence S is dense-

in-itself.
(iii) Let S = [a, b],  a, b  IR. Then S' = [a, b]. So, S is a perfect set.

6.5 Bolzano Weierstrass Theorem for sets
In section 2.11, we have seen that a finite set has no limit point. Also an infinite set

may or may not have a limit point. For example, the infinite set 
1 : n IN
n  has limit point

0, while the infinite set �  of integers has no limit point. So, a natural question arises— what
is the sufficient condition for the existence of a limit point of an infinite set. The following
theorem known as Bolzano— Weierstrass Theorem gives us the said sufficient condition.

Theorem 6.5.1 (Bolzano-Weierstrass Theorem) : Every bounded infinite subset of
IR has at least one limit point.

Proof : Let S be a bounded infinite subset of IR. Since S is bounded, So sup S and
inf S exists by completeness property of IR.

Let inf S = m and Sup S = M.
Define a subset H of IR by
H = {x  IR : x exceeds at most finitely many elements of S}.
Then m  H as m does not exceed any element of S and hence H  .
However, M exceeds infinitely many elements of S, since S is infinite and Sup S = M.

So, there is no number greater than or equal to M in H. Consequently M is an upper bound
of H. So, H is a non-empty bounded above subset of IR.

Therefore sup H exists and Sup H =  (say).
We now show that a is a limit point of S.
Choose  > 0.
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Since Sup H = , so   an y H such that y .

So,  exceeds at most finitely many elements of S as y H.

Also by definition of sup,  can not belongs to H. So  exceeds infinitely
many elements of S. Thus for each 0 , the -neighbourhood ( – ,
 + ) of  contains infinitely many elements of S. Hence  is a limit point of S.

Remark : In above theorem, the condition of boundedness is only sufficient condition
for the existence of a limit point of an infinite set, while this condition is not necessary for
an infinite set may have a limit point. For this, the set of rational numbers Q is an infinite
and unbounded set and Q has limit points. In fact Q' = IR.

6.6 Summary

In this unit we have discussed many important properties of IR (set of real numbers)
like algebraic property, order property and completeness property. Through this unit, the
students can learn the concept of neighbourhood of a point in IR, limit point of a set, open
set, closed set in IR etc. The students also can know the sufficient condition for the
existence of limit points of a set. Many results regarding the topic are given here. One can
study more. For them, a list of references is given in section 2.18. Some important data
and results are cited in section 2.16 (summaries) at a glance. For understand the topic
clearly, some model questions are given in section 2.19.
 The system of real numbers can be described by means of certain axioms which can

be divided into three categories, namely Field axioms, Order axioms and completeness
axiom. The system IR of real numbers equipped with above three axioms is called
a complete ordered field.

 The set of rational numbers is an ordered field but not a complete ordered field.

 A set is countable if it is either finite or enumerable. A set is uncountable if it is not
countable.

 Subset of a countable set is a countable set.

 The cartesian product of two countable sets is countable.

 A real number of the form 
p
q

, where p, q � , q 0  and gcd (p, q) = 1, is a
rational number.

 m , where m is a non-square positive integer, is an irrational number.
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 The terms ‘real number’ and a ‘point’ on the real line can be used interchangeably.
 (Archimedean property) If x and y are any two positive real numbers with y < x then

n IN  such that ny > x.
 Between any two distinct real numbers, there exists infinitely many rational numbers,

irrational numbers and hence real numbers.
 The set IR is a neighbourhood of each of its points, while each of the set IN, Z, Q

and the set of irrational numbers are not a neighbourhood of any of its points.
 A set having limit point must be infinite or in otherwords a finite set has no limit

points.
 Every infinite and bounded set in IR has at least one limit point. (Bolzano Weierstrass

Theorem).
 The set of all the limit points of a set is known as its derived set.
 A set is open if each point of it is an interior point.
 Any arbitrary union of open sets is an open set.
 The intersection of a finite number of open sets is an open set. However, the

intersection of an infinite number of open sets may or may not be an open set.
 Any subset of IR is open if and only if it is a union of open intervals.
 A set is closed if all the limit points of the set are members of that set.
 A set is closed (open) if and only if its complement is open (closed).
 Any arbitrary intersection of closed sets is a closed set.
 The union of a finite number of closed sets is a closed set. However, the union of

an infinite number of closed sets may or may not be a closed set.
 The union of a set and its dervied set is the closure of that set.
 For any set S in IR, Int S is the largest open subset of S, while S– (closure of S) is

the smallest closed superset of S.

6.7 Keywords
Real numbers, Field axioms, order axioms, completeness axiom, ordered field,

complete ordered field, countable sets, uncountable sets, rational number, irrational
number, Archimedean property, Neighbourhood of a point, limit points, open sets, closed
sets, Bolzano Weierstrass theorem for sets.
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6.9 Model Questions
[A] Multiple Choice Questions (MCQ) :
(Choose the correct answer each of the following) :

[1] The set of rational numbers is
(a) complete ordered field (b) ordered field but not complete
(c) field but not ordered (d) none of the above.

[2] Let S be a bounded set. Then
(a) inf S < sup S (b) inf S = sup S.
(c) inf S   sup S (d) sup S  inf S.

[3] The lower bound of 
1 : n IN
n

  
 

 is

(a) 0 (b) 1

(c) n (d) 
1
n

[4] For any two positive real numbers x and y with y < x, there is n IN  such that

(a) ny x  (b) ny x  (c) ny > x (d) ny < x.
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[5] Between any two distinct real numbers, there exists
(a) only one irrational number (b) finite number of irrational numbers
(c) infinitely many irrational numbers (d) None of the above.

[6] Every non empty bounded above subset of real numbers has
(a) Supremum (b) Infimum
(c) both infimum and supremum (d) neither infimum nor supremum

[7] The derived set of any set is
(a) open (b) closed
(c) both open and closed (d) neither open nor closed.

[8] For any set S, Int S is
(a) open (b) closed
(c) both open and closed (d) neither open nor closed.

[9] For any set S, S  is
(a) open (b) closed
(c) both open and closed (d) neither open nor closed.

[10] Let S = 
1 : n IN
n

  
 

. Then S is

(a) closed (b) dense-in-itself
(c) both closed and dense-in-itself (d) neither closed nor dense-in-itself.

Ans. : [1] (b), [2] (c), [3] (a), [4] (c), [5] (c), [6] (a), [7] (b), [8] (a), [9] (b),
[10] (d).

[B] Miscellaneous Questions :
[1] Let a, b  F such that a  0 and a . b = a, show that b = 1.

Hints : Multiply both sides of a . b = a by a–1 and use the property M2 and M4

of section 2.3.

[2] Let F be an ordered field. If a, b, c  F such that a < b and b < c then show
that a < c.

[3] Given in an ordered field F, 0 a b and 0 c d,    where a, b, c, d F. Show
that 0 ac bd. 
Hints : 0 a b 0 b a      and since 0 c ,
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it follows that 0 bc ac 0 ac bc     ...(1)

Similarly one can show that bc bd ...(2)

(1) and (2) gives the result.

[4] Let A and B be two sets such that A B . If A is an uncountable then show that
B is an uncountable, i.e., every superset of an uncountable set is uncountable.
Hints : If possible, let B be a countable set. Then A being a subset of a countable
set, must be countable, which is a contradiction. Hence the result.

[5] Let A be the domain of a function f and let A be countable. Show that f(A) is
countable.
Hints : Since A is countable, A can be arranged as a1, a2, a3, .... So, f(A) can
also be arranged as f(a1), f(a2), f(a3), ..., which means that f(A) has one to one
correspondence with IN. Hence f(A) is countable.

[6] Prove that the set IN × IN is countable, where IN is the set of natural numbers.

Hints : Here IN × IN = n{A : n IN}, where

           nA {(n,1), (n,2), (n,3), ...., (n,n),....}, n IN. 

Define a mapping nf : A IN  by f(n, m) = m, m IN.

Then f is bijective. Consequently An is countable for each n IN.  Hence
IN × IN is countable.

[7] Let Z be the set of all integers. Show that Z is countable.

Hints : Define a mapping f : IN Z  by

1 (n 1), n 1,3,5, ......
2f (n) 1 n , n 2,4,6,....

2

Show that f is bijective and hence Z is countable.

[8] Prove that union of two countable sets is also countable.

[9] Let ‘m’ be a non-square positive integer. Show that there is no r Q  such that
r2 = m.
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Solution : If possible let r Q  such that r2 = m. So, p, q , q 0  �  and gcd

(p, q) = 1 such that 
pr
q

 .

Since m is a non-square positive integer,   two consecutive square integers
2 2and ( 1)    such that

2 2m ( 1)
p 1
q

0 p q q ...(1)

Now 
2

2 2 2 2 2
2

pm(p q) mp 2 mpq mq (mq p) as m
q

       

Thus 
2

mq pm ,
p q

 which implies that m has two representations

2 2
p mq pm and m
q p q

   
       

.

Since gcd(p, q) = 1, we must have p q q  , which contradicts to (1). Hence
the result.

[10] If p is any prime number, show that p  is not a rational number.

[11] Show that if x is rational and y is irrational then x + y is irrational and if
x  0 then xy is irrational.

[12] Prove that between any two distinct real numbers, there exists infinitely many
real numbers both rational and irrational.
Hints : Density property of IR.

[13] Give examples of sets which are
(i) bounded below but not bounded above
(ii) bounded above but not bounded below
(iii) bounded
(iv) unbounded.
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[14] Give an example of an infinite set which is bounded.
Ans. : The open interval (1, 2).

[15] Give an example of a subset of an unbounded set which is not necessarily
unbounded.
Ans. : The set IR is unbounded but its subset (0, 1) is bounded.

[16] Find the infimum and supremum, if they exists, of the following sets :

(i)
1 : n IN
n

  
 

(ii)
n( 1) : n IN

n
 

 
 

(iii)
n( 1)1 : n IN

n
 
  

 

(iv)  n( 1) n : n IN 

(v)
n : n IN

n 1
  

 

(vi)  2x : x 25 �

(vii)
1 : n IN
n

    
 

Solution : (i) Let S = 
1 : n IN
n

  
 

. Then max S = 1 and hence sup S =1. And

by definition of infimum, inf S = 0.

(ii) The maximum and minimum element of the given set are respectively  
1
2  and

–1. So, sup 
1S
2

  and inf S = –1.

(iii) If S = 
n( 1)1 : n IN

n
 
  

 
 then max 3S

2
  and min S = 0. So,

sup 3S
2

  and inf S = 0.
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(iv) Let S =  n( 1) n : n IN  . Then S = {–1, 2, –3, 4, –5, 6, ....} =
{..., –5, –3, –1, 2, 4, 6, ....}.
Clearly the set is neither bounded below nor bounded above. Hence infimum
and supremum of S do not exist.

(v) Given n 1 2 3S : n IN , , , .....
n 1 2 3 4

        
   

Here sup S = 1 and inf 
1S
2

 .

(vi) Let S =  2x : x 25 � . Then sup S = max S = 5 and inf S =
min S = –5.

(vii) Let S = 
1 : n IN
n

    
 

. Then sup S = 1  and inf S =   by similar

to (i).

(17) Show that a non empty finite set can not be a neighbourhood of any of its points.
Hints : Let S ( ) be a finite set and p be an arbitrary point of S. Since for any
positive real number , the open interval (p – p +  contains infinitely many
points, so (p – , p + ) can not be a subset of the finite set S. Then S is not
a neighbourhood of p.

(18) Give an example of
(i) a set which is a neighbourhood of each of its points.

(ii) a set which is not a neighbourhood of any of its points.
(iii) a set which is a neighbourhood of each of its points with the exception

of one point.
(iv) a set which is a neighbourhood of each of its points with the exception

of two points.
(v) a set which is not an interval but is a neighbourhood of each of its points.

Ans. (i) any open inerval in IR, say (a, b).
(ii) any non empty finite set.

(iii) any semi open interval in IR, say (a, b].
(iv) any closed interval in IR, say [a, b].
(v) (0, 1) (2, 3).

(19) Show that the set of integers is not a neighbourhood of any of its points.
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(20) Is the set of natural numbers a neighbourhood of 5 ? Give reasons.

(21) Define limit points and derived set of a set.

(22) Give an example of a set which coincides with its derived set.

(23) Find the limit points of the following sets :
(i) IN (ii)[a, b) (iii) IR — Q (iv) {1, 2, 3, 4}.

(24) Give examples of sets S such that
(i) S S'  

(ii) S' S
(iii) S S'

Ans. (i) 
1S : n IN
n

   
 

(ii) 
1 1 1S {0,1, , , , .....}
2 3 4



(iii) S = (a, b).

(25) Give example of each of the following :

(i) a bounded set having limit points.

(ii) a bounded set having no limit point.

(iii) an unbounded set having limit points.

(iv) an unbounded set having no limit point.

(v) an infinite set having a finite number of limit points.

Ans. (i) [a, b], (ii) any finite set, (iii) Q, (iv) IN, (v) 
1 1 1 : m,n,p IN
m n p

 
   

 
.

(26) Give example of each of the following :

(i) an open set which is not an interval

(ii) a closed set which is not an interval.

(iii) an interval which is an open set.

(iv) an interval which is a closed set.
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(v) an interval which is not an open set.

(vi) an interval which is not a closed set.

(vii) a set which is neither an interval nor an open set.

(viii) a set which is neither an interval nor a closed set.

(ix) a set which is open as well as closed

(x) a set which is neither open nor closed.

Ans. (i) (1, 2) (3, 4)  (ii) {1, 2, 3, 4}, (iii) (a, b), (iv) [a, b], (v) [a, b],

(vi) (a, b), (vii) IN, (viii) 
1 : n IN
n

  
 

 , (ix) IR, (x) [a, b).

(27) Verify Bolzano-Weierstrass theorem for the set S in IR, where 
nS : n IN

n 1
   

 
.

(28) Prove that arbitrary union of open sets in open.

(29) Show that arbitrary intersection of closed sets is closed.

(30) Is the union of an infinite number of closed sets a closed set ? Justify your answer.

(31) Is the intersection of an arbitrary family of open sets an open set ? Give reason.
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Unit 7  Introduction to sequence

Structure

3.1 Objectives

7.1 Objectives

7.2 Introduction

7.3 Sequence

7.4 Bounded sequence

7.5 Summary

7.6 Keywords

7.7 Reference

7.8 Model Questions

7.1 Objectives

The Object of this unit are as :

 to study sequences, its boundedness and convergence.

 to know about non-convergent sequences.

 to know about the sum, difference, product and quotient of two or more
convergent sequences as well as some limit theorems.

 to study a special type of sequence, called monotone sequence and its properties.

 to know monotone convergence theorem through which we get the necessary and
sufficient condition of a monotone sequence to be convergent.

 to study subsequence and its properties including Bolzano weierstrass theorem for
sequences.

 to study Cauchy sequence and Cauchy’s convergence criterian, which states that
the necessary and sufficient condition of a sequence to be convergent.

7777
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7.2 Introduction
This unit deals with the sequences of real numbers. Its foundation was laid by the

French mathematician Augustin Louis Cauchy (1789 – 1857). To the development of
sequences of real numbers, the contribution of George Cantor (1845 – 1918) is also
significant. A sequence of real numbers is a function from IN to IR. Such functions plays
an important in real analysis.

7.3 Sequences
A function f : IN  IR is called a sequence in IR (or a real sequence), where IN and

IR are respectively the set of natural numbers and set of real numbers.
The value of the function f at n  IN is denoted by f(n). If f(n) = xn then the sequence

is denoted by {f(n)} or {xn}, i.e., {x1, x2, ....}. Here xn is called the nth term or general
term of the sequence {xn}.

Two sequence {xn} and {yn} are said to be equal if xn = yn for each n IN.

Remark : (1) The domain of every sequence is IN, but its range is
{f(n) : n  IN}  IR. That means the range of the sequence may be a finite or an infinite
set. So, the range of a sequence {xn} is the set consisting of all the distinct elements of the
sequence {xn}.

(2) We use IN with usual well ordering.

Examples :

(1) Let f : IN IR  be defined by 
1f (n) , n IN.
n

   So, the sequence is 
1
n

 
 
 

,

which can be also written as 
1 11, , , .....
2 3

 
 
 

. The range of this sequence is infinite.

(2) Let f : IN IR be defined by f (n) n, n IN.  So, the sequence is
{n}, i.e.{1, 2, 3, 4, ....}. Its range is also infinite.

(3) Similarly {n2} is the sequence {12, 22, 32, .....}

(4) Let f : IN IR  be defined by nf (n) , n IN
n 1

 


. The sequence is 
n

n 1
 
 

 
,
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whose elements are 
1 2 3, , , ....
2 3 4

 
 
 

. Similarly 
n 1 : n IN

n
  

 
 is the sequence

3 42, , , .....
2 3

 
 
 

. The range of both the sequences are infinite.

(5) Let f : IN IR be defined by nf (n) ( 1)  , n IN . The sequence is

   n( 1) , i.e. 1,1, 1,1, 1, ....    . The range of this sequence is  1,1 , i.e., finite.

(6) Let f : IN IR  be defined by 
nf (n) sin ,n IN.
2


   So, the sequence is

nsin ,
2
 

 
 

i.e. {1, 0, –1, 0, 1, 0, ....}. Its range is {–1, 0, 1}, i.e., finite.

(7) Let f : IN IR be defined by f (n) 3, n IN.  So, the sequence is {3}. i.e.,
{3, 3, 3, .....}. This sequence is called the constant sequence.

7.4 Bounded Sequence

A sequence n{x } is called bounded above if M IR  such that nx M, n IN   .
Here M is known as an upper bound of the sequence {xn}.

A sequence {xn} is bounded above as well as bounded below if M IR  such
that nx m, n IN . Here m is known as a lower bound of the sequence {xn}.

If a sequence {xn} is bounded above as well as bounded below then bounded
below ther {xn} is called bounded. Thus, a sequence {xn} is bounded if m, M IR 
such that

nm x M, n IN   
In other words, a sequence {xn} is bounded if there exists a real number M(

0) such that

nx M, n IN,  

that means if the range of the sequence is bounded.
A sequence {xn} is called unbounded if it is not bounded.
Remark : Every number greater than an upper bound is also an upper bound and

every number smaller than a lower bound is also a lower bound.
An upper bound of a sequence is called the supremum (or least upper bound),
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written as sup or lub, if it is less than or equal to every upper bound of the sequence.
Similarly a lower bound of a sequence is called infimum (or greater lower bound),
written as inf or glb, if it is greater than or equal to every lower bound of the
sequence.

Examples :
(1) The sequence {–n} is bounded above by –1, but not bounded below.
(2) The sequence {n2} is bounded below by 1, but not bounded above.

(3) The sequence 
1
n

 
 
 

 is a bounded sequence, as 10 1, n IN.
n

 The

supremum and infimum of this sequence are 1 and 0 respectively. So, this sequence
contains its supremum, but not infimum.

(4) The sequence nsin
2
 

 
 

 is bounded as 
n1 sin 1, n IN
2 .

(5) The sequence  n( 1)  is a bounded sequence. In this case, the bounds are

–1, and 1.

(6) The sequence n
n 1

 
 

 
 is a bounded sequence, as 

1 n 1, n IN.
2 n 1

 The

supremum and infimum of this sequence are 1 and 1
2

 respectively. So, this sequence

contains its infimum, but not surpemum.

Exercise : Show that the sequence  nx , where n 2 n 1

1 1 1x 1 ....
2 2 2       is

bounded.

Solution : Here, 1 2 3 2

1 1 1x 1, x 1 , x 1 ....,
2 2 2

        that means the sequence

is strictly increasing. Consequently the sequence is bounded below by the first term
i.e. 1.

Also, 

n

n 2 n 1 n 1

11
1 1 1 12x 1 .... 2 2, n IN.12 2 2 21

2

 

   
           


Hence the sequence is bounded above also. Thus the given sequence {xn} is bounded.
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7.5 Summary

This chapter explores the concept of sequences, focusing on their bounded nature,
convergence, and limit points, with applications to real analysis.

7.6 Keywords

Sequence, bounded sequence, convergence, real analysis, limit points, monotonicity.

7.7 References

1. Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
2. Real Analysis: Modern Techniques and Their Applications - Gerald B. Folland,

Wiley
3. Real Analysis - H.L. Royden, P.M. Fitzpatrick, Pearson

7.8 Model Questions

1. Define a sequence and explain its boundedness.
2. What is the difference between convergent and divergent sequences?
3. State the Bolzano-Weierstrass theorem for bounded sequences.
4. Give an example of a bounded sequence that does not converge.
5. Explain the concept of a limit point for a sequence.
6. What is a Cauchy sequence, and how does it relate to convergence?
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Unit 8  Convergence
Structure
8.1 Objectives
8.2 Introduction
8.3 Convergent sequence
8.4 Limit theorem
8.5 Summary
8.6 Keywords
8.7 Reference
8.8 Model Questions

8.1 Objectives

To understand the concept of convergent sequences, their limits, and key theorems
governing limits in real analysis.

8.2 Introduction

This chapter explores convergent sequences, their properties, and essential limit
theorems. These concepts form the foundation for rigorous analysis and mathematical
proofs in calculus and beyond.

8.3 Convergent Sequence
A sequence {xn} is said to be convergent if there is a real number   such that for

each > 0 , there exists a natural number m (depending on ) satisfying

nx , n m. ...(7.5.1)

In this case, we also say that the sequence {xn} converges to   or ‘  ’ is the limit
of the sequence and we write

nx as n  or nn
lim x 

or Simply nlim x .

82
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Note : (1) We know that n nx x ( , )  

So, we may use nx ( , )   instead of nx   in the above definition. This
means that after a finite number of terms from the begining, all the terms of the sequence
must lie in the open interval ( , )  .

Thus if nn
lim x   then n 1n

lim x  .
(2) The choice of m, in the definition, is not unique. As, if the criterian (7.5.1), in above

definition, is satisfied then (7.5.1) also holds for any greater natural number of m.

Non-Convergent sequence : A sequence is called non-convergent sequence if it is
not convergent. Non-convergent sequences are either ‘divergent’ or ‘oscillatory’, as
defined below :

Divergent sequence A sequence {xn} is said to diverge to +  if for every positive
real number K, however large,   a natural number m such that nx K, n m.  

In this case, we write nn
lim x


   or nlim x  or nx .
Again a sequence {xn} is said to diverge to  if for positive real number K,

however large,  a natural number m such that nx K, n m.

In this case, we write n n nn
lim x or lim x or x .

Thus a sequence {xn}, which diverges to either  , or  is called a divergent
sequence.

Oscillatory Sequence : A sequence {xn} is said to be oscillatory if it is neither
convergent nor divergent.

In this case, the sequence {xn} oscillates between two numbers as n  .
Also an oscillatory sequence is said to oscillate finitely or infinitely according as it is

bounded or unbounded.

Examples :
(1) The following sequences are convergent :

(i) 1
n

 
 
 

 is convergent and converges to 0, as 1lim 0
n
 .

(ii) 
n

n 1
 
 

 
 is convergent and converges to 1, as nlim 1

n 1



.

(iii)  nx , where xn = 3 for all n IN , is convergent and converges to 3.
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(2) Each of the sequences  
2

2 n 3n ,
2n 1

 
 

 
 diverges to .

(3) Each of the sequences 
1{ n}, log
n

     
  

 diverges to  .

(4) The sequence   n 1 n1 and sin
2

    
 

 oscillate finitely betdween –1 and 1,

whereas the sequence  n( 1) n  and 
n 1( 1) n

n
   
 

 oscillate infinitely.

Theorem 8.3.1. The limit of a convergent sequence is unique.

Proof : Suppose {xn} is a convergent sequence. If possible, let {xn} converges

to two distinct limits   and '. Choose 
1 .
2

   Then 0.  So, there exists

1 2m ,m IN  such that—

n 1x , n m  and n 2x , n m .
Take m3 = max {m1, m2}. Then it follows from above that

n n 3x and x , n m .  ....(3.5.2)

Thus 3n m ,  we have

n n

n n

(x ) (x )
x x

, u sin g (3.5.2)

   

 

       = 2  

So,     , which is absurd and hence our assumption is wrong.
Consequently, the limit of a convergent sequence is unique.

Theorem 8.3.2. Every convergent sequence is bounded.

Proof : Let {xn} be a convergent sequence and it converges to .

Choose 1. Then m IN   such that nx 1, n m.
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Now n nx x 1, n m.   i.e. nx l , n m. ... (3.5.3)

If M = max 1 2 m 1,l , x , x , .... x , then

nx M, n 1, 2, ..., m 1    ... (3.5.4)

and since l M,  it follows from (3.5.3) that

nx M, n m ... (3.5.5)
From (3.5.4) and (3.5.5), we see that

nx M, n IN .
Consequently the sequence {xn} is bounded.

Note : The converse of the above theorem is not true. For this, we consider the

sequence  n 1( 1) {1, 1,1, 1, ....}    , which is bounded but it is not convergent,
because lim (–1)n–1 oscillates between –1 and 1.

Exercise 3.5.1 : Show that the sequence 
n( 1)

n
 
 
 

 is convergent .

Solution : Here 2n
1x

2n
  and 2n 1

1x
2n 1





.

So, 2n 2n 1lim x 0 lim x ,   which implies that the given sequence is convergent
and it converges to zero.

Exercise 3.5.2. Show that the sequence {xn}, where 
2

n 2

2n 1x ,
2n 1





 converges to 1.

Solution : Let  > 0 be given, then
2

n 2

2n 1x 1 1
2n 1


   

  2

2
2n 1

2

2
2n 1

 


2 22n 1  


 
1
22 2 2n n

2 2
, say

Choose m = [ ]+1, where [ ] is the greatest integer, but not greater than  .
Then nn m n x 1     ,
which means that the sequence {xn} converges to 1.
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8.4 Limit Theorems
The sum, difference, product and quotient of two sequences give rise to new

sequences. In this section, we show that the sum, difference, product and quotient of
two convergent sequences are also convergent and determine their limits.

Theorem 8.4.1 : Let {xn} and {yn} be two convergent sequences such that

n nlim x x  and lim y y  respectively.
Then
(i) n n n nlim(x y ) x y lim x lim y    
(ii) n n n nlim(x y ) x y lim x lim y    
(iii) n nlim(cx ) cx c lim x , c IR
(iv) n n n n.lim(x y ) xy lim x .lim y 

(v)
n n

n n

x x lim xlim ,
y y lim y

 
  

 
 provided n{y }is a non-zero real numbers and y 0 .

Proof : (i) Let 0  be arbitrary small number. Since nlim x x  and nlim y y ,
so there exists two natural numbers m1 and m2 such that

n 1
1x x , n m
2

     ...(3.6.1)

and n 2
1y y , n m
2

     . ...(3.6.2)

Choose m = max {m1, m2}. Then (3.6.1) and (3.6.2) hold n m. 
Thus n m.  , we have

n n n n(x y ) (x y) (x x) (y y)      

n n
1 1x x y y
2 2

      

i.e. n n(x y ) (x y) , n m,     

which implies that the sequence {xn + yn} is convergent and

n n n nlim(x y ) x y lim x lim y     .

(ii) It is similar as above. Only note that n m,   we have
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n n n n n n
1 1(x y ) (x y) (x x) (y y) x x y y
2 2 ,

which implies that the sequence n n{x y }  is convergent and

n n n nlim(x y ) x y lim x lim y     .

(iii) If c = 0 then the result is obvious. So, suppose c 0, .
We know that

n ncx cx c x x   . ...(3.6.3)

Let 0  be given. Since nlim x x,  so there exists a nutural number m such
that

nx x , n m
c

. ...(3.6.4)

In view of (3.6.4) we have from (3.6.3) that

ncx cx n m ,
which implies that the sequence {c xn} is convergent and

n nlim(cx ) cx c lim x , for all c IR.  
(iv) We have that

n n n n n nx y xy (x y x y) (x y xy)    

n n nx (y y) y(x x)   

n n nx y y y x x    ...(3.6.5)
Since {xn} is convergent, it is bounded. So, there exists M ' IR  such that

nx M', n IN.   ...(3.6.6)

Take M = max M', y . Then, in view of (3.6.6), we have from (3.6.5) that

n n n nx y xy M y y M x x     . ...(3.6.7)

Since {xn} and {yn} are convergent, so for arbitrary 0,   two natural numbers
m1 and m2 such that

n 1x x , n m
2M


    ...(3.6.8)
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and n 2y y , n m
2M


    ...(3.6.9)

Choose m = max (m1, m2). Then the relations (3.6.8) and (3.6.9) hold for all
n  m.

Thus n m   we have from (3.6.7) that

n nx y xy M. M. ,
2M 2M

which implies that the sequence {xnyn} is convergent and
lim (xnyn) = xy = lim xn . lim yn.

(v) Since lim yn = y, so for 
y

,
2

   a natural number m1 such that

n 1

y
y y , n m

2
    n 1

y
y y , n m

2
    

n 1

y
y , n m

2
    . ...(3.6.10)

Now 
n n n n n

n n n

x x x y xy y(x x) x(y y)
y y y y y y

n n
n n2

n

y x x x y y 2 x2 x x y y ,
y y y y

  
     ...(3.6.11)

1n m   by (3.6.10).

Again since {xn} and {yn} are convergent, so for arbitrary 0,   two natural
numbers m2 and m3 such that

n 2

y
x x , n m

4
     ...(3.6.12)

and 
2

n 3

y
y y , n m

4( x 1)
    

 . ...(3.6.13)

Choose m = max {m1, m2, m3}. Then each of the relations (3.6.11) — (3.6.13)
hold for all n  m.

Thus n m,  in view of (3.6.12) and (3.6.13), we have from (3.6.11) that
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2
n

2
n

y 2 x yx x 2 . .
y y y 4 4( x 1) 2 2y

 
     


.

Thus we get 
n

n

x x , n m,
y y

   

which implies that the sequence 
n

n

x
y

 
 
 

 is convergent and

n n

n n

x x lim xlim .
y y lim y

Note : By virtue of Theorem 8.4.1(V), we can say that

n n

1 1 1lim ,
y y lim y

 
  

 
 that means if {yn} is a convergent sequence of non-zero

real numbers and converges to a non-zero real number y, then the sequence 
n

1
y

 
 
 

is also a convergent sequence and converges to 
1 .
y

Theorem 8.4.2. : If {xn} is a convergent sequence of real numbers and converges to
x, then the sequence {|xn|} is also convergent and converges to |x|.

Proof : Let 0  be an arbitrary small number.
Since {xn} is convergent sequence and converges to x, so   a natural number m such

that

nx x , n m    . ...(3.6.14)

Now  n nx x x x , n m      , using (3.6.14)

which implies that the sequence {|xn|} is convergent and nlim x x .

Note : The converse of the above theorem is not true. For this, if we consider

thle sequence  n 1
n{x } ( 1)   . Then nx 1, n IN.    So, thle sequence  nx  is a

convergent sequence and converges to 1, while the sequence {xn} is not a convergent
sequence.



90 ______________________________________________ NSOU  5CC-MT-02

Theorem 8.4.3 : Let {xn} be a convergent sequence of real numbers such that lim
xn = x. If nx 0 n IN,    then x  0.

Proof : We have to show that x  0.
If possible, let us suppose that x < 0.
Since, lim xn = x, so for a given 0,   a positive integer m such that

nx x , n m   

i.e. nx x x , n m     . ...(3.6.15)

Since x < 0, choosing 
x 0
2

    in (3.6.15) , we get

n
x xx x x , n m
2 2

i.e. n
xx 0, n m
2

    ,

which is a contradiction to the fact that nx 0, n IN.    So, our assumption is
wrong. Hence we have x  0.

Theorem 8.4.4 : Let {xn} and {yn} be two convergent sequences and there exists
a natural number m such that n nx y , n m.Then lim xn  lim yn.

Proof : Let lim xn = x and lim yn = y.
Suppose zn = yn – xn. Then {zn} is a convergent sequence such that nz 0, n m.  

So, by Theorem 8.4.3, it follows that lim Zn  0, and hence lim xn  lim yn.
Theorem 8.4.5 (Sandwich Theorem) : Let {xn}, {yn} and {zn} be three sequences

of real numbers and there is a natural number m such that xn< yn< zn, n m.   If lin xn

=   = lin zn, then {yn} is convergent and lim yn =  .

Proof : Let 0 . Since lim xn =   = lim zn, so  two natural numbers m1 and m2
such that

n 1x , n m  and n 2z , n m .
Choose m3 = max {m1, m2}. Then it follows from above that

n n 3x and z , n m . 

i.e. n n 3x and z , n m    ...(3.6.16)
Also given that xn < yn < zn, n m  . ...(3.6.17)
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Again let us choose K = max{m3, m}. Then from (3.6.16) and (3.6.17) we can write
n n nx y z , n K, 

which implies that {yn} is convergent sequence and lim yn =  .
Examples :

Ex 3.6.1. Prove that  
n
lim n 1 n 0


   .

Solution : Here  
n n n

1 1lim n 1 n lim lim
n 1 n 1n 1 1

n

  
   

  
  

 

= n n

1 1lim . lim
n 11 1

n

 

 

10. 0.
2

 

Ex 8.3.2 : Prove that 2 2 2n

1 1 1lim ..... 1
n 1 n 2 n n

Solution : Let us take n 2 2 2

1 1 1x ....
n 1 n 2 n n

   
  

2 2

2 2 2

1 1 1..... ,since n r n 1
n 1 n 1 n 1

      
  

 for 2   r   n.

2

n , n 2
n 1

  


. ...(3.6.18)

Again clearly 
2 2 2

1 1 2
n 1 n 2 n 2

 
  

.

Similary 2 2 2 2

1 1 1 3
n 1 n 2 n 3 n 3

  
   

.

Proceeding in this way, we get n 2

nx , n 2
n n

  


. ...(3.6.19)

From (3.6.18) and (3.6.19) we obtain

n2 2

n nx , n 2
n n n 1

   
 

. ...(3.6.20)
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Now 
2n n

n 1lim lim 1
1n n 1
n

 
 

 

 and 
2 2n n

n 1lim lim 1
n n 11

n

 
 

    
 

.

So, by Sandwich theorem, it follows from (3.6.20) that nn
lim x 1


 .

Ex. 8.3.3.  Find the value of 
n

3 2 nlim
n



Solution : We have 
n n n

3 2 n 3 1lim lim 2 3lim 2 3.0 2 2
n n n  

         
 

.

Ex. 8.3.4. Show that 
n

(3n 1)(n 2)lim 3.
n(n 3)

 




Solution : We know that 1lim 0.
n


Now, 
n n

1 23 1
(3n 1)(n 2) n nlim lim 3n(n 3) 1

n
 

         
 

n n

n

1 2lim 3 lim 1
3.1n n 3.

3 1lim 1
n

 



       
     

  
 

Theorem 8.3.6. Let {un} be a sequence such that 
n 1

n
n

ulim .
u

 If 1,  then

nn
lim u 0


 .

Proof : Let  be an arbitrary small positive number.

Since n 1

n
n

ulim ,
u

 so   a natural number m such that 
n 1

n

u , n m.
u



As 1,  we choose  so small such that 1 and let r. 

Then 0 < r < 1

Now 
n 1 n 1 n 1

n n n

u u u , n m.
u u u

    

n 1

n

u r, n m.
u
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Hence we have 
m 1 m 2 n

m m 1 n 1

u u ur, r, .......... r.
u u u

Multiplying above, we get 
n

n mn
m

m

u rr
u r

 

and hence nm
n m

u
0 u r , where 0 r 1

r
   

Taking limit as n ,  we get n
nu 0, since r 0 as n .

This means that nn
lim u 0




Example 8.3.5  Show that for any 
n

n

xx IR, lim 0
n!

.

Solution : Let 
n

n
xu
n!



So, 
n 1

n 1
n

n

u x n! x.
u (n 1)! x n 1


  

 

Hence n 1

n n n
n

1x.u x nlim lim lim 0 1,1u n 1 1
n



  
   

 
.

So by above theorem, it follows that 
n

xlim 0
n!

 .

Example 8.3.6 : Show that nm(m 1)(m 2)....(m n 1)lim x 0, x 1.
n!

   
 

Solution : Let n
n

m(m 1)(m 2).....(m n 1)u x
n!

   


n 1

n n n
n

m 1u m n nlim lim x lim x x , say,1u n 1 1
n



x x 1.
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So, by Theorem 8.4.6. we have nn
lim u 0




i.e. n

n

m(m 1)(m 2).....(m n 1)lim x 0
n!

   


Theorem 8.3.7 If {un} be a sequence such that n 1

n
n

ulim 1,
u

  then nn
lim u


 

Proof : Let 0  be arbitrary small number.
Since   > 1, we choose  such that   –  > 1

Again since n 1

n
n

ulim
u

 , therefore   a positive integer m, such that

n 1

n

u , n m
u



i.e. n 1

n

u , n m.
u

 

So, n 1

n

u K(say),
u

  where K > 1, n m. 

Putting n = m, m + 1, m + 2, ...., n – 1 in above and multiplying them, we get
n

n mn
m

m

u KK ,
u K

   which means that nm
n m

u
u .K

K


Since K > 1, therefore nK as n 

Hence nn
lim u


  .

Theorem 8.3.8 : If un > 0 for all n IN and n 1

n
n

ulim (finite)
u

  then 
1

n
nn

lim u  .

Proof : Let 0  be an arbitrary small +ve number.

Since n 1

n
n

ulim ,
u

  So   a natural number m such that

n 1

n

u l , n m
u
      i.e. n 1

n

u , n m.
u
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Thus we get, n 1

n

u ,
u

  m 2

m 1

u ,
u

  ..... n

n 1

u
u

  .

Multiplying all these above, we get

n m n mn

m

u( ) ( )
u

   i.e. 
n n

n
m m

m

( ) u ( )
( ) u ( )
 

 

i.e. 
n n

m n m mm m

( ) ( )u u u , as u 0.
( ) ( )
 

 

i.e. 

1 1
1n n

m mn
nm m

u u( ) u ( )
( ) ( )

 
 

i.e. 
1 1 1
n n n

nA ( ) u B ( ),  ....(3.6.21)

where m m
m m

u uA 0 and B 0
( ) ( ) 

.

It is known that for p > 0, 
1
n

n
lim p 1


  and hence 
1
n

n
lim A 1


  and 
1
n

n
lim B 1


 .

Consequently it follows from (3.6.21) that
1
n

n( ) u ( ), n m 

i.e. 
1
n

nu , n m  and hence 
1
n

nn
lim u .

Remark (1) In above theorem, if   then 
1
n

nn
lim u .


 

(2) The converse of the Theorem 8.4.8 is not true. For this, if we consider the

sequence {un}, where 
n

n
3 ( 1)u

2
 

 . Then 
1
n

nn
lim u 1


  but 
n 1

n
n

ulim
u



  does not exist.

Example 8.3.7 : Prove that 
1
n

n

(n!) 1lim
n e

 .
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Solution : Let n n

n!u .
n

  Then nu 0, n IN    and 
n 1

n
n

u 1lim 0.
u e



 

So, by virtue of Theorem 8.4.8, it follows that
1
n

n
nn n

1 (n!) 1lim u , i.e. lim .
e n e 

 

Example 8.3.8. Prove that  
1
n

n

(n 1)(n 2)....(2n) 4lim .
n e

 


Solution : Let n n

(n 1)(n 2)....(2n)u .
n

 
 Then nu 0, n IN   and

n 1
nn n

n

u 2(2n 1) 1 4lim lim . 0.
u n 1 e11

n



 


  

   
 

So, by virtue of Theorem 8.4.8, it follows that
1
2

n
nn n

4 {(n 1)(n 2)....(2n) 4lim u , i.e. lim .
e n e 

 
 

Theorem 8.3.9. (Cauchy’s first theorem on limits)

If 1 2 n
nn n

a a .... alim a , then lim .
n

 

Proof : Let us take bn = an –   . ...(3.6.22)
Since n nn n

lima , So lim b 0, and hence the sequence {bn} is convergent.

Also from (3.6.22), we have that

1 2 n 1 2 na a .... a b b ..... b
n n

 .

So, to prove the theorem, we have to show that 1 2 n

n

b b .... blim 0.
n

  


Since {bn} is convergent, so it is bounded and hence   a number K such that

nb K, n IN.      ...(3.6.23)
Again since {bn} converges to 0, so   a natural number m such that



NSOU  5CC-MT-02 _______________________________________________ 97

n
1b , n m.
2

        ...(3.6.24)

Now 1 2 n 1 2 m m 1 m 2 nb b ..... b b b .... b b b .... b
n n n

         
 

1 2 m m 1 nb b ..... b b .... b
n n

    
 

mK (n m) , n m,
n 2 n

 
   

mK .
n 2


  ......(3.6.25), using (3.6.23) and (3.6.24).

Let m1 be the positive Integer greater than 
2mK


 so that 1
mK , n m .
n 2


  

Thus for all n  max(m, m1) we have from (3.6.25) that 1 2 nb b .... b
n

  
,

which means that 1 2 n
n

b b ... blim 0.
n

Consequently, 1 2 n

n

a a .... alim .
n



Note : The converse of the above theorem is not true. For this, let us consider
a sequence {an}, where an = (–1)n.

Then 1 2 na a .... a 0,
n

  
  if n is even

   = 
1 ,
n

 if n is odd.

So, 1 2 n

n

a a .... alim 0,
n

  
  but the sequence {an} is not convergent, i.e. nn

lima


does not exist.

Example 8.3.9 : Show that 
11 1
32 n

n

1lim 1 2 3 ... n 1.
n

Solution : Let 
1
n

na n . Then 
1
n

nn n
lim a lim n 1
 

 



98 ______________________________________________ NSOU  5CC-MT-02

So by Cauchy’s first theorem on limits, we have 1 2 n
n

a a .... alim 1
n

i.e. 
11 1
32 n

n

1lim 1 2 3 .... n 1.
n

Example 8.3.10 : Show that 2 2 2n

1 1 1lim ... 1
n 1 n 2 n n .

Solution : Let n 2

na .
n n  Then n 2n n

n

nlim a lim
n n
1lim 1.

11
n

Thus by Cauchy’s first theorem on limits, we have

1 2 n

n

a a .... alim 1
n

  


i.e., 2 2 2n

1 1 1 1lim ..... 1
n n 1 n 2 n n

i.e., 2 2 2n

1 1 1lim ..... 1
n 1 n 2 n n

.

Example 8.3.11 : Show that 
 22 2 2n

1 1 1 1lim ..... 0
n (n 1) (n 2) 2n

 
     

   
.

Solution : Now  22 2 2n

1 1 1 1lim .....
n (n 1) (n 2) 2n

 
    

   

 22 2 2n n

1 1 n n nlim lim .....
n n (n 1) (n 2) n n 

 
     

    

 1 2 nn

10 lim a a .... a ,
n

     (3.6.26)
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where an = n2 2n n

n n 1and lima lim 0
(n r) (n n) 4n 

  
 

.

So, by virtue of Cauchy’s first theorem on limits, we have

1 2 nn

1lim (a a .... a ) 0
n

   

and hence it follows from (3.6.26) that

2 2 2 2n

1 1 1 1lim ..... 0
n (n 1) (n 2) (2n)

 
       

Theorem 8.4.10 (Cauchy’s second theorem on limits)

If n nn
lim a , where a 0, n IN and 0 then   n

1 2 nn
lim a a ... a .

Proof : Define a sequence {un}, where un = log an, n IN  .

Since each an > 0 and nn
lim a 0,  we have

n n nn n n
lim u lim log a log lim a log .

Hence by Cauchy’s first theorem on limits, we get

1 2 n

n

u u .... ulim log .
n



i.e. 1 2 nn

1lim log a log a ..... log a log
n

  
1
n

1 2 nn
lim log(a a ..... a ) log 

1
n

1 2 nn
log lim (a a ..... a ) log  ,

which yields that 
1
n

1 2 nn
lim (a a ..... a )  .

Example 8.3.12.: Show that n

n
lim n 1




Solution : Define a sequence {an}, where

1 2 3 n
2 3 na 1, a , a , ...., a
1 2 n 1

   


.

Then each an >  0 and a1 a2 ..... an = n.

Also nn n n

n 1lim a lim lim 1 0.1n 1 1
n
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Therefore by Cauchy’s second theorem on limits, we get
1

nn
1 2 nn n

lim(a a ..... a ) 1, and hence lim n 1.
 

 

Example 8.3.13. : Show that 

1
2 2 n n

n

2 3 4 n 1lim .... e.
1 2 3 n

             
       

Solution : Let 
n n

n
1 n 1a 1 .
n n

        
   

Then na 0, n IN    and 
n

nn n

1lim a lim 1 e 0.
n 

     
 

So, by Cauchy’s 2nd theorem on limits, we get  
1
n

1 2 nn
lim a a ....a e




i.e. 

1
2 3 n n

n

2 3 4 n 1lim .... e
1 2 3 n

             
       

.

Example 8.3.14  : Prove that 

1
n n

n

nlim e.
n!

 
 

 

Solution : Let 
n

n
na .
n!



Then 
n nn 1

n 1
n

n

a (n 1) n! n 1 1. 1 .
a (n 1)! n n n


               

So, 
n

n 1
n n

n

a 1lim lim 1 e 0
a n


 

     
 

.

Hence by virtue of Theorem 3.6.8, it follows that
1

n1 n
n

nn n

nlim a e, i.e. lim e.
n!
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8.5 Summary

We define convergent sequences, establish their properties, and prove key limit
theorems. These results provide essential tools for studying functions, continuity, and
differentiation in real analysis.

8.6 Keywords

Convergent sequence, limit, epsilon-delta, bounded sequence, limit theorems, real
analysis.

8.7 References

 Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
 Real Analysis: Modern Techniques and Their Applications - Gerald B.

Folland, Wiley
 Real Analysis - H.L. Royden, P.M. Fitzpatrick, Pearson

8.8 Model Questions

1. Define a convergent sequence with an example.
2. State and prove the uniqueness of limits theorem.
3. Explain the epsilon-N definition of sequence convergence.
4. State and prove the limit theorem for sum of sequences.
5. Prove that a convergent sequence is bounded.
6. Give an example of a sequence that is bounded but not convergent.
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Unit 9  Monotone sequence
Structure
9.1 Objectives

9.2 Introduction
9.3 Monotone sequence
9.4 Summary

9.5 Keywords
9.6 Reference

9.7 Model Questions

9.1 Objectives

To understand monotone sequences, their properties, and their significance in real
analysis, including boundedness and convergence criteria.

9.2 Introduction

Monotone sequences play a crucial role in real analysis. A sequence is monotone if it
is either non-decreasing or non-increasing. The Monotone Convergence Theorem ensures
their importance in mathematical analysis.

9.3 Monotone Sequences

Let {xn} be a sequence of real numbers. Then {xn} is said to be

(i) monotonically increasing if n 1 nx x , n IN;   

(ii) monotonically decreasing if n 1 nx x , n IN;    .

A sequence {xn} which is either monotonically increasing or monotonically decreasing,
is called a monotonic sequence or montone sequence.

Note : If a sequence {xn} such that xn+1 > xn, n IN  then {xn} is called strictly
increasing sequence and if xn+1 < xn then {xn} is called strictly decreasing sequence.

102
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Examples of montonic sequences
(1) The sequence {xn}, where xn = n, is a monotonically increasing sequence, as xn+1

> xn, n IN  .

(2) The sequence {xn}, where n
1x
n

  is a monotonically decreasing sequence, as xn+1

< xn, n IN  .
(3) The sequence {xn}, where xn = (–1)n is neither a monotonically increasing

sequence nor monotonically decreasing sequence.

Example 9.3.1 : Is the sequence {xn}, where

n
1 1 1x 1 .... ,
2 3 n

      a monotonic sequence ?

Solution : We have

n 1 n
1 1 1 1 1 1 1x x (1 .... ) (1 .... ) 0,
2 3 n 1 2 3 n n 1  n IN 

1
n 1

So, xn+1 > xn, n IN  ,
which implies that the given sequence {xn} is monotonically increasing and hence

monotonic.

Example 9.3.2 : Find the bounds of the sequence {xn}, where n
4n 1x .
5n 2






Solution : Here n 1 n
4n 3 4n 1 13x x 0,
5n 7 5n 2 (5n 7)(5n 2)

 
    

   
which implies that the sequence {xn} is monotonically increasing.

So, a lower bound is the first term of the sequence, i.e., x1, which is equal to 
3
7 .

Moreover, an upper bound is = nn

4lim x .
5



It may be noted that 
3
7  is the greatest lower bound and 

4
5  is the least upper bound.

Theorem 9.3.1 : Every monotonically increasing sequence, which is bounded above,
is convergent and converges to its least upper bound.

Proof : Let {an} be a monotonically increasing sequence which is bounded above.
Let sup {an} = B. Then for given an arbitrary small positive number ,   a member

am of the sequence {an} such that
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ma B .

Therefore na B , n m    , ...(3.7.1)
since the sequence is monotonically increasing.

Also na B, n  i.e. na B , n.   ...(3.7.2)
From (3.7.1) and (3.7.2), we get

nB a B , n m      i.e. na B , n m.   

This shows that the sequence {an} is convergent and it converges to B, i.e., its
supremum.

Theorem 9.3.2. Every monotonically decreasing and bounded below sequence is
convergent and converges to its greatest lower bound.

Proof : Let {an} be a monotonically decreasing sequence, which is bounded below.
Let inf{an}= b. Then for given an arbitrary small positive number , there is a number

am of the sequence {an} such that

ma b 

Therefore, na b , n m,    ...(3.7.3)
as the sequence {an} is monotonically decreasing

Also na b, n.

Then na b , n   ...(3.7.4)
From (3.7.3) and (3.7.4), we get

nb a b , n m      i.e. na b , n m,   

which implies that the sequence {an} is convergent and its limit is b. Thus the sequence
converges to its infimum.

By virtue of Theorem 8.3.2, Theorem 9.3.1 and Theorem 9.3.2, we can state the
following :

Theorem 9.3.3. (Montone convergence Theorem) : A monotonic sequence is
convergent if and only if it is bounded.

Remark : Every monotonically increasing sequence which is not bounded above
diverges to   . And every monotonically decreasing sequence which is not bounded
below diverges to  .
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Example 9.3.3  Let 
n

n
1a 1
n

   
 

. Show that the sequence {an} is monotonically

increasing and bounded above.
If the limit of the sequence is e then show that 2 < e < 3.

Solution : We have
n

n 2

1 n 1 n(n 1) 1 n(n 1)(n 2)a 1 1 . . ..... to terms (n 1)
n 1! n 2! n 3!

1 1 1 1 1 21 1 1 1 ......to (n 1) terms
1! 2! n 3! n n

                
    

.

Similarly,

n 1
1 1 1 1 1 2a 1 1 1 1 ......to (n 2) terms
1! 2! n 1 3! n 1 n 1

                      
Comparing an with an+1, we find that first two terms are equal. From the third term,

every term of an+1 is greater than the corresponding term of an, and an+1 contains one term
more than an.

Therefore, n 1 na a , n;  
which implies that {an} is montonically increasing sequence.

Now, we have 
11 1
n

 

1 1 11
2! n 2!
    
 

Similarly, 
1 1 2 11 1
3! n n 3!
      
  

 and so on.

Hence, n
1 1 1 1a 1 ....
1! 2! 3! n!

      ....(3.7.5)

Now, 2

1 1 1 1
3! 1.2.3 2.2 2
  

Similarly, we can show that 3 n 1

1 1 1 1, ....
4! 2 n! 2  

Thus from (3.7.5), we get
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n

n 2 3 n 11 1
2 2

11
1 2 1 1 1 2a 1 ..... 1 11 2 2 2 2 1

2
n n 1

1 11 2 1 3
2 2 

       

Thus n n 1

1a 3 , n
2   

and hence na 3, n,  which implies that the sequence {an} is bounded above.
Consequently the sequence {an} is convergent, by Theorem 9.3.1.

If nn
lim a e,


  then we have 1 n n 1

1a a 3
2     i.e. n n 1

12 a 3 .
2   

Taking limit as n   in above, we get 2 < e < 3.

Example 9.3.4 : Show that the sequence f, where
1 1 1f (n) .....

n 1 n 2 n n
   

  
 is convergent.

Solution : Here 
1 1 1f (n) .....

n 1 n 2 n n
   

  

1 1 1 1 1f (n 1) ......
n 2 n 3 2n 2n 1 2n 2

       
   

Thus f(n + 1) – f(n) = 
1 1 1 1 0, n IN,

2n 1 2n 2 n 1 2(n 1)(2n 1)
     

    
which implies that the sequence {f(n)} is monotonically increasing.

Now 
1 1 1 1 1 1, , ...., .

n 1 n n 2 n n n n
  

  

So, 1 1 1 1 1 1 nf (n) .... .... 1, n.
n 1 n 2 n n n n n n

          
  

which means that the sequence {f(n)} is bounded above.
Thus by virtue of Theorem 9.3.1, the sequence {f(n)} is convergent.

Example 9.3.5 : Prove that the sequence f defined by

f (1) 7, f (n 1) 7 f (n)     converges to the positive root of x2 – x –7 = 0.
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Solution : Here f (1) 7, f (n 1) 7 f (n)   

Therefore    2 2f (2) f (1) 7 7 7 7 0,     
which implies that f(2) > f(1). ...(3.7.6)

Now        2 22 2f (n 1) f (n) 7 f (n) 7 f (n 1)      

= f(n) – f(n – 1).
So, f(n+1) > f(n) whenever f(n) > f(n – 1)
i.e. whenever f(n – 1) > f(n – 2)
... ... ... ... ... ... ...
i.e. whenever f(2) > f(1), but this is true by (3.7.6).
Thus f(n+1) > f(n), n,  which means that the sequence {f(n)} is monotonically

increasing.
Since f(n) < f(n+1), so {f(n)}2 < {f(n+1)}2 = 7 + f(n)
i.e. {f(n)}2 – f(n) – 7 < 0. ...(3.7.7)
Consider a quadratic equation x2 – x – 7 = 0, which has two roots, one positive,

say  and another is negative, say – , such that  > 0.
So, x2 – x – 7 = (x – )(x + )

and hence 2{f (n)} f (n) 7 {f (n) }{f (n) }     .

So, we have from (3.7.1) that {f (n) }{f (n) } 0  

Since f (n) 0  ,
so, f (n) 0 

i.e. f (n) , n,    which implies that the sequence {f(n)} is bounded above.
Consequently, by virtue of Theorem 9.3.1, the sequence {f(n)} is convergent.

Let us take 
n
lim f (n) .  Then 

n
limf (n 1) .

Now,  2f (n 1) 7 f (n)  

Taking limit as n    we get  2 = 7 + 
i.e.  2 –   – 7 = 0 ( )( ) 0 

Since   > 0, therefore 0,  so   = a.
Thus the limit of the given convergent sequence is the positive root of the

equation x2 – x –7 = 0.
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Example 9.3.6 : Show that the sequence f defined by

f (1) 2 and f (n 1) 2f (n)    converges to 2.

Solution : The members of the sequence {f(n)} are 2, 2 2 , 2, 2 2 , ......

We have 2 2 2 2 2 2, i.e. f (2) f (1)   
Supose that f(n + 1) > f(n).

Then 2f (n 1) 2f (n) f (n 2) f (n 1).     
Thus f(n + 1) > f(n) => f(n + 2) > f(n + 1), and f(2) > f(1).
So, by mathematical induction, we may conclude that the sequence {f(n)} is

monotonically increasing.
Clearly we have f(1) < 2.
Suppose that f(n) < 2.Then f(n + 1) = 2f (n) 2.2 2 
Thus f(n) < 2 => f(n + 1) < 2, and f(1) < 2.
So by mathematical induction, we have f(n) < 2, n.
This show that the sequence {f(n)} is bounded above.
Consequently the sequence {f(n)} is convergent by virtue of Theorem 9.3.1.
Let 

n
lim f (n) .

Since f(n + 1) = 2f (n),  we have  2f (n 1) 2f (n). 

Taking limit of above as n ,  we get
2 2 ( 2) 0.   

But this limit ‘ ’ can not be equal to zero. So, we must have   = 2, i.e., n
lim f (n) 2.




9.4 Summary

Monotone sequences are classified as increasing or decreasing. A bounded monotone
sequence is always convergent. This concept is fundamental for understanding limits,
continuity, and convergence of series.

9.5 Keywords

Monotone sequence, increasing sequence, decreasing sequence, bounded sequence,
convergence, real analysis.
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9.6 References

 Principles of Mathematical Analysis - Waiter Rudin, McGraw-Hill
 Real Analysis: Modern Techniques and Their Applications - Gerald B.

Folland, Wiley
 Real Analysis - H.L. Royden, P .M. Fitzpatrick, Pearson

9.7 Model Questions

1. Define a monotone sequence with an example.
2. Prove that every bounded monotone sequence is convergent.
3. Give an example of a monotone but unbounded sequence.
4. State and explain the Monotone Convergence Theorem.

                                     15. Show that the sequence a = — is monotone and convergent.
                                     n

6. Discuss the role of monotone sequences in real analysis.

7.
2

2
1 1. Verify as

22 3n n
nx x n
n

.

8. Verify that 
2

2
1lim 1.

1n

n
n n
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Unit 10  Subsequence
Structure
10.1 Objectives

10.2 Introduction
10.3 Subsequences
10.4 Cauchy sequences

10.5 Summary
10.6 Keywords

10.7 Reference
10.8 Model Questions

10.1 Objectives

To explore the concepts of subsequences and Cauchy sequences, highlighting their
significance in convergence analysis and the completeness of real numbers.

10.2 Introduction

Subsequences help analyze convergence behavior, while Cauchy sequences characterize
completeness. Understanding these concepts is fundamental to real analysis, ensuring
rigorous treatment of limits and continuity.

10.3 Subsequences

Let {xn} be a sequence of real numbers and  n n 1
i 


 be a strictly increasing sequence

of natural numbers, i.e., i1 < i2 < i3 < ... . Then the sequence    n 1 2 3i i , i , i ,x x x x .....  is

called a subsequence of {xn}.

Note : (1) If {yn} is a subsequence of {xn} then each yn = 
ni nx  for some i n.

(2) Every sequence can be regarded as a subsequence of itself.

110
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Examples of subsequences.
(1) Each of the sequences

(i) 2

1 1 1 1, (ii) , (iii) and (iv)
n 2 2n 1 n (2n)!

      
       

        
 are subsequences of the

sequences 
1
n

 
 
 

.

(2) Each of the sequences  2n 1x   and  2nx are subsequences of the sequence

 nx .
(3) The sequence of prime numbers {2, 3, 5, 7, 11, ....} is a subsequence of natural

numbers {1, 2, 3, 4, .....}.

Theorem 10.3.1 : Let {yn} be a subsequence of a sequence {xn}. Then

(i)  ny  is bounded if {xn} is bounded.

(ii)  ny  is montonic if {xn} is monotonic.

(iii)  ny  is convergent if {xn} is convergent. Further, if {xn} converges to 
then {yn} converges to  .

Proof : Since {yn} is a subsequence of {xn}, we have 
nn iy x , where {in} is a

sequence of natural numbers such that in < in+1 and ni n , n IN. 
(i) If {xn} is bounded then there exists real numbers m and M such that

nm x M, n IN .

So, in particular we have 
ni

m x M, n IN.   

Consequently the subsequences {yn} is bounded.
(ii) If {xn} is monotonic increasing then

n n 1n n 1 i ii i x x
  

i.e. yn  yn+1, n IN, 
which implies that {yn} is also monotonic increasing.
Similarly if {xn} is monotonic decreasing then we can prove that {yn} is also

monotonic decreasing. Hence if {xn} is monotonic sequence then {yn} is a monotonic
sequence.
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(iii) Let {xn} be a convergent sequence and converges to  . Then for given an
arbitrary small positive number , then there exists a positive integer K such that

nx n K.

Since in  n, we have n > K => in  K.

ni nx , i.e. y  .

Thus nn K, y  , which implies that the subsequence {yn} is convergent and
converges to  .

Note : The converge of (iii) is not true. If there exist two different subsequences

 ni
x  and  nj

x  of {xn}such that they converse to two different limits, then the sequence
{xn} is not convergent. That means if a sequence {xn} has a divergent subsequence then
{xn} is divergent. For example, it is known that {yn} = {1, 1, 1, ....} and {zn}= {–1, –
1, –1, ....}  are two subsequences of { xn}, where xn = (–1)n. Then both the subsequences
{yn} and {zn} are convergent and they converge to 1 and –1 respectively. However, the
sequence {xn} is not convergent.

Example 10.3.1 : Show that the sequence nsin
2

is not convergent.

Solution : Let n
nx sin . Then
2




 n
3 5x sin , sin , sin , sin 2 , sin , ......

2 2 2
      

 
= {1, 0, –1, 0, 1, 0, –1, 0, .....},

which has the subsequences    4n 3x 1,1,1, ..... , 

   2nx 0, 0, 0, .....  and    4n 1x 1, 1, 1, ....     .

Since the subsequences      4n 3 2n 4n 1x , x and x 

converge to different limits 1, 0 and –1 respectively, the sequence {xn} does not
converge.

Corollary 10.3.1 : A sequence {xn} converges to a real number   if and only if its
subsequences {x2n} and {x2n–1} converges to the same limit  .

Proof : Suppose the sequence {xn} converges to  . Then by Theorem 10.3.1
(iii), its subsequences {x2n–1} and {x2n} also converges to  .
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i.e. 2n 2n 1n n
lim x lim x . ....(3.8.1)

Conversely, suppose (3.8.1) is true. Then for given an arbitrary small positive number
, there exists two natural numbers m1 and m2 such that

2n 1x , n m . and 2n 1 2x , n m .

Choose m = max {m1, m2}. Then from above we get

2n 2n 1x and x , n m.   

Hence nx , n 2m 1,   which is also a natural number.

Consequently, nn
lim x  .

Note : Any two subsequences of a sequence {xn} converge to the same limit do not
imply that the sequence {xn} is convergent.

For this let us consider the sequence {xn}, where n
nx sin
4


 .

Then  8n 7
9 17x sin , sin , sin , ......

4 4 4

     
 

and  8n 5
3 11 19x sin , sin , sin , ......
4 4 4

     
 

are subsequences of {xn}. Each of    8n 7 8n 5x and x   converges to 
1 ,
2  but the

sequence  nx  is not convergent.
Now we have seen that every convergent sequence is bounded, (Theorem 8.3.2), but

the converse is not true, i.e., bounded sequence may not be convergent. However, we
have the following :

Theorem 10.3.2 (Bolzano-Weierstrass Theorem for Sequences) :
Every bounded sequence has a convergent subsequence.

Proof : Let S be the set of all distinct points of a bounded sequences {xn}. Then S
is bounded. There are two cases : S may be finite or infinite.

If S is finite, then there must be at least one element. say , in S, which is infinitely
repeated in {xn}. Let {in} be strictly increasing sequence of natural numbers such that

ni
x , n IN.     Clearly {xin} is a subsequence of {xn} and hence 

1nx  converges to
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, as 
1nx  is a constant sequence {, , , ....}. So the sequence {xn} has a convergent

subsequence 
1nx .

Now, if S is infinite, then by Bolzano Weierstrass Theorem for sets, it has a limit point
(see, Theorem 2.14.1), say   in IR. We have to construct a subsequence of {xn} which
converges to  .

Since   is a limit point of S, the 
1
m – neighbourhood mI l , l

m m
 

 of 

contains infinitely many element of S. Hence for each m, there are infinitely many
values of n such that n mx I .

Choose 
1 2i 1 i 2x I , x I  such that 2 1i i . Then choose 

3i 3x I such that 3 2i i  and

so on. So, we obtain a subsequence  ni
x  of  nx  such that 

ni nx I i.e. ni
1x ,
n



n IN. 

Consequently 
nin

lim x .  That means we get a convergent subsequent  ni
x  of

 nx . Hence the theorem.

Note (1) : In Example 10.3.1, we have seen that the sequence  n
nx sin
2
   

 
 is

bounded (but not convergent), which has three convergent subsequences    4n 3 2nx , x

and  4n 1x  . So, Bolzano Weierstrass Theorem for sequences is verified.
Note (2) : However a bounded sequence may have a divergent subsequence. For

this, in the sequence {xn} of Example 10.3.1, the subsequence

   2n 1x 1, 1,1, 1,1, 1, ......     is a divergent subsequence of the bounded sequence
{xn}.

Also an unbounded sequence may have a convergent subsequence. For this we

consider a sequence    n1)
n

1 1x n 1, 2, , 4, , 6, ..... ,
3 5

     
 

which is unbounded. The

sequence {x2n} is a divergent subsequence of {xn}, while the sequence  2n 1x   is a
convergent subsequence of {xn}.
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10.4  Cauchy Sequences

A sequence  nx  is called a Cauchy sequence if for given an arbitrary small positive
number , there exists a natural number K such that

n mx x , n,m K.   

Taking n = m + p, where p = 1, 2, 3, ..., the above condition can also be written as

m p mx x , m K.      and p = 1, 2, 3, ....
Thus a sequence {xn} is cauchy if xn and xm are close together when m and n are large

w. r. to K.

Example 10.4.1 : Show that the sequence 
1
n

 
 
 

 is a Cauchy sequence.

Solution : Let n
1x .
n

  Let  be an arbitrary small positive number. It is known

that 
1
n

 
 
 

 converges to 0.

So, 
1 0 n K
n 2


     (a natural number)

i.e. 
1 , n K.
n 2

Now m n m, n K.
1 1 1 1x x ,
m n m n 2 2

i.e. m n m,n K,x x , which shows that {xn} is a Cauchy sequence.
Theorem 10.4.1 : Every convergent sequence is a Cauchy sequence.
Proof : Let {xn} be a convergent sequence and nn

lim x .

Then for given an arbitrary small positive number ,  a natural number K such that

nx , n K
2

 , ...(3.9.1)

and hence mx , m K
2

 . ...(3.9.2)
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Thus n, m K,   we have

m n m n m nx x x x x x
2 2

    ,

which shows that the sequence {xn} is a Cauchy sequence.
Theorem 10.4.2. : Every Cauchy sequence is bounded.
Proof : Let {xn} be a Cauchy sequence.
Choose  = 1. Then there exists a natural number K such that

n mx x 1, n,m K.   

So, in particular taking m = K+1, we have

n K 1 n K 1x x x x 1, n K.      

or, n K 1x 1 x (say), n K      ...(2.9.3)

Let M = max 1 2 K 1x , x ,...., x , .

Then it is evident that

nx M, n 1, 2, ..., K 1    ...(3.9.4)

and also from (3.9.3) we have nx M, n K. ...(3.9.5)

From (3.9.4) and (3.9.5) it follows that nx M, n IN   ,

which means that the sequence {xn} is bounded.
Note : The converse of the above theorem is not true, i.e., bounded sequence may

not be a Cauchy sequence.
For this, let us consider the sequence {xn}, where xn = (–1)n. Clearly this sequence

is bounded as nx 1, n IN   .

Now 2m 1 2m
2m 1 2mx x ( 1) ( 1) 1 1 2, m IN ....(3.9.6)

Choose 1
2  and take p = 2m+1, q = 2m then p, q > m.

Then (3.9.6) shows that it is not possible to find any m IN  such that

p qx x , p,q m.   

That means the sequence {xn} is not a Couchy sequence.
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Theorem 10.4.3 : Every Cauchy sequence in IR is convergent.

Proof : Let  nx  be a Cauchy sequence. So,  nx  is bounded by Theorem 3.9.2.
Hence it has a convergent subsequence by Theorem 10.3.2. Let {yn} be a convergent
subsequence of {xn} such that ny  .

We shall show that {xn} also converges to  .
Let  be an arbitrary shall positive number.
Since ny , a natural number K1, such that

n 1y , n K .
2

 ....(3.9.7)

Again since {xn} is Cauchy, there exists a natural number K2 such that

n mx x ,
2


 
2n, m K  . ...(3.9.8)

Let K3 = max {K1, K2}. Then 3n, m K  we have

n mx x
2


   and ny
2

 . ...(3.9.9)

Since  ny  is a subsequence of {xn}, we have

3k my x  for some m > K3. ...(3.9.10)

Now, 
3n n m m n m kx (x x ) (x ) (x x ) (y )  

3n m kx x y ,
2 2

 using  (3.9.9).

Thus 3n K   we have nx  , which implies that the sequence {xn}
converges to  . Hence the theorem.

Combining Theorem 3.9.1. and Theorem 3.9.3, we can state the following :

Theorem 10.4.4 : (Cauchy’s Convergence Criterion) A sequence of real numbers
is convergent if and only if it is a Cauchy sequence.

Using the definition of Cauchy sequence, the Cauchy’s convergence criterion can be
stated equivalently in the form as

A necessary and sufficient condition for the sequence {xn} is Cauchy that for given every
arbitrary shall positive number , there exists a natural number m such that

n p nx x , n m and p IN.     
The above criteria is also known as Cauchy’s general principle of convergence.
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Example 10.4.2. Show that, with the help of Cauchy’s general principle of convergence,
the sequence {xn},

where n
1 1 1x 1 ..... ,
2 3 n

      is not convergent.

Solution : Here n
1 1 1x 1 ..... ,
2 3 n

    

n p
1 1 1 1 1 1x 1 ..... .....
2 3 n n 1 n 2 n p         

   .

Choose 
1
2



Now, n p n
1 1 1 1 1 1x x ..... ....

n 1 n 2 n p n 1 n 2 n p         
     

1 1 1.... , taking p n m
2m 2n 2m

     

m 1
2m 2

  .

Thus by Cauchy’s criterian for convergence, it follows that the given sequence

n{x } is not convergent.
Example 10.4.3 Use Cauchy’s general principle of covnergence to prove that the

sequence 
n

n 1
 
 

 
 is convergent.

Solution : Let n
nx .

n 1



 Then for all p  IN,

n p
n px

n p 1




 
.

Let  be an arbitrary small positive number. Choose m  IN such that
1m 1.    

Now, n p n
n p n px x

n p 1 n 1 (n p 1)(n 1)
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1 p, since 1, p IN
n 1 n+p+1

   


1 1, for n
n

.

Thus n p nx x , n m     and p IN, which proves that the sequence {xn} is
convergent.

10.5 Summary
In this unit we have defined the concept of sequence of real numbers, bounded

sequence, montone sequence, Cauchy sequence and their convergence to a limit with
examples. We also discussed the subsequence of a sequence of real numbers and their
properties with examples. Many important results related to the topic have been presented
here. Some problems have also been worked out with help of them. For more study, a
list of references is given in section 3.13. The important data and results are also mentioned
in section 3.11 as a summary of this unit. Some problems/questions are given at the end
of this unit.

 A sequence is a function from IN to IR.
 A sequence is called bounded if it is bounded above as well as bounded below.
 If a sequence is convergent then its limit is unique.
 Every convergent sequence is bounded, but the converse is not true.
 Non-convergent sequences are the sequences which are not convergent.
 Non-convergent sequences are either divergent or oscillatory.
 The sum, difference and product of two convergent sequences are also convergent.
 The quotient of two convergent sequences is also convergent, provided the limit of

the sequence & each terms of the sequence in denominator is not equal to zero.
 If a sequcne {xn} is convergent then {|xn|} is also convergent, but the converse is

not true.
 A sequence is called monotonic if it is either a monotonically increasing or

monotonically decreasing.
 Every monotonic sequence is either bounded above or bounded below.
 Every incresing sequence is bounded below.
 Every discreasing sequence is bounded above.
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 A sequence having althernatively positive and negative terms can not be monotonic.
 A monotonic sequence is convergent if and only if it is bounded (Monotone

convergence Theorem).
 Every subsequence of a bounded sequence is bounded.
 Each subsequence of a monotonic sequence is monotonic.
 Every subsequence of a convergent sequence is convergent and converges to the

same limit of a sequence. However, the converse is not true.
 Every bounded sequence has a convergent subsequence (BolzanoWeierstrass Theorem

for sequences). However, a bounded sequence may have a divergent subsequence.
Also an unbounded sequence may have a convergent subsequence.

 Every convergent sequence is a Cauchy sequence, but the converse is not true.
However, every Cauchy sequence in IR is convergent.

 Every Cauchy sequence is bounded.
 A sequence of real numbers is convergent if and only if it is a Cauchy sequence

(Cauchy’s General Principle of Convergence)

10.6 Keywords
Sequence, bounded sequence, convergent sequence, divergent sequence, oscillatory

sequence, limit of a sequence, monotone sequence, montone convergence theorem,
subsequence, Cauchy sequence.
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10.8 Model Questions

[A] Multiple Choice Questions (MCQ) :
(Choose the correct answer each of the following) :

[1] The sequence {n} is
(a) bounded above (b) bounded below
(c) bounded (d) unbounded.

[2] The sequence{2n} is
(a) bounded below (b) bounded above
(c) bounded (d) unbounded.

[3] The sequence {(–1)nn} is
(a) bounded below (b) bounded above
(c) neither bounded above nor bounded below
(d) None of these.

[4] The sequence 
n( 1)1

n
 
 

 
 is

(a) convergent (b) divergent
(c) oscillatory (d) none of these.

[5] The value of 
n

3 2 nlim
n


 is

(a) 0 (b) 1
(c) 2 (d) 3

[6] The value of 
n

n

2lim 1
n

  
 

 is

(a) e (b) e2

(c) 
1
e (d) 2

1
e
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[7] An example of oscillatory sequence is

(a) 
n( 1)

n
 
 
 

(b)  n( 1) n

(c)  2n( 1) (d)  n 2( 1) n

[8] A sequence can converges to
(a) one limit (b) finite number of limits
(c) infinitely many limits (d) All of the above.

[9] Every bounded monotonically decreasing sequence is
(a) oscillatory (b) diverges to +
(c) diverges to– (d) covnergent

[10] Which of the following statement is true ?
(a) a convergent sequence is not bounded
(b) a bounded sequence has no divergent subsequence.
(c) an unbounded sequence may have a convergent subsequence.
(d) None of these above.

Ans. : [1] (b), [2] (a), [3] (c), [4] (a), [5] (c), [6] (b), [7] (b), [8] (a), [9] (d),
[10] (c).

[B] Miscellaneous Questions :
[1] Explain the boundedness of the following sequences :

(i) {–n2} (ii) 
1cos n
3

  
 

 (iii) 
n nsin cos
2 2
   

 
, (iv) 

n n
2n

  
 
  

.

[2] Give examples of a sequence which is
(i) bounded above but not bounded below
(ii) bounded below but not bounded above
(iii) bounded
(iv) Neither bounded below nor bounded above.

[3] Show that the sequence{(–1)n} does not converge.
Hints : If xn = (–1)n, then x2n = 1 and x2n+1 = –1.

[4] Show that 
1
n

n
lim n 1
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[5] Prove that n

1lim 0
n!



[6] Show that 
1
n

n
lim p 1,


  where p > 0.

Hints : Case I ; p = 1. It is obvious as 
1
np  is constant sequence.

Case II : p >1. Then 
1
n

np 1 q   for some qn > 0.

So,  n
n np (1 q ) 1 nq   

i.e. n
p 1q , n IN

n


    and hence

1
n

n
p 1p 1 q 0

n


     as n  , which means 
1
n

n
lim p 1.




Case III : 0 < p < 1 : Then 
1
n

n
n

1p for some r 0.
1 r

 


n
n n n

1 1 1p
(1 r ) 1 nr nr

   
  n

10 r , n IN
np

     and hence

1
nn

n
n

r 10 1 p r 0 as n
1 r np

      


, which implies that 
1
n

n
lim p 1.




[7] Examine, whether the sequence 
2

2

n 3n 5
2n 5n 7

  
 

  
 is convergent or not. Find

limit, if it converges.

[8] Show that the sequence {xn}, where nx n 1 n, n IN     , is convergent.

[9] Show that the sequence {bn}, where n 2 2 2

1 1 1b ..... ,
n 1 n 2 n n

converges to 1.

[10] Show that n

1 1 1lim .....
n 1 n 2 2n

      
  

.
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[11] Prove that n

n
lim n 1




Hints : Use Theorem 3.6.8 for un = n

[12] Show that 
2 2 2n

1 1 1 1lim .....
22n 1 2n 2 2n n

 
    

   
.

Hints : Use Cauchy’s first theorem on limits.

[13] Show that n

1 1 1lim .....
n n 1 2n

       
.

[14] Prove that 
 

1n
n

nlim e
n!


 .

Hints : See example 3.6.14 as 

1
n n

1
n

n n
n! (n!)

 
 

 
.

[15] Show that n 2

n
lim2 n 0




Hints : Use Theorem 3.6.6. for 
2

n n

nu
2

 .

[16] Give an example of a sequence in each of the following :
(i) monotonically increasing but not bounded above.
(ii) monotonically decreasing but not bounded below.
(iii) bounded above as well as bounded below but not monotonic
(iv) not monotonic.

[17] Is every bounded sequence a monotonic ?

Hints : No. For this, consider  n 1( 1)  .

[18] Is the sequence 
n2

n!
 
 
 

 monotonically increasing or decreasing ? Find bounds of

this sequence, if any.

[19] Show that the sequence f, where 1 1 1f (n) .....
1! 2! n!

 is convergent.

Hints : Use Theorem 9.3.1 by showing that the given sequence is monotonically
increasing and bounded below.
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[20] Show that the sequence 3, 3 3 , 3 3 3 , ......  converges to 3.

[21] Let a1, b1 be two distinct positive real numbers and

 n n 1 n 1 n n 1 n 1
1a a b and b a b , n 2.
2          Show that the sequences {an}

and {bn} are monotonic and convergent.

Also show that n nn n
lim a lim b
 

 .

[22] Define a subsequence. Give an example of a subsequence of a sequence.

[23] Show that the sequence 
3n

3n 1
 
 

 
 is a subsequence of the sequence 

n
n 1

 
 

 
.

[24] Prove that the sequence {xn} satisfying the condition

n 2 n 1 n 1 nx x c x x , n IN,        where 0 < c< 1, is a Cauchy sequence.

[25] State and prove Cauchy’s general principle of convergence.

[26] State and prove Bolzano Weierstrass Theorem for sequences.

[27] Give an example of a bounded sequence that is not a Cauchy sequence.



126 ______________________________________________ NSOU  5CC-MT-02

Unit 11 Series of Real Number
Structure
11.1 Objectives
11.2 Introduction
11.3 Infinite Series
11.4 Summary
11.5 Keywords
11.6 References
11.7 Model Questions

11.1 Objectives

The Object of this unit are as :
 to study infinite series, and its convergence.
 to study a special type of series, geometric series & its behaviour.
 to know about Telescoping series.
 to know about convergence Tests like comparison test, D'Abmbert’s Ratio test,

Cauchy’s Root test, Integral test.
 to study about Alternating series & Leibuitz test for alternating series.
 to study Absolute convergence and conditionally convergence.
 to know about power series and radius of convergence of a power series.

11.2 Introduction

In this chapter we shall discuss the techniques of testing the behaviour of infinite series
as regards convergence. The most important technique for series, all of whose terms are
of the same sign (all positive or all negative), is to compare the given series with another
suitably chosen series with known behaviour. So, first of all, comparison  tests are
discussed, and then some special tests for convergence are considered. Leibnitzs testis for
alternating series. At last, power series will be discussed in detail towards the end.

126
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The most important application of sequences is the definition of convergence of an
infinite series. From the elementary school you have been dealing with addition of numbers.
As you know the addition gets harder as you add more and more numbers. For example
it would take some time to add

100S 1 2 3 4 5 ... 98 99 100        
It gets much easier if you add two of these sums, and pair the numbers in a special

way :

1002 S 1 2 3 4 ... 97 98 99 100        

100 99 98 97 .... 4 3 2 1        .
A straight forward observation that each column on the right side to 101 and that

there are 100 such columns yields that

100 100
101.1002S 101.100, that is S 5050.

2
This can be generalized to any natural number n to get the formula

n
(n 1)nS 1 2 3 4 5 .... (n 1) n

2


          .

This procedure indicates that it would be impossible to find the sum
1 2 3 4 5 ..... n ...      
where the last set of .... indicates that we continue to add natural numbers.
The situation is quite different if we consider the sequence

n!

1 1 1 1 1, , , , .....,
2 4 8 16 2
and start adding more and more consecutive terms of this sequence.
1 1 11
2 2 2
1 1 1 31
2 4 4 4
1 1 1 1 71
2 4 8 8 8
1 1 1 1 1 151
2 4 8 16 16 16
1 1 1 1 1 1 311
2 4 8 16 32 32 32
1 1 1 1 1 1 1 631
2 4 8 16 32 64 64 64
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These sums are nicely illustrated by the following pictures

1
2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
8

1
8

1
8

1
8

1
16

1
16

1
16

1
32

1
32 1

64

In this example it seems natural to say that the sum of infinitely many numbers
1 1 1, , , ......
2 4 8  equals 1 :

n

1 1 1 1 1..... ..... 1
2 4 8 16 2
      

Why does this make sense ? This makes sense since we have seen above that as
we add more and more terms of the sequence

1 1 1 1 1, , , , ....., .....
2 4 8 16 2n '

we are getting closer and closer to1, Indeed,

n n

1 1 1 1 1 1... 1
2 4 8 16 2 2
      

and nn

1lim 1 1
2

   
 

.

This reasoning leads to the definition of convergence of an infinite series.
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11.3 Infinite Series
Definition : 11.3.1 : Given a sequence (an) of real numbers, a formal sum of the form

nn 1
a

 (or na  for short) is called an infinite series.

For anyn� , the finite sum sn : = a1 + .... + an is called the (n-th) partial sum
of the series na .

A more formal definition of an infinite series is as follows. By the symbol

n na we mean the sequence (sn) where sn : = a1 + ... + an.

We say that the infinite series na is convergent if the sequence (sn) of partial
sums is convergent. In such a case, the limit s : = lim sn is called the sum of the series

and we denote this fact by the symbol na = s.

We may that the series na is divergent if the sequence of its partial sums is
divergent.

The series n na is said to be absolutely convergent if the infinite series n na
is convergent. Note that a series na of non-negative terms, (that is, an > 0 for all
n) is convergent iff it is absolutely convergent.

If a series is convergent but not absolutely convergent, then it is said to be
conditionally convergent.

Let us look at some examples of series and their convergence.
Example 11.3.1 : Let (an) be a constant sequence an = c for all n. Then the infinite

series na is convergent iff c = 0. For, the partial sums is sn = nc. Thus (sn) is
convergent iff c = 0.

Example 11.3.2 : Let an be non-negative real numbers and assume that na  is
convergent. Since sn+1 = sn + an+1, it follows that the sequence (sn) is increasing. We
have seen (Theorem 2.3.2) that (sn) is convergent iff it is bounded above. Hence a
series of non-negative terms is convergent iff the sequence of partial sums is

bounded. Note that if na is convergent, then na =lub n{s : n N}.

Example 11.3.3 : (Geometric Series), Let a and r be real numbers. The most
important infinite series is

2 3 n n

n 0
a ar ar ar .... ar .... ar
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This series is called a geometric series. To determine whether this series converges or
not we need to study its partial sums :

S0 = a, S1 = a + ar,
S2 = a + ar + ar2 S3 = a + ar + ar2 + ar3,
S4 = a + ar + ar2 +ar3 + ar4, S5 = a + ar + ar2 + ar3 + ar4 + ar5,
Sn = a + ar + ar2 + ... + arn–1 + arn

Notice that we have already studied the special case when a = 1 and 
1r
2

 . In

this special case we found a simple formula for Sn and then we evaluated nn
lim S


.
It turns out that we can find a simple formula for Sn in the general case as well.

First note that the case a = 0 is not interesting, since then all the terms of the
geometric series are equal to 0 and the series clearly converges and its sum is 0.

Assume that a  0. If r = 1 then Sn = n a. Since we assume that a  0, n
lim


 n a does
not exsit. Thus for r  1 the series diverges.

Assume that r  1. To find a simple formula for Sn, multiply the long formula
for Sn above by r to get :

2 n 1 n
nS a ar ar .... ar ar

2 n n 1
nrS ar ar .... ar ar ;    

now subtract, n 1
n nS r S a ar ,  

and above for Sn :
n 1

n
1 rS a
1 r






We already proved that if |r|<1, then n 1

n
lim r 0


 . If |r| > 1, then n 1

n
lim r 


 does

not exist. Therefore we conclude that
n 1

nn n

1 r 1lim S lim a a for | r | 1,
1 r 1 r



 


  

 

nn
lim S does not exist      for | r | 1,

In conclusion

If |r| < 1, then the geometric series n

n 0
a r




  converges and its sum is 1a

1 r
.

If |r|  1, then the geometric series n

n 0
a r




 diverges.
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Example 11.3.4 : Prove that the series 
n 1

1
n(n 1)   converges and find its sum.

Solution : We need to examine the series of partial sums of this series :

n
1 1 1 1S .... , n 1,2,3,.....

1.2 2.3 3.4 n(n 1)
     


It turns out that it is easy to find the Sn if we use the partial fraction

decomposition for each of the terms of the series :
1 1 1 for all k 1, 2, 3, ......

k(k 1) k k 1
  

 
Now we calculate :

n
1 1 1 1S .....

1.2 2.3 3.4 n(n 1)
    



1 1 1 1 1 1 1 1 1 1 1..... 1 .
1 2 2 3 3 4 n 1 n n n 1 n 1
                                         

Thus n
1S 1

n 1
 


 for all n = 1, 2, 3, ...... Using the algebra of limits we

conclude that

nn n

1lim S lim 1 1.
n 1 

     

Therefore the series 
n 1

1
n(n 1)



   converges and its sum is 1 :

n 1

1 1
n(n 1)






 .

Example 11.3.5 : (Telescoping Series). Let (an) and (bn) be two sequences such that

n n 1 n,a b b n 1   . We note that s1 = a1 = b2 – b1, s2 = a1 + a2 = (b2 – b1) +
(b3 – b2) = b3 – b1 and

n 1 n 2 1 3 2 n 1 n n 1 1s a .... a (b b ) (b b ) .... (b b ) b b .            

Thus we see that na  converges iff lim bn exists, in which case we have

n 1 na b limb .
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Example 11.2.6 : Consider 4 2n 1

n
n n 1



   . This is one of the series for which we

can find the sum! We observe

n 4 2 2 2 2 2 2

n n na
n n 1 (n 1) n (n 1 n)(n 1 n)

  
       

  2 2

1 1 1 .
2 n n 1 n n 1
       

Note that the sum in the brackets is a telescoping series with n 2

1 1b .
2 n n 1
     

Hence we get n 2

1 1 1 1s .
2 2 n n 1 2

      

Example 11.3.7 : Let us look at the series n 2

1
n

  of positive terms. Observe that

2

1 1
n n(n 1)


 for n  2. If sn denotes the partial sum of the series n 2

1
n

  and tn that

of 
1

n(n 1)


 , it follows that sn < tn . Since (tn) is bounded above (Example 5.1.6)

the sequence (sn) is bounded above. Hence in view of Example 5.1.3 we see that the
series 2n  is convergent.

This is a special case of the comparison test to be seen below.
Example 11.3.8 : (Harmonic Series), The harmonic series is

n 1

1 1 1 11 .....
n 2 3 4





    
The first few terms in the sequence of partial sums are :

1 2 3 4 5 6
3 11 25 137 49S 1, S , S , S , S ,S ,
2 6 12 60 20

7 8 9 10
363 761 7129 7381S , S , S , S
140 280 2520 2520

   

This series diverges to +   . To prove this we need to estimate the nth term in
the sequence of partial sums. The nth partial sum for this series is

n
1 1 1 1S 1 ....... .
2 3 4 n
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11.4 Summary

In this chapter, we explored the fundamental concepts of series in real analysis. We
began by defining an infinite series as the sum of an infinite sequence. Some examples are
also demonstrated.

11.5 Keywords

 Infinite Series
 Partial Sums

11.6 References

 Principles of Mathematical Analysis — Walter Rudin, McGraw-Hill
 Real Analysis: Modern Techniques and Their Applications — Gerald B.

Folland, Wiley
 Real Analysis — H.L. Royden, P .M. Fitzpatrick, Pearson

11.7 Model Questions

1. Show that the series

    
1 ,pn

converges and diverges for P > 1 and P   1 respectively.

2. Show if the sequence 
1

{ },
n

n n r
n

S S a

oscillating infinitly, then an is also oscillates infinitely.
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Unit 12  Convergence Test
Structure
12.1 Objectives
12.2 Introduction
12.3 Convergence test
12.5 Summary
12.6 Keywords
12.7 Reference
12.8 Model Questions

12.1 Objectives

 Understand the concept of an infinite series and its relation to sequences.
 Learn various tests for determining the convergence or divergence of a series.
 Differentiate between absolute and conditional convergence.
 Apply series concepts to mathematical problems and real-world applications.
 Develop rigorous reasoning skills in real analysis.

12.2 Introduction

A series is the sum of the terms of an infinite sequence. It plays a crucial role in
mathematical analysis, particularly in understanding limits and approximations. Convergence
tests help determine whether a series has a finite sum. This chapter introduces fundamental
series concepts and essential tools for their analysis.

12.3 Convergence Tests

Theorem 12.3.1 : (Cauchy Criterian). The series na converges iff for each 0 
there exists N�  such that

n mn, m N s s    

134
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Thus, the series na converges iff for each 0   there exists N�  such that

m 1 m 2 nn m N a a ... a        

This cauchy criterian is quite useful when we want to show that a series is convergent
without bothering to know its sum. See Theorem 5.1.17 for a typical use.

Proof. Let na be convergent. Then the sequence (sn) of its partial sums is convergent.
We know that a real sequence is convergent iff it is Cauchy. Hence (sn) is convergent iff
it is Cauchy. The result follows from the very definition of Cauchy sequences.

Corollary. If n na converges, then an  0.
Proof, We need to estimate |an|. The key observation is an = sn – sn–1 and the fact that

(sn) is convergent and hence is Cauchy. (Here (sn) is an usual the sequence of the partial
sums of the series na ).

Let  > 0 be given. Since the sum na  is convergent, the sequence (sn) of partial
sums is convergent and in particular, it is Cauchy. Hence for the given  there exists
such that for n  m  N we have |sn – sm| < . Now if we take any n N 1  , then

an = sn – sn–1. Note that n – 1 > N. Hence we obtain n n n 1a s s      for n N 1  .

This proves that na 0 .
The converse of the above proposition is not ture.

Remark : Most often we need the following observation on a convergent series

na .If n na s,   then 
N

n k.n N 1 k 1
a s a

  
   .

Now what is the meaning of the symbol nn N 1
a ?

   We define a new sequence

(bk) by setting k N kb : a . The infinite series associated with the sequence (bk) is

denoted by nn N 1
a

   or simply by nn N 1
a

  .

Let sn denote the partial sums of ka .  Let 
N n n

n k kN 1 k 1
: a b

 
    . Let sN : = a1 +

.... + aN. Then we have n N n Ns s .    Clearly n Ns s .    The claim follows from this.
An important corollary, which is used most often, is the following.

Corollary. Given 0,   there exists N N  such that the “tail” of the series

nn N 1
a

 
  .
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Proof : This is easy. Since ns s,  for 0   there exists N�  such that for

nn N, s (s ,s ).       In particular, Ns s ,    that is, Ns s .    By the last remark

n N 1 n Na s s .     Hence the corollary follows.

Exercise 12.3.1 : Given a sequence (an), let us assume the associated infinite series

na is convergent. Let N�  be fixed. Let kb ,1 k N  �  be given. We form a

new sequence (cn) where ck = bk for 1 k N   and bk = ak for k > N. Let ns a 

and b : = b1 + ...+bN. Show that nc is convergent and that n Nc s b s .   

Given two series (whether or not convergent) na  and nb , we may define their
sum as the infinite series associated with the sum (an + bn) of the sequences (an) and

(bn). Thus,  n n n na b : a b     . Similarly, given a scalar �  we define the

scaler multiple na  to be the series n( a )  .

Theorem 12.3.2 : (Algebra of Convergent Series), Let na  and nb be two
convergent series with their respective sums A and B, respectively.

(i) Their sum n n(a b )  is convergent and we have n n(a b ) A B.   

(ii) The series na  is convergent and we have na .A.  
The set of all (real) convergent series is a vector space over R.
Proof, The proofs are straight forward and the reader should go on his own.
Let (sn), (tn), and (an) be the partial sums of the series na , nb  and n n(a b ). 

Observe that using standard algebric facts about the commutativity and associativity of
addition, we obtain.

n 1 1 n n 1 n 1 n(a b ) .... (a b ) (a ... a ) (b ... b )           
= sn + tn.
It follows from the algebra of convergent sequences that n A B.  
(ii) is left to the reader.

Remark The ONLY way to deal with an infinite series is through its partial sums and
by using the definition of the sum of an infinite series.

We need to be careful when dealing with infinite series. Mindless algebraic/formal
manipulations may lead to absurdities.

Let s = 1 – 1 + 1 – 1 + .... + (–1)n+1 + ....
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(Note that s has no meaning, if we apply our knowledge of infinite series!) Then
–s = –1 + 1 –1 + 1 + .... = 1 + (–1 + 1 + ...) – 1 = s – 1.
Hence s = 1/2. On the other hand

s = (1 – 1) + (1 –1) + .... = 0.
Hence we arrive at the absurdity 0 = 1/2.

Theorem 12.3.3 : The series nn 1
u

 , where nu 0, n N IN converges iff its

sequence of partial sums {Un} is bounded, in which case, U = sup{Un : n  N} = nn 1
u

 .

Proof : If nn 1
u

  converges, then {Un} converges. Since in view of Theorem  7.2

every convergent sequence is bounded, nn 1
u

  has bounded partial sums. On the other

hand, suppose nu | M, n N.  Since nu 0  for nn N, U is an increasing sequence for
n  N. Now in view of Theorem 8.1(1) every increasing bounded sequence converges to
its supremum, it follows that nn 1

u

 converges to U.

Theorem (Comparison Test), 12.3.4 : Suppose 0 < un < vn for large n� .

(1). If n nn 1 n 1
v , then u 

 
    

(2). If n nn 1 n 1
u , then v 

 
    

Proof : Let N�  be so large that n n,0 u v n N.    Then for the partial sums
n

n kk 1
U u


 and n

n kk 1
V v


 , we have n N n0 U U V   – nV , n N.  Since N is

fixed, Un is bounded if Vn is bounded, and Vn is unbounded if Un is unbounded. The result
now follows from above Theorem.

Example  4.4.1 : Since n 1n! 2 , n � , the converges of the series 
n 1

1/ n!


immediately follows from Theorem 9.6 and Example 9.1. Similarly the divergence of the

series 
n 1

1/ n , 0 1 


    follows by comparing it with the harmonic series.

Theorem (Limit Comparison Test)  12.3.5 : Suppose un, vn > 0 for large n N.

If  n n n0 lim u / v ,    then nn 1
u

 converges iff nn 1
v

  converges.

Proof . Let n n nlim u / v .  Then there is a large N�  such that

n n n( / 2)v u (3 / 2)v  for n N . The result now follows from comparison Theorem.
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Example 12.3.2 : As an application to above theorem we shall show that

 1/33
n 1

n 1 n


      converges. For this, it suffices to consider the convergent series

2
n 1

1/ n

 , and note that 3 1/ 3
nu [(n 1) n]    and 2

nv 1/ n  both are positive for all

n�  and

n

n

2 3 3
u 2 3 1/3
v 3 2/3 3 1/3 3

n [(n 1) n ]n [(n 1) n]
(n 1) n(n 1) n

3 2 /3 3 1/3

1 1.
(1 1/ n ) (1 1/ n ) 1 3

 
   

Example 12.3.3 : Determine whether the series 6
n 1

n 1
1 n

 converges of diverges.

Solution : The dominant term in the numerator is n and the dominant term in the
denominator is 6 3n n . This suggests that this series behaves as the convergent

series 2
n 1

1
n




 . Since we are trying to prove convergence we will take

n n 26

n 1 1a and b
n1 n


 


In the Limit Comparison Test. Now calculate :

2

26 3

6 6n n n n

2 63

n 1 n (n 1) 11n (n 1)1 n n nlim lim lim lim 1.1 11 n 1 n 1n nn

   

 
    

  

In the last step we used the algebra of limits and the fact that

6n

1lim 1 1
n

 

which needs a proof by definition.

Since we proved that 
6

n

2

n
1 nlim 11
n



   and since we know that 2
n 1

1
n




  is convergent,

the Limit Comparison Test implies that the series 6
n 1

n 1
1 n








  converges.
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Theorem 12.3.6 : (d' Alembert’s Ratio Test), Let n nc  be a series of positive reals.
Assume that

n 1 nn
limc / c r. 

Then the series n nc is (i) convergent if 0 r 1,   (ii) divergent if r > 1.
The test is inconclusive if r = 1.
Proof : If r < 1, choose an s such that r < s < 1. Then there exists N�  such

that n 1 nc sc   for all n N . Hence k
N k Nc s c  , for k� . The convergence of nc

follows.
If r > 1, then n Nc c  for all n N  and hence nc  is divergent as the n-th term

does not go to 0.
Can you think of why the test is inconclusive when r = 1 ? The failure of the test

when r = 1 follows from looking at the examples n 1/ n  and 2
n 1/ n .

Theorem 12.3.7 : (Cauchy’s Root Test). Let n na  be a series of positive reals.

Assume that 1/ n
n nlim a a. Then the series n na  is convergent if 0 a 1  , divergent

if a > 1 then and the test is inconclusive a =1.
Proof : If a < 1, then choose a such that a <  < 1. Then an < n for n  N. Hence

by comparing with the geometric series 
n

n N
, the convergence of n na  follows.

If then na 1  for all large n and hence, the n-th term does not approach zero.
Can you think of why the test is inconclusive when r = 1 ?
The examples n 1/ n  and n 21/ n 2 illustrate the failure of the test when r = 1.
Exercise set :

(1) Show that 
n

n n

2 n!
n

  is convergent.

(2) Is 
n 1

n n

7
9



  convergent ?

(3) Use your knowledge of infinite series to include that n

n 0.
2



(4) Show that the sequence n

n!
n

 
 
 

 is convergent. Find its limit.
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(5) Assume that na  converges and na = s. Show that n 2k 2k 1(a a )   converges
and its sum is s.

(6) Let (an) be given such that na 0 . Show that there exists a subsequence 
kna

such that the associated series 
kk na is convergent.

(7) Show that the series n n

1
2 n




 is convergent.

(8) Let (an) be given. Assume that an > 0 for all n. Let sn denote the n-th partial sum

of the series n na .  Show that the series n
n

S
n  is divergent. Can you say anything more

specific ?
Exercise  12.3  Determine whether the series is convergent or divergent. If it is

convergent find its sum.

(a) 
n 1

n 1

26
3





 
 
 

 (b) 
n 3

n 1
n 1

( 2)
5






 (c) 
 n

n 1
n 0

2

2





 (d) 

n 3

n 1
n 0

e 


 

(e)
2n 1

n
n 1

2 

  (f) 
n 1

5
2n




 (g) 

n

n 1
(sin1)




 (h) 

2

n 0
n 4n 3





 

(i) 
n

n 0
(cos1)




 (j) 2

n 2

2
n 1



  (k) 
n

n 0
(tan1)




 (l) 

n 1

11n 1
n





  
 



(m) 
n 1

n
n 1



  (n) 
n 1

arctan n



 (o) 

n n

n 1
n 0

3 2
5






 (p) 2 n
n 2

3
n 1 e





   


(q) 
n n

2n 1
n 0

e
2






  (r) 
n 1

1n sin
n





 
 
 

 (s) 
2

2
n 0

(n 1)
n 1






       (t) n n

n 0

(0.9) (0.1) )

12.3  Let nn 1
u

  be a divergent series of positive numbers. Show that there exists

a sequence  n  of positive numbers which converges to zero, but n nn 1
u


  diverges.

12.3 Let {un} be a nonincreasing sequence of positive numbers and converges. Show
that nlim  nun = 0. Further, give an example to show that if the sequence {un} is not
nonincreasing then the result is false.
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12.4 Suppose n n n nu .v 0, n N,and {u / v }  , {vn/un} are both bounded sequence.

Show that the series n nn 1 n 1
u and v 

   either both converge or both diverge.
4.5 Suppose that {un} and {vn} are sequences of positive real numbers, and there exists

an N N  such that n 1 n n 1 nu u v v  for all n  N show that

(i) If nn 1
v

 converges then nn 1
u

 converges.

(ii) If nn 1
u

 diverges, then nn 1
v

 diverges.
4.6 Suppose that (un) is a sequence of positive real numbers, and the series un

n
n 1

u diverges show that the series.

(i) 2
n nn 1

u /(1 n u )


  converges

(ii) n nn 1
u /(1 nu )


  diverges

(iii) 2
n nn 1

u /(1 u )


 diverges.

(10) Let na  be absolutely convergent. Assume that an + 1 = 0 for any n. Show

that the series 
n

n

a
1 a


  is absolutely convergent.

We shall now state and prove the integral test. We shall use some of the results
from the theory of integration, which will be stablished in Chapter 6. (See Page 202).

If f : [a,b] � is continuous with f (x) for x [a,b]      then
b

a
(b a) f (x)dx (b a).     

We can motivate this inequality geometrically by considering a non-negative
function f and using the geometric interpretation of the definite integral.

Theorem 4.4.8 : (Integral Test) Assume that f : [1, ] [0, )    is continuous and

decreasing. Let an : = f(n) and bn : = 
n

1
f (t)dt  Then

(i) na  converges if (bn) converges

(ii) na diverges if (bn) diverges.
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Proof . Observe that n  2, we have 
n

n n 1n 1
a f (t)dt a 

   so that

n n 1n

k k1
k 2 k 1

a f (t)dt a .


 

  
If the sequence (bn) converges, then (bn) is a bounded increasing sequence.
n

k nk 2
a b


 Hence (sn) is convergent.

If the integral diverges, then nb .  Since n 1
n kk 1

b a


 , the divergence of the series

follows.
In the following examples, you will again have to use results such as the

fundamental theorem of calculus to compute the integral.
Exercise Set (Typical application of the integral test).
(1) The p-series p

n n  converges if p > 1 and diverges if p < 1.

(2) The series 1
(n 2) log(n 2)


 

 diverges.

(3) Show that the series p

log n
n

  is convergent if p > 0.

12.4 Summary

In this chapter, we explored the fundamental concepts of series in real analysis. We
began by defining an infinite series as the sum of an infinite sequence and introduced the
necessary conditions for its convergence. Key topics included partial sums, geometric and
arithmetic series, and common tests for convergence, such as the comparison test, ratio
test, root test, and alternating series test. By the end of the chapter, readers should be able
to determine the convergence or divergence of various series and understand their
applications in mathematical analysis.

12.5 Keywords

 Infinite Series
 Convergence and Divergence
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 Partial Sums
 Comparison Test
 Ratio Test
 Root Test

12.6 References

 Principles of Mathematical Analysis — Waiter Rudin, McGraw-Hill
 Real Analysis: Modern Techniques and Their Applications — Gerald B.

Folland, Wiley
 Real Analysis — H.L. Royden, P.M. Fitzpatrick, Pearson

12.7 Model Questions

1. Invertigate the convergence of the following series.

a)
2 2 21 2 3

3 5 7 2 1
n
n

 

b) A series whose nth term is 
1/33 1 .n n

c)
2n
n

d) 1 1.3 1.3.5 1.3.5.7 (2n 1)1
2 2.4 2.4.6 2.4.6.8 (2n)






e)
2

1
(log ) pn n
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Unit 13  Subsequence
Structure
13.1 Objectives
13.2 Introduction
13.3 Alternating series
13.4 Absolute convergence
13.5 Summary
13.6 Keywords
13.7 Reference
13.8 Model Questions

13.1 Objectives

To explore the concepts of subsequences and Cauchy sequences, highlighting their
significance in convergence analysis and the completeness of real numbers.

13.2 Introduction

Subsequences help analyze convergence behavior, while Cauchy sequences characterize
completeness. Understanding these concepts is fundamental to real analysis, ensuring
rigorous treatment of limits and continuity.

13.3 Alternating Series
Let a1, a2, a3,....be a sequence of positive numbers. A series of the form

a1 – a2 + a3 – a4 + a5 – a6 + ...
is said to be alternating beacause of the alternating sign pattern. (The series

–a1 + a2 – a3 + .... is also alternating, but it is more reassuring to start summation with
a positive term.)

The partial susm Sn of an alternating series are evidently not monotone.
S1 > S2, S2 > S3, S3 > S4, .....

However, the subsequences of odd-numbered and of even-numbered partial sums
S1, S3, S5, .....,  S2, S4, S6, .....

144
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may exhibit monotonic behaviour. In fact, S2n+1 and S2n are monotone if and only if
the original sequence a1, a2, a3, ....is monotone.

If convergent, an alternating series may not be absolutely convergent. For this case one
has a special test to detect convergence.

13.3.1. Alternating Series Test (Leibniz). If a1, a2, a3, ..... is a sequence of positive
numbers monotonically decreasing to 0, then the series

a1 – a2 + a3 – a4 + a5 – a6 + ...
converges.
It is not difficult to prove Leibniz’s test. Indeed, since

1 2 3a a a .....  
we have

1 1 2 3 1 2 3 4 5a a a a a a a a a ...        

1 2 1 3 4 1 2 3 4 5 6a a a a a a a a a a a ...          
which means that S2n+1 is monotone decreasing and S2n is monotone increasing.
Also 2n 1 2n 2n 1 2nS S a S    for every n, implying that both sequences are bounded

and hence convergent. To see that and S2n+1 and S2n converge to the same limit,
observe that   n 2n 1 2n n 2n 1lim (s S ) lim a 0      . Proof finished.

13.3.1 Example : The alternating harmonic series
n 1

n 1

( 1)
n






converges by Leibniz’s test. Indeed, the sign pattern is + – + – + .... and, as

n   the term 
1
n  monotonically decreases to 0.

To illustrate the error estimate, observe for instance that
1 1 1 1 1 1 1 11 .746
2 3 4 5 6 7 8 9

        

is larger than the true sum but by no more than 0.1.

13.4 Absolute convergence

Definition : A series nn 1
a

 is said to converge absolutely, if nn 1
a

  converges.
Theorem 13.4.1 : Every absolutely convergent series converges.



146 ______________________________________________ NSOU  5CC-MT-02

Proof. Suppose nn 1
a

  is an absolutely convergent series. Let sn and n  be the n-

th partial sums of the series nn 1
a

  and nn 1
a

  respetively. Then, for n > m, we have

n n

n m n n n m
j m 1 j m 1

s s a a .
   

      

Since { n } converges, it is a Cauchy sequence. Hence, form the above relation it
follows that {sn} is also a Cauchy sequence. Therefore, by the Cauchy criterion, it
converges.

Definition : A series nn 1
a

 is said to converge coditionally nn 1
a

  if converges,
but not absolutely.

Example 13.4.1 : We observe the following :

(i) The series 
 n 1

n 1

1
n




  is conditionally convergent.

(ii) The series 
 n 1

2n 1

1
n







  is absolutely convergent.

(iii) The series 
 n 1

n 1

1
n!




  is absolutely convergent.

Example 13.4.2. : For any � , the series 2n 1

sin(n )
n





  is absolutely convergent

: Note that

2 2

sin(n ) 1 n .
n n


  �

Since 2n 1

1
n



  converges, by comparison test, 2n 1

sin(n )
n





  also converges.

Theorem 13.4.2 : Suppose nn 1
a

 is an absolutely convergent series and (bn) is a

sequence obtained by rearranging the terms of (an). Then nn 1
b

  is also absolutely

convergent and n nn 1 n 1
a b 

 
  .
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13.5 Summary

We analyzed alternating series, the Alternating Series Test, and absolute convergence.
Absolute convergence implies convergence, but not vice versa.

13.6 Keywords

Alternating series, Absolute convergence, Alternating Series Test, Conditional
convergence, Convergence criteria.

13.7 References

 Principles of Mathematical Analysis — Waiter Rudin, McGraw-Hill
 Real Analysis: Modern Techniques and Their Applications — Gerald B.

Folland, Wiley
 Real Analysis — H.L. Royden, P.M. Fitzpatrick, Pearson

13.8 Model Questions

1. To the following alternating sets convergent?

               
1

1

21 1 .n

n n

2. Show the series ( 1)
1 2

n

n
 converges to .

4

3. Show that 
2

( 1)n

n n n
 converges.
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14.7 Reference
14.8 Model Questions

14.1 Objectives

To introduce the concept of power series, explore its properties, and determine its
radius of convergence, enabling students to analyze the behavior of infinite series in real
analysis.

14.2 Introduction

Power series are infinite series of the form an(x – c)n Understanding their convergence
is crucial in mathematical analysis, particularly for function approximations. The radius of
convergence determines where a power series converges absolutely, playing a vital role in
applications across calculus and complex analysis.

14.3 Power Series
A power series (centered at 0) is a series of the form

n 2 n
n 0 1 2 n

n 0
a x a a x a x .... a x .....





     
where the an are some coefficients. If all but finitely many of the an are zero, then the

power series is a polynomial function, but if infinitely many of the an are nonzero, then we
need to consider the convergence of the power series.

148
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The basic facts are these : Every power series has a radius of convergence 0 R  
which depends on the coefficient an. The power series converges absolutely in |x| < R and
diverges in |x| > R and the convergence is uniform on every interval  |x| < p where
0 p R.   If R > 0, the sum of the power series is infinitely differentiable in |x| < R, and
its derivatives are given by differentiating the original power series term-by-term.

Definition : Let n n 0(a )  be a sequence of real numbers and c� . The power series
centered at c with coefficient an is the series,

n
n

n 0
a (x c)





 .

Here are some power series centered at 0 :

n 2 3 4

n 0
x 1 x x x x ....





     

n 2 3 4

n 0

1 1 1 1x 1 x x x x ....
n! 2 6 24





     

n 2 3 4

n 0
(n!)x 1 x 2x 6x 24x ....





     
nn 2 2 4 8

n 0

(1) x x x x x ....

and here is a power series centered at 1 :
n 1

n 2 3 4

n 0

( 1) 1 1 1(x 1) (x 1) (x 1) (x 1) (x 1) .....
n 2 3 4






         

The power series in Definition 6.1 is a formal expression, since we have not said
anything about its convergence. By changing variables x — (x – c), we can assume without
loss of generality that a power series is centered at 0, and we will do so when it’s
convenient.

14.4 Radius of convergence
First, we prove that every power series has a radius of convergence
Theorem 14.4.1 : Let

n
n

n 0
a (x c)






be a power series. There is an 0 R  such that the series converges

absolutely for 0   |x – c| < R and diverges for x – c > R. Furthermore, if 0  p < R,
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then the power   series converges uniformly on the interval |x – c|   p. and the sum of
the series is continuous in |x – c| < R.

Proof : Assume without loss of generality that c = 0 (otherwise, replace x by x –
c). Suppose the power series

n
n 0

n 0
a x






converges for some 0x �  with x0 0. Then its terms converges to zero, so they are
bounded and there exists M > 0 such that

n
n 0a x M     for n = 0, 1, 2, ...

If |x| < |x0|, then
n

n n n
n n 0

0

xa x a x Mr ,
x

 
0

xr 1.
x

Comparing the power series with the convergent geometric series nMr , we see
that n

na x  is absolutely convergent. Thus, if the power series converges for some

0x ,� then it converges absolutely for every x 0with | x | | x | .�

Let
 n

nR sup | x | 0 : a x converges  
If R = 0 then the series converges only for x = 0. If R > 0, then the series

converges absolutely for every x�  with |x|<R, because it converges for some
x�  with |x|<|x0| < R. Moreover, the definition of R implies that the series diverges
for every  with |x| > R. If R = , then the series converges for all x� .

Finally, let 0 p R   and suppose |x| < p. Choose 0   such that p R.    Then
n

na   converges, so n
na M , and therefore

n
n n n n n

n n n
x pa x a a Mr ,

where r = p/q <1. Since nMr  the M-test (Theorem 5.22) implies that the
series converges unformly on | x | < p, and then it follows from Theorem 5.16 that the sum
is continuous on |x| < p. Since this holds for every 0  p < R, the sum is continuous in x
< R.

Theorem 14.4.2 : Supose that na 0  for all sufficiently large n and the limit

n
n

n 1

aR lim
a
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exists or diverges to infinity. Then the power series

n
n

n 0
a (x c)






has radius of convergence R.
Proof. Let

n 1
n 1 n 1

nn n
n n

a (x c) ar lim x c lim
a (x c) a


 

 


  

 .

By the ratio test, the power series converges if 0 r 1, or x c R,     and

diverges if 1 r ,    or x c R,   which proves the result.
The root test gives an expression for the radius of convergence of a general

power series.
Theorem 14.4.3 : Hadamard The radius of convergence R of the power series

n
n

n 0
a (x c)







is given by     1/ n
n n

1R
limsup | a |



where R = 0 if the lim sup diverges to , and R = ,  if the lim sup is 0.

Proof. Let 
1 1
n nn

n nn n
r lim a (x c) x c limsup a

By the root test, the series converges if  0 r 1, or | x c | R,     and diverges if
1 r , or | x c | R     , which proves the result.

This theorem provides an alternate proof of Theorem 6.2 from the root test ; in
fact, our proof of Theorem 6.2 is more-or-less a proof of the root test.
Examples of Power Series

We consider a number of examples of power series and their radii of convergence.
Examples 14.4.1 : The geometric series

n 2

n 0
x 1 x x ...





   
has radius of convergence

n

1R lim 1.
1
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so it converges for x < 1, to 1/(1– x), and diverges for x > 1. At x = 1, the series
becomes

1+1+1+1+.....
and at x = 1 it becomes

1  1 + 1   1 + 1 .....
so the series diverges at both endpoint x = + 1. Thus, the interval of convergence of

the power series is (–1, 1). The series converges uniformly on [–p, p] for every 0 < p <
1 but does not converges uniformlyon (–1, 1) (see Example 5.20. Note that although the
function 1/(1 – x) is well-defined for all x  1, the power series only converges to it when
|x|<1.

Example 14.4.2 : The series

n 2 3 4

n 1

1 1 1 1x x x x x .....
n 2 3 4





    
has radius of convergence

n n

1/ n 1R lim lim 1 1.
1/(n 1) n 

       
At x = 1, the series becomes the harmonic series

n 1

1 1 1 11 .....
n 2 3 4





    
which diverges, and at x = –1 it is minus the alternating harmonic series

n

n 1

( 1) 1 1 11 .....
n 2 3 4






  

which converges but not absolutely. Thus the interval of convergence of the power
series is [–1, 1). The series converges uniformly on [–p, p] for every 0  p < 1 but does
not converge uniformly on (–1, 1).

Example 14.4.3 : The power series
n 3

n 1

1 1 1x 1 x x .....
n! 2! 3!





   
has radius of convergence

n n n

1/ n! (n 1)!R lim lim lim(n 1)
1/(n 1)! n!  


     


so it converge for all x�  Its sum provides a definition of the exponential function

exp : � � (see Function 6.5.)
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Example 14.4.4 : The power series
n

2n 2 4

n 0

( 1) 1 1x 1 x x ....
(2n)! 2! 4!






   

has radius of convergence R   , and it converges for all x� . Its sum provides
a definition of th cosine function cos : � �

Example 14.4.5 : The series
n

2n 1 3 5

n 0

( 1) 1 1x x x x ....
(2n 1)! 3! 5!



 


   


has radius of convergence R   , and it converges for all x� . Its sum

provides a defintion of the sine function sin : � �

Example 14.4.6 : The power series

n 3 4

n 0
(n!)x 1 x (2!)x (3!)x (4!)x ....





     
has radius of convergence

n n

n! 1R lim lim 0.
(n 1)! n 1 

  
 

so it converges only for x = 0, if x  0, its terms grow larger once n > 1/x and
n(n!)x | as n  .

Example 14.4.7 : The series
n 1

n 2 3

n 1

( 1) 1 1(x 1) (x 1) (x 1) (x 1) ....
n 2 3






      

has radius of convergence
n 1

n 2n n n

( 1) / n n 1R lim lim lim 1,
( 1) /(n 1) n 1 1 1/ n



  


   

   

so it converges if (x–1) < 1 and diverges if (x–1) > 1. At the endpoint x = 2, the
power series becomes the alternating harmonic series.

1 1 11 .....
2 3 4

which coverages. At the endpoint x = 0, the power series becomes the harmonic series
1 1 11 .....
2 3 4

which diverges. Thus the interval of convergence is (0, 2)
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Example 14.4.8. : The power series

n 2n 2 4 8 16 32

n 0
( 1) x x x x x x x ....





       
with

k

n k

1 if n 2
a

0 if n 2
 

 


has radius of convergence R = 1. To prove this, note that the series converges
for |x| < 1 by comparison with the convergent geometric series n| x | , since

n k
n

n n k

x if n 2
a x

0 | x | if n 2

  
 

If |x| > 1, the terms do not approach 0 as , so the series diverges. Alternatively,
we have

k
1/ n

n k

1 if n 2
a

0 if n 2
 

 


so,
1/ n

n
n

lim sup | a | 1




and the root test gives R = 1. The series does not converge at either endpoint
x 1,  so its interval of convergence is (–1, 1).

14.5 Summary
In this unit, we have introduced the concept of infinite series, the convergence of series,

alternating series, absolutely convergent series, power series, and its radius of convergence.
Many essential results, along with their application, have been discussed in this unit. Some
problems have been given at the end of this unit.

A formal sum of a sequence is called a series

If the sequence  of partial sum of the sequence  is convergent, then the series is
convergent; otherwise, the series is divergent.

The series is said to be absolutely convergent if the series  is convergent.

If  converges then.
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Sum of two convergent serieses is convergent.

Every absolutely convergent series converges.

A series of the form  is called a power series with center at  and coefficient.

The radius of convergence of a power series is the radius of the largest disk in
which the series converges.

The radius of convergence of a power series is either a non-negative real number
or infinite.

14.6 Keywords

Series, convergent series, divergent series, geometric series, d’ Alembert’s ratio test,
Cauchy’s root test, alternating series, absolutely convergent series, power series, the radius
of convergence.
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14.8 Model Questions

A. (1) Let bn be a convergent series of non-negative terms. Let (an) be sequence such

that n na Mb for n N , for a fixed N and M > 0. Show that na is
convergent.

(2) If (an) and (bn) are sequences of positive terms such that n na / b 0 .

Prove that n na and b either both converge or both diverge.
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(3) As an application of the last item, discuss the convergence of

(a) 1/ 2n , (b) 1/(2n 1)  and (c) 22 /(n 3) .

(4) Assume that na is absolutely convergent and (bn) is bounded. Show that

n na b is convergent.

(5) Show that the sum of two absolutely convergent series and a scalar multiple
of an absolutely convergent series are again absolutely convergent. Hence
conclude that the set 1

  of all absolutely convergent series is a real vector
space.

(6) Let na be a convergent series of positive terms. Show that 2
na  is

convergent. More generally, show that p
na is convergent for p > 1.

(7) Let p > 0. Show that the series 
p

nn
n
e  is convergent. Can we take p = 0?

(8) Find the values of x 0, 2  such that the series nsin (x) is convergent.

(9) Let n na and b be convergent series of positive terms. Show that

n na b is convergent.

(10) Give an example of a convergent series na such that the series 2
na  is

divergent.

(11) Give an example of a divergent series na such that the series 2
na  is

convergent.

(12) Let (an) be a real sequence. Show that n n 1a a  is convergent iff (an) is
convergent. If the series converges, what is its sum?

(13) When does a series of the form a + (a+b) + (a+2b) + ... convergent?

(14) Assume that 
2

n
2

n

a 1 n for n
a n 1

� . Show that the series na  is

absolutely convergent.
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(15) Prove that if na  is convergent, then n na a .
(16) Prove that is | x | < 1,

2 4 6 3 8 10 5 11 x x x x x x x x ...
1 x .

(17) Prove that if a convergent series in which only a finite number of terms are
negative is absolutely convergent.

(18) If (n2an) is convergent, then na is absolutely convergent.

(19) Assume that (an) is a sequence such that 2
nn

a  is convergent. Show that

3
na is absolutely convergent.

B. Solved Questions :
1. In each of the following cases determine whether or not the series converges.

(a) n
n 1

1
2 1 .

Ans. We could show convergence here by using the ratio or root test or more simply
by using the comparison test by noting that

n n
1 10 .

2 1 2
The upper bound is a term from a convergent geometric series.

(b)
2

3
4n n 3.

n 2n

Ans. This is divergent.
2 2

n n n3 2
4n n 3 1 4 1/ n 3/ na c , c 4 as n .

nn 2n 1 2 / n

nc 4  implies that there exists N such that cn > 3 for n N . Hence for

n N  we have na 3/ n  and since 1/ n diverges we have by comparison that

na diverges.
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(c) 3
n 1

n n .
2n 1

Ans. This converges.

n n n3 2 3
n n 1 1 1/ n 1a c , c as n .

22n 1 n 2 1/ n

nc 1/ 2  implies that there exists N such that cn < 1 for n N . Hence for

n N  we have 2 2
na 1/ n and since 1/ n converges we have by

comparison that na diverges.

(d)
24 n

n 1

n e .

Ans. By the root test
2 2 1/ n4 44 n 1/ n 1/ n n 1/ n n

n na n e , a n e n e 0 as n .

Here the results is as a consequence of 1/ n nn 1 and e 0.  By the root test
the series converges.

2. For each of the following series determine the values of x �  such that the
given series converges.

(a)
k

k 0

x
k!

Ans. Let k
ka x / k!  and use the ratio test. We have

k 1
k 1

k
k

x / k 1 !a x 0 as k .
a k 1x / k!

By the ratio test the series converges (absolutely) for all x � .

(b) In the following �  is not an integer..

k 2

k 0

( 1)...( k 1) ( 1)x 1 x x ...
k! 2
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Ans. Let k
ka ( 1)...( k 1)x / k!. Using the ratio test

k 1

k

a k / k 1x x x as k .
a k 1 1 1/ k

Thus the series ka converges absolutely if | x | < 1 which in turn implies that the
series converges for | x | < 1.
If | x | > 1 then the terms of the series are unvounded and thus the series diverges.
What happens when x = –1 or x = 1 needs more refined tests to determine if the
series converges or diverges and the outcome depends on . This will not be
considered further here.

(c)
3 k

k
k 0

k x .
3

Ans. The root test is the easiest test to use here. With 3 k k
ka k x / 3  we have

31/ k
1/ k

k

k x x
a as k

3 3
.

By the root test the series converges (absolutely) if | x | < 3, it diverges if
| x | > 3. If | x | = 3 then | ak | = k3 and since these terms become unbounded
it follows that the series diverges when | x | = 3.

(d) k k

k 0

k x .

Ans. The root test is the easiest test to use here. With ak = kkxk we have

1/ k
ka kx .

This only converges if x = 0 and is unbounded for x 0.  Hence the series only
converges when x = 0.

(e) k 2 3 4
k

k 0

a x 1 2x x 2x x ...,

i.e. with a2k= 1 and a2k+1= 2 for k = 0, 1, 2, ... .
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Ans. Let bk = akx
k. The ratio test does not give any information here as ak+1/ak does

not have a limit as k . However we can still use the root test. Since

1/ k 1/ k
k k1 a 2, 1 a 2 1 as k .

Thus 1/ k 1/ k
k kb a x x as k .

The series converges (absolutely) if |x| < 1 and diverges if |x| > 1. By inspection
the series diverges if x = 1 as the terms of the series do not tend to 0 as
k . It can be shown that the series also diverges when x = –1.
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