PREFACE

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,”
the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations
for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and
Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based
credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this
entire exercise shall leverage the potential of higher education in three-fold ways — learner’s personal
enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively
therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of
an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in
upholding the qualitative parameters. It is time to acknowledge that the implementation of the National
Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of
Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities
in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among
Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas
Open University is committed to both quantity and quality in its mission to spread higher education. It
was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate
syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the
CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are
relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge
Systems.

Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open
University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s.
From our mandate of offering quality higher education in the mother tongue, and from the logistic
viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English.
All our faculty members are constantly engaged in this academic exercise that combines subject specific
academic research with educational pedagogy. We are privileged in that the expertise of academics across
institutions on a national level also comes together to augment our own faculty strength in developing
these learning materials. We look forward to proactive feedback from all stakeholders whose participatory
zeal in the teaching-learning process based on these study materials will enable us to only get better. On
the whole it has been a very challenging task, and | congratulate everyone in the preparation of these
SLM’s.

I wish the venture all success.

Professor Indrajit Lahiri
Vice Chancellor
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Unit 1 O Error Analysis

Sructur e

1.0 Objectives

1.1 Intr oduction

1.2 Reason of Numerical Erors
1.3 Measurement of Errors

1.4 Summary

1.5 Exercises

1.0 Objectives

After going through this unit one can able to learn about

e types of errors
e measurment of errors

1.1 Introdution

The process of solving physical or any scientific problems can be roughly divided
into three phasedhe first consists of constructing a mathematical model for the
corresponding problenThis model could be in the form of téfential equations or
algebraic equations. In most cases, this mathematical model cannot be solved
analytically and hence a numerical solution is required. In which case, the second
phase in the solution process usually consists of constructing an appropriate numerical
model or approximation to the mathematical model. For example, an integral or a
differential equation in the mathematical formulation will have to be approximated
for numerical solution appropriatelx numerical model is one where everything in
principle can be calculated using a finite number of basic arithmetic operdtians.
third phase of the solution process is the actual implementation and solution of the
numerical model.
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1.2 Reason of numerical Erors

It can be the combinedfett of two kinds of error in a calculation.

e the first is caused by the finite precision of computations involving floating-
point or integer values callédglound off error

e The second usually calle@runcation error is the diierence between the
exact mathematical solution and the approximate solution obtained when
simplifications are made to the mathematical equations to make them more
amenable to calculatioiThe term truncation comes from the fact that either
these simplifications usually involve the truncation of an infinite
series expansion so as to make the computation possible and practical, or
because the least significant bits of an arithmetic operation are thrown away

1.3 Measuement of Errorss

Numerical Errors usually measured in three wa&yssolute Erroy Relative Error
and Percentage Error
Absolute Error : Absolute Error is the magnitude of thefdience between the

true valuex and the approximate valug. Therefore absolute error is defined as

the error between two values is definedl:‘aas=|x— xa| wherex denotes the exact
value andx_ denotes the approximation.

Relative Error: The relative error ok is the absolute error relative to the exact
value. Look at it this way: if your measurement has an error of + 1 inch, this seems
to be a huge error when you try to measure something which is 3 inch long but
when measuring distances on the order of miles, this error is mostly negligible.

definition of the relative error i&, = |X_ Xa|
X

Note : Consider you try to measure a rod of length 10 cm, and found length as
9.98 cm from your scale. Hefue value or actual value of the rod 10 cm and
approximate value of the length of the rod is 9.98 cm. So, the absolute error will be

(10 — 9.98)cm = 0.02cm and the relative error will b%% =0.002
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X_
Percentage eror : One can express this error in percentagi-zpas| |X|Xa| %100,
which gives the value 0.002 x 100 = 0.2 for the example taken Ttaseis called
percentage error

Example 1.3.1 :If n:272 Is approximated as 3.14, find the absolute eredative
error and relative percentage error

Solution: Absolute error Ea:‘%z—&ll*

_|22- 21.9?
7

7

= 0-—01 =0.002857

Relative error E = %T

= 0.0009
Relative percentage errore = E x 100
= 0.0009 x 100
= 0.09%
Example 1.3.2 :Compute the percentage error in the time period fod if the
error in the measurement bis 0.01.

Solution : Given theT = ZH\FE'

Taking log of both sides we have,
logT =log 2r[+% logl —% logg

daT_1d
DT 2 1

d_T :lﬂ _OO])( 0
T x100 5] x100= ox 1 10G= 0.5

Now we will discuss some important types of Numerical Errors
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® Loss of significance
e Inherent errors
e Round-off error

e Truncation errors :

(i) Loss of significanceils an undesirable fefct in calculations using finite-
precision arithmetic such as floating-point arithmetic. It occurs when an operation
on two numbers increases relative error substantially more than it increases absolute
error, for example in subtracting two nearly equal numbers (knovwoatastrophic
cancellation). The efect is that the number of significant digits in the result is reduced
unacceptablyWays to avoid this &ct are studied in numerical analysis.

Example: As an example, consider the behavior fqfx) = x> +1—-1 asx

approaches to 0. Evaluating this functionyat1.89x 10°using Matlab incorrectly
returns the answer 0, which shows that too many significant digits have cancelled.

(i) Inherent errors: This type of errors is present in the statement of the problem
itself, before determining its solution. Inherent errors occur due to the simplified
assumptions made in the process of mathematical modelling of a problem. It can
also arise when the data is obtained from certain physical measurements of the
parameters of the proposed problem.

Inherent errors can be minimized by taking better data on by using high precision
computing aids. High precision refers to the number of decimal positions, i.e. the
order of magnitude of the last digit in a value. For example the number 46.398 has
a precision of 0.001 or 10

Example 1.3.3 :Which of the following numbers have greatest precision?

3.1201, 2.42, 5.320205.

Solution: In 3.1202, the precision is ¥0

In 2.42, the precision is 1)
In 5.320205, the precision is 20
Hence the 5.320205 has the greatest precision.

(i) Round-off errors: Generally the numerical methods are carried out using
calculator or computedn numerical computation, all the numbers are represented
by decimal fraction. Some numbers such as 1/3, 2/3, 1/7 etc. can not be represented
by decimal fraction in finite numbers of digifBhus, to get the result, the numbers
should be rounded-binto some finite number of digits.
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Again, most of the numerical computations are carried out using calculator and
computer These machines can store the numbers up to some finite number of digits.
So in arithmetic computation, some errors will occur due to the finite representation
of the numbers; these errors are called rouf@wbr. Thus, round-dferrors occur
due to the finite representation of numbers during arithmetic computdih@se
errors depend on the word length of the computational machine.

Method of rounding off: To round of a number to n significant digits first
truncate it to n digits: if truncated part is less than half a unit at last significant
place then ignore it, if it is greater than half a unit at last significant place then add
one to last significant digit: if it is exactly half a unit at last significant place then
add one to it if it is odd. So absolute error is always minimum by this process

which is less than or equal to half a unit at last significant figure (si)%.élo_mif

approximation is done to m places after decimal. Sign of equality holds in the case
when truncated part is exactly half a unit at last s.f .Reader may think thatwean
do the reverse in this case i.e. if last s.f is even the we add one to it and ignore the

other case? Because in this case £§e=%><10_m. But on a closure look we can

identify that this make the last digit of the approximated number odd which attract
more error in further calculation.

Example 1.3.4 : Round df the following numbers, to four significant digits

i) 23.4251 ii) 32.4250 iii) 24.87500 iv) 19.995 v) 437.261 vi) 19.36235

Solution: i) 23.43 i) 32.42 iii) 24.88 iv) 20.00 v) 437.3 v) 19.36

Example 1.3.5 : Round of the number 54762 to four significant digits and then
calculate absolute errarelative error and percentage error

Solution: i) The given number is 54762 ( = N)

After round of to four significant figures,
The given number would be 54760 (5)N

Absolute error  E, =[54762- 54760=

Relative error B = ‘5%762{ =3.652x 10°

Relative percentage error = E x 100
= 3.652 x 1¢ x 100
= 3.652 x 1¢ %
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Exercise 1.3.6 : Round of the following humbers to four significant digits and
then calculate absolute erroelative error and percentage error

i) 437.261 ii) 19.36235

(iv) Truncation errors: These errors occur due to the finite representation of an

Inherently infinite process. For example, the use of a finite number of terms in

the infinite series to compute the valueggfsx ,sinx & etc.
The Taylor's series expansion ein xis

e XX
sinx = x—?+€—
This is an infinite series expansion. If only first five terms are taken to compute
the value ofsin x for a givenx, then we obtain an approximate result. Here, the
error occurs due to the truncation of the series. Suppose, we retain thedirss,

the truncation Error is given by
2n+1

X
EtrUnC = (2n + 1) |

It may be noted that the truncation error is independent of the computational
machine.
Example 1.3.7 : Find the number of terms of the exponential series such that

their sum gives the valle® correct to six decimal placesx = 1.

Solution: We know
2

X X R (Y

e =1+ X+?+§ (n—]_)l

Where R, (X) = X—|ee 0<B< X

n n
Maximum absolute error (8 = X) :%ex and maximum relative error '%T

Hence(ex) at x= 1isl' .
max n!

For a six decimal accuracy at=1, we have

1_1 6
i <2*10
or,  nI>2x10°
which givesn = 10.
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1.4 Summary

In this unit, the concept of Numerical errors, measurement of errors like absolute
errors, relative errors, percentage ertoss of significant, inherent , roundf @nd
truncations errors are discussed witHea#nt examples.

1.5 Exercises

1) If 0.333 is the approximate value éf, find absolute, relative and percentage

errors. (Ans: .00033, 0.00099, 0.99)

5xy2

2) If u=—73— and error inx, y z be 0.001,0.002 and 0.00Lompute the
z

relative error inuwhenx=y=z=1. (Ans: .14)

3) Find the diference of,/2.01-+/2 correct to three digits.

(Ans: 3.53 x 16)

4) If Ax=0.005Ay=0.001be the absolution errors = 2.1 andy = 4.15,
find the relative error in the computation>of y. (Ans: 0.001 (approx.))

5) Use the series dbge(i:'—i) = 2(x+ x+§+—x55+ J to compute the value
of log loge(1.2) correct to seven deciamal places and find the number of terms
retained.

(Ans: n=>2,0.1823215

6) What do you understand by Inherent errors occurs in numerical computation?

7) Write process of rounding f6f



Unit 2 O Transcendental and Polynomial Equations

Sructur e

2.0 Objectives

2.1 Intr oduction

2.2 lteration method or Fixed point iteration
2.3 Bisection method

2.4 Regula-falsi method

2.5 Newton-Raphson method

2.6 Summary

2.7 Exercises

2.0 Obijectives

After going through this unit one can able to learn about
e how to find the roots of non-linear equation by usindedént methods.

e the covergence of methods are also discussed.

2.1 Introduction

Determination of roots of algebraic and transcendental is a very important problem
in science and engineering.

A functionf (x) is called algebraic if, to get the values of the function starting from
the given values o%, we have to perform arithmetic operations between some real

numbers and rational power xfOn the other hand, transcendental functions include
all non-algebraic functions, i.eeX, &, log x,sinx,cosx sin"tx,cos’x etc. And

others.

An equationf (x) = O is called algebraic or transcendentat @9 is algebraic or
transcendental.
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The equations” +3x? + 7x+ 1= 0,x3 +8x+ 7 = Q€tc. are the examples of algebraic

equations and on the other hagith- 3log x+ cosx= 0e™* + x+ cot x= 0 etc. are the

examples of transcendental equafidrough we know some methods like Cardanéthod,
Eulers method, Ferrag’method, Descartasiethod in algebra to solve algebraic equation
up to fourth orderin general there is no closed form formula to evaluate the algebraic
equation of degree greater than two.

The definition of roots of an equation can be given in two different ways:

Algebraically a numberc is called a root of an equatidr{x) =0 iff f(c)=0
and geometricallythe real roots of the equatioh(x) =0 are the values of where

the graph ofy = f(X) meets thex-axis.
Throughout our discussion, we assume that

I.  The functiorf (X) is continuous and continuouslyfdifentiable up to a siiient
number of times.

. f(x)=0 has no multiple root i.e., iti is a real root off (x)=0, in a
sufiiciently small interval &, b), thenf (a) = 0 and eitherf’(x) <0 or f'(x)>0 in
(a,b).
Most of the numerical methods, used to solve an equation are based on iterative
techniques. Dferent numerical methods are available to solve the equiafign=
0. But each method has some advantage and disadvantage over another method.
Generally the following aspects are considered to compare the methods:
Convepgence or divagence, rate of convgence, applicability of the method, amount
of pre-calculation needed before application of the method. etc.
The process of finding the approximate values of the roots of an equation can be
divided into two stages:
l.  Location of the roots.
Il.  Computation of the values of the roots with the specified degree of accuracy
The interval §, b] is said to be the location of a real raoif f (c) = O fora <
c < b. There are two methods used to locate the real roots of an equation
I.  Graphical method
Il. Method of tabulation which is an analytic method.
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Graphical method

e In this method the graph ¢ f (x) is drawn in rectangular co-ordinate system. Then
the points at which graph meets x «eaxis are the location of the roots of the equation
f(x) =0.

As an example, we consider the equatigf+ x—1= 0.We draw the graph of
y= X2 + x—1 With respect to xX'0x, y oy as rectangular axes, which meetsxaxis

at A and A. Thus the equation has two real roots, one is positive and other is
negative. From the graph it is clear that the co-ordinateisflies between 0.Gand
0.7 and that of A’ is between -1.6 to -1.Thus 0.6 is an approximate value of the

positive roota’(say) . and —1.6 is an approximate value of the negative ab(say) .

e If f (X) is not simple, rather complicated in form, we rewrite the equt(®n
as 0;(x) =6,(x), where 8,(x) and 8,(x) are simple functions such that, we can
draw conveniently the graphs =6, (x) and y =6, (X) with respect to rectangular
axes.Then thex-co-ordinate of the point of intersection of the graphs give the

location of the real roots of the equatidr(x) =0.
As an example, we consider an equatjgn-4x— 2= 0, we rewrite the equation

as x> =4x+2. The graphSy:x3andy: 4x— 2 are drawn with respect to the
rectangular axes. From the graph it is seen that the roots[a& 1], [-1, 0], [2,3].

DISADVANTAGE :

The graphical method to locate the roots is not very useful. Because the drawing
of the location of the functiog = f (X) is itself complicated. But it makes possible
to roughly determine the interval of the rootéien an analytic method is used to
locate the root.

METHOD OF TABULATION

This method depends on the continuity of the functi¢x). Before applying the
tabulation method, the following nature should be noted.
Theorem 2.1.1 :If f (X) is continuous in the intervai,(b) and iff (a) andf (b)
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have the opposite signs, then at least one real root of the edualisr0 lies within the
interval @, b).

Geometrically we can explain the theorem as:

Let, f (x) > Oandf (b) < 0. Then from the graph we can say that there must be
a point in @, b) such thaf (x) =0

If the curvey =f (X) touches the—axis at some point, say»t c thenc is a root
of f (xX) = 0, thoughf (a) andf (b) may have same sign whaae< ¢ <b. For example
f (X) = (x — 3%, touches the—axis atx = 3.Althoughf (2.5) > 9 and (3.5) > 0 but
x = 3 is a root of the equatidn(x) = O.

A trial method for tabulation is as follows:

From the table of signs oK) settingx = x=0,+,1+2,........ If the signs off

(X) changes its signs for two consecutive valuewx dhen at least one root lies
between these two values.
Example 2.1.2 :Find the location of the roots of the equatigh+ x—1=0.
Solution: we form a table :

X 0 -1 1 0.5 -0.5 -1.6 -1.7

f9 | - : + : : : +

Since degf (x) = 2, the f(x) has two roots. Since (1) >0 and f(0.5)< 0,
then the location of one root 8.5, 1).Also f(-1.6)< 0 and f (-1.7)> 0. Then
the location of the other root is (-1,6, —1.7).

Example 2.1.3 :Find the number of real roots of the equat®¥n-3x- 2= 0 and
locate them.

Solution : f (x) =3* - 3x— 2. The domain of definition of the function (s-co, ).

we form a table :

X - 0 1 00

Sign of f (X) + - - +

f (X) = 0 has two real roots, since the function has twice changes sign, among them
one is negative root and other is greater than one.
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A new table with small intervals of the location of the root is constructed in the following:

X 0 -1 1 2

Sign of f (x) - + - +

Then the roots are in (-1, 0) and (1, 2).

ORDER OF CONVERGENCE:

Assume that the sequencgiof numbers toa and letl],=a - x,, for n>0.If there

Cha _

exists two positive constams& p such thalim,_ o, A Then the sequence is said

n
to converge tax wth the order of convergenpeThe numbeA is called the asymptotic
error constant.
If p =1, the error of convgence of &} is called linear and ip = 2, the error
of convegence of{x } is called quadratic etc.

2.2 lteration method or Fixed point iteration

Let f (x) be a continuous function on the interfalb] and the equatiorf (x) =0

has at least one root da,b|. The equationf (x)=0 can be written in the form

Thus a rooté of the given equation satisfiézq)(ﬁ). Therefore the poing
remains fixed under the mappirgg and so a root of the equation is a fixed point of

.

®(x) is called the iteration function. Here we also assumeit(e} is continuously
differentiable in[a, b].

Using graphical or tabulation method, we first find a location or crude approximation
[ag.bp] of a real root (say) of f (x) =0 and letx=x[a< %< k] be the initial
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approximation off. Thusg satisfies the equatioh=¢(£)....(2) .

Putting x = X, in (1), we get first approximation & as¥ = (%), and then the

successive approximations are calculated xgs:d)(xl),xg:q)(xz), ...... ,

Xna1 = 0 (%n) (3

The above iteration is generated by the formm({afd)(xn) and is called the
iteration formula, where is the n-th approximation of the rogt of f (x)=0.

These successive iterations are repeated till the approximate numpers

conveges to the root with desired accur,a'cg'.|xn+1 - xn| <U, where( is a suficiently
small number

The sequenc{axn} of iterations or the successive better approximations may or may

not be convege to a limit. If{ xn} conveges, then it convges to¢ and the number of

iterations required depends upon the desired degree of accuracy of the root

CONVERGENCE OF METHOD OF ITERATION:

The presentation of (x) =0 asx=¢(X) is not unique, therefore the congence
of {x,} depends upon the nature ¢{x). Now we investigate about the nature of

®(x) which yields a conveent sequencgx,}.
By Lagranges mean value theorem we get,

|E‘X1|=‘¢(E)_¢(Xo)‘=|5‘Xo”‘b'(sl)‘ where x; <€, <¢&
€= %o|=|0 (&)~ 0 (x)| =€~ x[0' (e2)] wherexy<e,<E
1€ = Xa42] = |0 (&) =0 (%) =& = %||" (€ )| Where x, <&, <&

Thus, [& = %] = (&= %)|0' () = [ - )b”q,,(el) ¢/(c2) ____‘q,,(sn)

Assuming Lcl)(x)‘ <p in ay < x< by we have
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1€ = Xnua| < [€ = Xg| "
Thus,

lim [€ = Xn4q|< lim [E=x|p" -0 if p< 1, ie. d(9[<1
n- o n- o
- oif p>Lie.|p'(x)|>1
Therefore the method is congent for [¢'(X)|<p<1in[a, ky].

ESTIMATION OF ERROR:

Let, & be an exact root of the equatiore ¢(X) and X1 = (X,)-
Therefore,[& = ;| =[¢ (&) =& (X1 )| =[&€ = %v-al|®' (9|, . wherex, 4 <c<E
<I€=Xqa|, [where,|¢'(c)|<1<1]

< 1{|& = Xq| *+[%n = Xa]

After rearrangement, this relation becomes

& x| < 2hr = el < -

Let the maximum number of iteration needed to achieve the accgirbeyN (s)
Then

Iogs(l__l)
4~ %l

| -
ﬁ|x1 - X%| <€ ieN(e)= log

For | 0.5, the estimation of the error is given by the following simple form :
1€ = %0| < [ %) = %o
ORDER OF CONVERGENCE:

The convegence of an iteration method depends on the suitable choice of the

iteration function¢(x) and the initial guess,.

Let, {x,} converges to the exact rogtso that€ = ¢(&).
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Thus X =& =0(%,) = 0(&). Let, €141 = X1 —&. Note thatd'(x) #0. Then the
above relation becomes

Enel = ¢(En +E) _¢(E)

= sn¢’(E)+%sﬁ¢"(E)+ .........

:en¢'(E)+o(sﬁ)

ie. sgﬂ =¢'(§) 20

n
hence the order of conygance of the iteration method is linear

GEOMETRICAL INTERPRETATION : The geometrical meaning s of the
fixed-point iteration in difierent cases are illustrated by Figure.

f (%) y=x f(x y=x
A A /
y=0
Y=o
i > X A > X
EXp X Xy X028 X% i
(a) Stair case solution, (b) Spiral case solution,
0<@(€)<1 —1<@(€)<0
Convergent forg(€)| <1
f® y=x f® y=x
A A
Y= 00—
y =0
6 & X > X 0 & XX > X
(a) Divergent for ¢ (§) >1 (b) Divergent for @ (&) <-1

Fig 2.1 : lllustration for Fixed-point iteration

ADVANTAGE AND DISADVANTAGE:
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The disadvantage of this method is that a pre-calculation is required to ré-{wjte 0

to x=0(X) in such a way tha'(x)| <1.

The advantage of this method is that the operation carried out at each stage are
of same kind, and this makes easier to develop computer program.

2.3 BISECTION METHOD

It is an iterative method and is based on a well-known theorem which states that
if f(x) be a continuous function in a closed intefpalb] and f (a) f (b) <0, then

[ at least one real root of the equatibfix) =0, betweera andb. If further f'(x)
exists andf’(x) maintains same sign {@,b], i.e. f (x) is strictly monotonic, then

there is only one real root of (x)=0 in [a,b]. This method is nothing but a
repeated application of the above theorem.

First we consider a siifiently small interval[ag, by], by graphical or tabulation
method , in whichf (ay) f(ky) <0 and f'(x) maintains same sign irap, by,

then there is only one real root df(x)=0, in [ag,by]. Now divide the interval

[a0, ] into two equal interval§ay, c| and]c, ky] wherec:ao—;rbo. If f(c)=0,

thenc is an exact root of the equation. f{c) # 0 then the root lies either ifay, c|
orin[c ly]. If f(ap) f(c)<O then we take the interviiy, ¢| as the new interval,
otherwise we takgc, by]. Let the new interval bgay,by] and use the same process

to select the next new interval. In the next step, let the new intenfa,bbs|. The
process of bisection is continued until either the midpoint of the interval is a root,

or the length(ly, —a,) of the interval[a,,ly,] is suficiently small. The numbera,

_onthy
2

andb_are approximate roots of the equatibl(lx) =0. Finally x, is taken

as the approximate value of the ramt
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Y A

f (b)

\ 4

f(0)

f(a)

Fig 2.2 : lllustration for Bisection method

Now the length of the interviby, by] is %2 and the length of the interviy, by

2
is boz‘zao and at the n-th step the length of the intefegl by] is boz‘nao

- In the final

stepa = a” B is chosen as root, then the length of the interval beg;qgr and hence

%i )
the error does not exceetd ;1 -

Thus, if € be the error at the n-th step then the lower bound of n is obtained from
the following relation

oo -2 _,

2n+l

CONVERGENCY: let g,,1 be the error in approximating by x,,;, then

€1 =|a _Xn+1| <|b | bo aO _, 0 asn - o. Thus the iterative method must

be convegent.To get a root off (x) =0 correct up to p-significant figures, we are

to go up to g-th iteration so tha§ and X3+1 have same p-significant figures.

DISADVANTAGE : This method is very slawbut it is very simple and will
convege surely to the exact root. So the method for any function only if the function
is continuous within the intervah[ b, where the root lies.
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Example 2.3.1 :Find a root of the equatiog? + x— 7 = 0 by bisetion method, correct
up to two decimal places.

Solution. Let f(x)=x*+ x-7.

f(2)=-1<0 and f(3)=5>0. So, a root lies between 2 and 3.

Left end point Right and point Midpoint

n a b, X 1 f(x,)
0o 2 3 2.5 1.750
1 2 2.5 2.250 0.313
2 2 2.250 2.125 -0.359
3 2125 2.250 2.188 -0.027
4 2188 2.250 2.219 0.143
5 2188 2.219 2.204 0.062
6 2.188 2.204 2.196 0.018
7 2.188 2.196 2.192 -0.003
8 2192 2.196 2.194 0.008
9 2192 2194 2.193 0.002
10 2.192 2.193 2.193 0.002

Therefore, the root is 2.19 correct up to two decimal places.

Another popular method is the regula falsi meththis method was developed
because the bisection method cogesrat fairly slow speed. In general regula falsi

method is faster than bisection method.

2.4 Regula Flasi Method

This method is also known asethod of false positioptMethod of chails method

of linear interpolation

Let a root of the equatioh(x) =0 be lies in the intervdla, b], i.e. f (a) f (b) <O.

The idea of this method is that on afigntly small[a, b], the arc of they = f (X

is replaced by the chord joining the poifes f (a)) and (b, f (b)). The abscissa of
the point of intersection of the chord and xh&xis is taken as the approximate value

of the root.
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Let, X, = a and x, = b. The equation of the chord joining the poi(ﬁ@, f (XO)) and
(x. (%)) is
y=fle) _x“%
f(x)-f(x) %%
To find the point of intersection, sat=0 in (1) and let(x,,0) be the point.
Then,

0-f(x) _

X2~ X
flx)-f(x) X%
f (%

) (%~ %)
W)= (x) 2

This is the second approximation of the root. Nowfifx,) and f(x,) are

Therefore, X = X~ f (

opposite signs then the root lies betwegnand x, and replacex; by x, in (2).
Then the next approximation is obtained as :

)00 %)
% =% (0)~ 1)

If f(x;) and f (%) are opposite signs then the root lies betwgeand x, and
the new approximation is obtained as:

f (%) (%= %)
f ()= f(x)
The procedure is repeated till the root is obtained to the desired acdiitaey

3=X~

n-th approximate roox,, lies betweers, andb,, then the approximate root is thus
obtained as :

_ . f(an) (k- a)
T ) )

GEOMETRICAL INTERPRETATION :

The illustration of the method is shown Figure whéres the root of the equation

f (x) =0.
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Fig 2.3 : lllustration for Regula-falsi method
CONVERGENCE OF REGULA FALSI METHOD:

As f(a,) f (k) <0,considering the proper sign df(a,) and f (b,) we can write

the equatior3) as follows:

Since, x,, = a, or b,, we have for both relation of (4) as

(%) (B -ay)
=T (b,) - f (o)

or, (3 = xua)( f(bn) = (&)= F(x) (- &)
Or, (Xn_xn+1)(th_an) fl(a n) (Xn)(bn a,) whena, <a, <b,
o, [(a—xn+1)—(a-xn)] f'(an)= ()= o) =(x—a) f (o),

[since,f (a)= 0 where Min{x,,a} <a’, < Max{ x, a}
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or, (a—%u)=(a-x,) f’(anf)lzaf)’(a'n) » where gy <a,, ), <hy......( 5

The approximation lies ifiag, by] and f'(x) is continuous, then there exist two

numbersm, M such that

o<ms|f' (%)< M for all xO[a, ky].

Then from (5) we get\(a —Xn+1)‘3 Mn—]m‘(a - Xn)‘

Now putting n=n-1,n-2,...,2,1,( for n successively and multiplyingn+1)
relations we get :

n+l
Entl = ‘(d - Xn+1)‘ < ( M I"; m) ‘(G - XO)‘

M -m

<lieM< 2m,
m

If we choose the intervdlag, by] such that‘

Then )l(imooanﬂ = )'(imm|(0‘ ~Xnsp)| =0

Therefore the method is congent.Thus for the conveence of the Regula Falsi
Method, the interva[ag, by] must be very small.

ADVANTAGE:

The advantage of this method is that it is very simple and the seq{.ngﬁcds

sure to convegre. The another advantage of this method is that it does not require the
evaluation of derivatives and pre-calculation.
DISADVANTAGE:

The method is very slow and not suitable for hand calculation.

Example 2.4.1 :Find a root of the equatiog? + 2x — 2 = g using Regula-Falsi method,
correct up to three decimal places.

Solution. Let f (x)=x3+2x-2. f (0)=-2<0 and f (1) =1> 0. Thus, one root
lies between 0 and The calculations are shown in the following table.
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left end right end

n  pointa, pointb.  f(a) f(b) x. f(x,)

0 0.0000 1.0 —2.0000 1.0 0.6700  -0.3600
1 0.6700 1.0 -0.3600 1.0 0.7570  -0.0520
2 0.7570 1.0 -0.0520 1.0 0.7696  -0.0072
3 0.7696 1.0 -0.0072 1.0 0.7707  -0.0010
4  0.7707 1.0 -0.0010 1.0 0.7709  -0.0001

Therefore, a root of the equation is 0.771 correct up to three decimal places.

2.5 Netwon-Raphson Method

This is also an iterative method and is used to find isolated roots of an equation
f(x):O. The object of this method is to correct the approximate sggsay)
successively to the exact raatInitially, a crude approximation of a small interval

[a0, ] is found out in which only one roat (say) of f(x)=0.

Let, X=X (a< %< k) is an approximation of the roat of the equation
f (x) =0. Let, h be a small correction om, then x, = x,+ h is the correct root.

Using Taylor's series expansion,

f(x)=f(x+h=f(x)+hf(%)+...=0since x is a root of f (x) =0

Neglecting the second and the higher order derivatives, the above equation reduces
to-

f (%) +ht'(x)=0

__flo)
O =7 ()

f (%) ()

Therefore, . = %+ h= Xo—m ......

Further if hy be the correction ong, then x, = x + h is the correct root of

f (x) =0.
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Then using the previous process we get,

__fla)
)
Therefore, X2 =%t h = )ﬁ—%

Processing in this waywve get(n +1) th corrected root as

+ = _'— ...... 2
}III 1 }:II f (}( ) ( )
This expression generates a sequence of approximate vgxgsxs, ....... Ky e

each successive term of which is closer to the exact value of tha fdot method

will terminate when|X,,; = X,| becomes very small.

In this method the arc of the curve is replaced by the tangent to the curve, hence
this method is sometimes called method of tangent.

Note : the Newton Raphson method may also used to find a complex root of an
equation when the initial guess is taken as a complex number

GEOMETRICAL INTERPRETATION:

The geometrical interpretation of this method is shown in the figure 1. In this
method, a tangent is drawn at

(x0. f(%)) to the curvey= f(x).

The tangent cuts the x-axis @¥%,0). /
Again the tangent is drawn at

f (%)
A

(. T (%)), which cuts the x-axis at

(x2,0). This process is continued until

X, =&asn - o .. >
€ X X1 X0
Fig 2.4 . Geometrical interpretation
of Newton-Raphson method

. _— e
The choice of initial guess of this
method is very important. If the initial
guess is near the root then the method
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converges very fast. If it is not so near the root or if the starting point is wrong, then the
method may lead to an endless cycle.

This illustrated in figure2. In this figure the initial guegsgives the fast convergence

to the root, the initial guesg, leads to an endless cycle and the initial gugsgives a
divergent solution.
Even if the initial guess is not close to the exact root, the method mayediveechose

the initial guess the following rule may be followedfIfb) f"(x) <0 the initial guess be

X =b and if f (a) f"(x) <0 then x, = a be the initial guess.

f(¥)
A

N X
o =~  x Yo

Fig: lllustration of the choice of the initial gues
of the Newton-Raphson method.

\/

CONVERGENCE OF NEWTON RAPHSON METHOD:

Comparing with the iteration method, we may assume the iteration function as:
f(x

o()=x- 10

Thus the above sequence will be cogest, if and only if

e TP (9 (X
‘q)( )‘ 1 f’(x)2 ‘
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f(x) f"(x)
f’(x)2

RATE OF CONVERGENCE OF N-R METHOD:

o <vie] (x> (3 1"(%)

Let, & be a root of the equatioh(x) =0. Then, f (£) =0. The iteration scheme for
NR-method is

f(E)+enf'(E)+7f"(E)+ .....
Or, €1 =En~ 2
f (E)+snf"(E)+%‘f"(E)+ .....
enf" (&)
R i i
e) n+l n Lie f"(E)_'_
" ie) T
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This relation shows that NR method has quadratic convergence or second order
convergence.

Example 2.5.1 :Use Newtwon-Raphson method of find a root of the equation
X3+ x-1=0.
Solution. Let f (x) =+ x-1. Then f (0) =-1< 0 and f (1) =1> 0. So one root

lies between 0 and 1. Le¢ =0 be the initial root.
The iteration scheme is

f
Xn+1 = Xn_%

Xt 1 2x+1
3+l 3+l

= Xn

The sequencgx,} for different values o is shown below

n X X 1
0 0 1

1 1 0.7500
2 0.7500 0.6861
3 0.6861 0.6823
4 0.6823 0.6823

Therefore, a root of the equation is 0.682 correct upo to three decrimal places.
Example 2.5.2 :Find an iteration scheme to find tki&d root of a numbea.

Solution. Let x be thekth root ofa. That isx=a¥k or yk— 5=,

Let f(x)= x€ = a The iteration scheme is
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2.6 Summary

In this unit we have studied how to calculate the roots of a transcendental equations
and polynomial equations by the methods of tabulation, graphical, fixed point iteration,
bisection ,Regula Falsi and Newton-Raphshmeir convegence analysis have also
been studied.

2.7 Exercises

1. Solve the equatioxtanx=—1 by Regula falsi method starting witty = 2.5
and x =3.0 correct upto three decimal places.

2. Obtain the a root for each of the following equations using bisection method,
regula-falsi method and Newto-Raphson method

) x3C+2x2-x+7=0

i)y sinx=10(x-J

iif)  x—cosx= C

3. Describe Newton-Raphson method for computing a simple real root of an
equation f (x) =0. Give a geometrical interpretation of the method. Prove that the

Newton-Raphson method conges quadratically
4. Use Newton-Raphson method to find the value of the following terms

) V35 i) 24
Ans. i) 5.916080, ii) 2.884499



Unit 3 O System of linear algebratic equations

Strucur e

3.0 Objectives

3.1 Intr oduction

3.2 Gaussian elimination method

3.3 Gauss-Jordan method

3.4 Gauss-Jacobi method

3.5 Gauss-Siedel mthod

3.6 Successive over Relaxation (SOR) method
3.7 Summary

3.8 Exercises

3.0 Objectives

After studying this unit one can

e (et an idea of finding the solutions of system of linear equations by using direct
methods and iterative methods.

3.1 Introduction

A linear equation in variables x, X,,......,%, IS an equation of the form

Xt aXt..tax=Lt
where a, &,,....,8, andbare constant real or complex numbdrse constana,

is called the gefficient of x; andb is called theconstant term of the equation.

A system of linear equationgor linear systen) is a finite collection of linear
equations in same variables. For instance, a linear systesgoftions im variables

X, Xo,..... %, can be written as
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Xt Xttt ag = b
Ay Xt AgoXot....t Ay K= by

............................................ (311)

8 X% * Bt t B K= by

The above system can be written in the fét= B

where A=[6\Jnxn(i.j:1,2,3----n) is a non-singular matrix and

B=[h] =(i=12,3,..n)
Two types of methods are availavle.
i) Exact methods or Direct method

i) lterative methods

WhenA is of moderate order with cofelients most non-zero, then usually exact
or direct methods are used. OrdeAd§ usually < 200 and the linear system is called
dense

WhenA is of lage order and most cofiients zero, then iterative methods are
used.A is sparse and order éfis sometimes as lge asl(f.

Exact or direct methods Cramers rules, Gaussian elimination method,

Gauss Jordan Method etc
Iterative methods : Method of simple iteration, Gauss-Seidal iteration method

Theorem 3.1.1 :Any system of linear equations has one of the following exclusive

conclusions.

(a) No solution.

(b) Unique solution.

(c) Infinitely many solutions.

A linear system is said to lm®nsistentif it has at least one solution; and is said
to beinconsistentif it has no solution.

Geometric interpretation

The following three linear systems
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2% + X% =3 2%+ X% =3 2% + X, =3
@) 2% —% =0 (b) 2%~ X% =5 © 4x — 2%, = 6
X —2X% =4 X —2X% =4 6% —3% =9

have no solution, a unique solution, and infinitely many solutions, respectesy
Figurel.

X2 X2 X2
¢ ¢
(a) No solution (b) a unique solution (c) infinitely many
. solutions
Figure : 3.1

Note : A linear equation of two variables represents a straight lineir Rnear
equation of three variables represents a plane3inrRgeneral, a linear equation of
n variables represents a hyperplane inrkdimensional Euclidean spacél.R

Matrices of a linearsystem

Definition 3.1.2 Theaugmented matrix of the general linear system13l) is the
table

&1 - &y b
' (3.1.2)
ay - &mn Bm
&1 - Ay
and thecoefficient matrix of (3.1.1)is | ™~ 7 (3.1.3)
any - 8mp

Systems of linear equations can be represented by matrices. Operations on equations

(for eliminating variables) can be represented by appropriate row operations on the
corresponding matrices. For example,
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Xt X—2X%=1
2% — 3%+ X3 =—8
3+ X+tdxg="7

The correspondingaugmented matrix is

1 1 -2 1
2 -3 1 -8
3 1 4 7

Now we will do the needful row operations.

OperatingR, -2R and Ry —3R on the above, we get

1 1 -2 1
0 -5 5 -10
0 -2 10 4

Operating(-1/5) R, and (-1/2) R; on the above, we get

11-2 1
01 -1 2
01 -5 -2

Operating R; — R, on the above, we get

1 1-2 1
01 -1 2
0 0 -4 -4

Operating(-1/4) Ry on the above, we get

1 1-21
01 -1 2
00 1 1
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OperatingR, +2R; and R, + Ry on the above, we get

1103
010 3
0 011

OperatingR, - R, on the above, we get

1 00O
010 3
0 011

That is, we get the solution ag =1,% =3 and x =0.
Elementary row operations

Definition 3.1.3 : There are three kinds of elementary row operations on matrices:
(a) Adding a multiple of one row to another row;
(b) Multiplying all entries of one rowy a non zero constant;

(c) Interchangingwo rows.
Another method for solving system of linear algebraic equatidbsaimer’s Rule.

Cramer’s Rule :
To solve a system of linear equations, a simple method (butficengfwas discovered
by Gabriel Cramer in 1750.

Let the system of linear algebraic equations are

Z;-a”)(] =kp,i=1,2,...,n (3_2.1)
i=

Let the determinant of the cdiefents of the system (3.2.1) be of odei.e.,

D :‘aﬂ- ‘,i,j =1,2,-- n. In this method, it is assumed thgtz 0. The Cramess rule

is described in the following. From the properties of determinant
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&1 o . | X1 Ay .. &
a21 a22 e am X1a21 a22 e aa
xD=x =
81 G2 - G [X8u G - &
allxl+ a12X2+...+ all % qz e am

Xt apXot..t gpXx, a2 ... g
[Using operationC; = C; + %,C,+---+ X G|]

b a, ... a
:% a22 R az-]
v eee e [Using (3.1.1)]
By B o A
Theref Dy
erefore, x, = —*.
4 =35
D D
Similarly, x, =—2,...x. = —n
imilarly, x, =—&.... %, = —
Dy
Ingeneral, x :%
1 Ay - Yg b g .
A1 A5y ... Aq_1 bo Ap. 1 ... apl,.
where Dy = 21 22 -1 %2 el ﬁ(|:1,2,....n)

81 @ - @1 B Gir e @

Inverse of a Matrix

From the theory of matrices, it is well known that every square non-singular
matrix has unique invers&he inverse of a matril is defined by

_ adiA
A

The matrixadj A is called adjoint oid and defined as

A—l
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Ar - An
adiA= " | " whereA, being the cofactor ofy in |A.
Aqr - An
The main difficulty of this method is to compute the inverse of the natfixom the
definition of adj A it is easy to observe that to compute the maddkA, we have to

determine¥ determinants each of ordgn—1). So, it is very much time consuming. Many

efficient methods are available to find the inverse of a matrix, among3hass-Jordan
is most popular

3.2 Gaussian elimination method

We assume that the set of linear equations given by
Xt apXot..tag =D
A1X t AgpXot...t Ay % = by

(3.2.1)

an Xt @Xot...t gn = b
has a unique solution and we proceed as follows.

al¥ = Y =p,(i,i =1,2,3,...1)

Let aill) # 0. Multiply the 1st equation of (1) bym, = - ar(ll)/aﬁ) and add to

the ith equation wherx, is eliminated from that equatio(ri = 2,3,....n) giving the
following equivalent equations

v dnrs g =
aldy, +...+ a2y = b2 (3.2.2)

oyt 5=



NSOU e CC-MT-05 41

where m, =- q(ll)/ ;{11) and
al? =" - myd), o =¥ - m, 49 (i.j =2.3.....n) (3.2.3)

Assuming agairagzz) # 0. We note that the set of equations (3.2.2) exceptstigedl

system ofpn -1 linear equations in tha—1 unknownsx,, X;,....%, and applying the
above eliminations procedure to this systems eliminated from the lagi— 2 equations
of the set giving the equivalent system

31(1 5t 312 Xoueenent 31?.) %= Ef) (3.2.4)

a2+ ...t df) ¥ = B2

ol

Drer 4= 9
where m, :—4(22)/%? and
al® =4 -m, 49, 4 =4? - m, 2 (i.j =3.4.....n) (3.2.5)

Continuing this process, we finally obtain equivalent system of equations at the
(n-1)thster

a£1xl+ o Xouwwwnn ¥ 41? X = l(f) (3.2.6)
ol +...+ a2 % = 57
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where m, = q(kk)/aﬁ'l:) and

al) =4 - m 49, gD =9 - g9 (i,j =k +1.....n k.1,2,3,.)
(3.2.7)
The upper triangular system (6) may easily be solved as follows. From the last
equation  x =b$|“)/a(nrr‘]); then substituting this value ok, in the last but one
equation we get the value &f_;, and then again substituting the valuesxQfx,;

in the last but two equation we computg, and so on. Finally we gey. This

process of solving an upper triangular system of linear system of equations is often
called back substitution

When the diagonal cde&tient there is unitythe last term of the constant vector
contains the value ofx,. This can be used in tl*(en—l) th equation represented by

the second to the last line to obtaty; and so on right up to the first line which

will yield the value ofx;. The name of this method simply derives from the elimination

of each unknown from the equations below it producing a triangular system of
equations represented by

1 &, ... an\X q

0 1 .. ay|X| |9

(3.2.8)
0 0 .. 1){x, C,

which can then be easily solved by back substitution where

X, = G

One of the disadvantages of this approach is that errors (principally rouind of
errors) from the successive subtractions build up through the process and accumulate

in the last equation fox,. The errors thus incurred are further magnified by the
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process of back substitution forcing the maximui@ots$ of the round-berror into .. A

simple modification to this process allows us to more evenly distribute the effects of round
off error yielding a solution of more uniform accuraeyaddition, it will provide us with
an efficient mechanism for calculation of the inverse of the nyatrix

Example 3.2.1 :Solve the eqations by Gauss elimination method.
2X Xt Xg =4, X — X +2X=2, 2% + 2% — X3= 3.

Solution. Multiplying the second and third equations by 2 and 1 respectively and
subtracting them from first equation we get

2%+ Xt Xa=4

3X, —3% =0

—Xo +2%3=1.

Multiplying third equation by —3 and subtracting from seond equation we obtain
2%+ X%+ X=4

3X, —3% =0

3x3 =3.
From the third equation; =1, from the second equations = x3=1 and from
the first equation2x =4—-X,— X3 =2 or, x =1.

Therefore the solution ig =1, X, =1, X3 =1.

3.3 Gauss-Jordan method

Let us begin by writing the system of linear equations as we did in Gauss elimination
method but now include a unit matrix on the right hand side of the expreBkigs).

&1 o ... Ay \(b)(1 O ... O
A, a8y .. ax||[b|{|O0 1 .. 0

8q 8p - an)\b)l0 0 .. 1



44 NSOU e CC-MT-05

We will treat the elements of this matrix as we do the elements of the constant vector
b.. Now proceed as we did with the Gauss elimination method producing zeros in the
columns below and to the left of the diagonal element. Howevaddition to subtracting
the line whose diagonal element has been made unity from all those below it, also subtract
from the equations above it as well. This will require that these equations be normalized
so that the corresponding elements are made equal to one and the diagonal element will
no longer be unityin addition to operating on the rows of the ma#iand the elements
of , we will operate on the elements of the additional matrix which is initially a unit matrix.
Carrying out these operations row by row until the last row is completed will leave us with
a system of equations that resemble

a, 0 ... O0)\(b)\(by by .. by
0 &y ... O ||b||Iby by ... by
(3.3.2)
0 0 .. oay)(bh)lby by . by
If one examines the, it is clear that so far we have done nothing to change the
determinant of the original matr# so that expansion by minors of the modified matrix
represent by the elementsa@ is simply accomplished by multiplying the diagonal
elementsa; togetherA final step of dividing each row bga,-’,- will yield the unit
matrix on the left hand side and elements of the solution vectavill be found
. The final elements oB will be the elements of the inverse matrixAf Thus we
have both solved the system of equations and found the inverse of the original matrix
by performing the same steps on the constant vector as well as an additional unit
matrix. Perhaps the simplest way to see why this works is to consider the system
of linear equations and what the operations mean to them. Since all the operations
are performed on entire rows including the constant vattsiclear that they constitute
legal algebraic operations that wbehange the nature of the solution in any way
Indeed these are nothing more than the operations that one would perform by hand
if he/she were solving the system by eliminating the appropriate varisidelsave
simply formalized that procedure so that it may be carried out in a systematic fashion.
Such a procedure lends itself to computation by machine and may be relatively easily
programmed. The reason for the algorithm yielding the matrix inverse is somewhat less
easy to see. Howevethe product ofA and B will be the unit matrixl, and the
operations that go into that matrix-multiply are the inverse of those used to generate
B.
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Example 3.3.1 :To see specifically how the Gauss-Jordan method works, consider
the following system of equations:

X 2% + 3% =12

3x + 2%+ x3=24 (3.3.3)
2%+ Xy + 3% = 36

If we put this in the form required by expression (3.3.1) we have

1 2 3)(12)(1 0 O
3 2 1(|24]|0 1 O (3.3.4)
2 1 3){36){0 0 1

Now normalize the all rows by factoring out the lead elements of the first column
so that

12 3 /100
12 1 ol o

W3 3 3| 8| 3 (3.3.5)
1 3llg)[g o 2
2 2 2

The first row can then be subtracted from the remaining rows (i.e. rows 2 and
3) to yield

1 2 3|1

0 0
-4 -8 1
0 —= ——||4|-1= O
(6) 3 3 3 (3.3.6)
-3 -3 - 1
0 5 10 5
Now repeat the cycle normalizing by factoring out the elements of the second column

getting

1
1, 3 £ 0 0
4\(_3 220 é 1
6(—)(——)2012 3|2 == o
(©) 3 2() 4 4 (3.3.7)
0114}, o _1
3 3
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Subtracting the second row from the remaining rows (i.e. rows 1 and 3) gives

1 1
1l o -1 -5 2 0
2 O 23 4 4
(290 1 2| 3] 2 -1 o
4 4 (3.3.8)
0 O _1 _7 1 1 1
12 4 3

Again repeat the cycle normalizing by the elements of the third column so

1 1
-1 0 1)(-6|35 "3 0O
“Lyo) (- 1 3|3 -1
(29(-3)-9 o L 4 3|2 -1 o 539
0o 0o 1Yl 7)1 _1 1
12 4 3
and subtract from the remaining rows to yield
5 _1 _1
-1 0 0)(-13)| 12 4 3
1 Y | O A
(24) 0 2 0 2124 8 3 (3.3.10)
o 0 1l 7)1 _1 1
12 4 3

Finally normalize by the remaining elements so as to produce the unit matrix on the left
hand side so that

_5 1 1

1 0 0y 13) 12 4 3

_q(1 _ 1 _2
(29(-9(3)@3[0 2 o-21 L 1 -2 a1
0 0 l 7 1 1 1 e

12 4 3

The solution to the equations is now contained in the center vector while the right
hand matrix contains the inverse of the original matrix that was on the left hand side
of expression (3.3.4). The scalar quantity accumulating at the front of the matrix is
the determinant as it represents factors of individual rows of the original matrix. The
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row subtraction shown in expressions (3.3.6), (3.3.8), and (3.3.10) will not change
the value of the determinant. Since the determinant of the unit matrix on left side of
expression (3.31) is one, the determinant of the original matrix is just the product

of the factored elements. Thus our complete solutiorx =is[13— 117] - where

Det( A)=-12 and

~5 1 1
12 4 3
A_l = l ; —_2
112 41 13 (3.3.12)
12 4 3

Pivoting : We have assumed in each sk:fo the Gaussian elimination that

all) 2 0.

To remove this restriction, begin each step of elimination process by switching rows
to put a non-zero elemnt in the pivot posion. SiAde non-singularthis is always

possible. Sometimes it may happen that the pivot element is small (actually zero, but
due to rounddfit becomes vary small)lo guard against this, pivoting is used.

Let at stagek(l< ks n-1)
G = max‘aij(k)‘

Let iy be smallest row indexj >k for which the maximum is attain. If >k,

then switch row&k andi in a(k) and b(k): and proceed with stépof the elimination

process.
All multipliesrs will now satisfy

my|<Li=k+1..n  (rememberm, = 4%/ 4¥)

And this ensures the groth in the elementg @) and thus eliminating the possibility

of loss of significant errors. The pivoting is used in the solving in the linear system
of equation is shown in the example given below
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Example 3.3.2 :Solve the following system of equations by Gauss elimination
method (use partical pivoting).

Xo+2%3=5
X T2% +4x3=11
—3% + X —5x=-12.

Solution. The largest element (the pivot) in the coefficients of the varigbie -3,
attained the third equation. So we interchange first and third equations

—3% + X —5x=-12

X T2% +4x3=11

Xo +2X%3 = 5.

Multiplying the second equation by 3 and adding with the first equation we get,
—3% + X —5x=-12

Xo+X3=3

Xo +2X3 =5

The seond pivot is 1, which is at the positi&@y3 andag,. Taking a,, =1 as pivot
to avoid interchange of rows. Npsubtracting and third equation from second equation,
we obtain

—3% *t X —5x=-12

Xo+ X3 =3

—Xg = 2.

Now by back substitution, the valuesxf, x,, X are obtained as
X3 =2, % = 3= %= 1, % = —%(— 12 %+ 5x) = 1

Hence the solution ig =1, X, =1, %= 2.

Some prelimary concepts

Let V be the vector space.
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Norm of a Vectoris defined as a real valued functidr{x) satisfying the conditions

) N(x)=200xOV,[H=0if fx=0

i) N(o.x)=|a] N(X) (o isascalaj0 £ \

i) N(x+y)< N(Y+ Ny

O N()= g S| wherese ( 3 .o of

@ N=(%)=[dee T 51

(3) N =(x) =[x, def maXicn| %|

Example 3.3.3 : x=(1,0,-1,2

Then [x| =4, [x|,=v6. [, =2

Norm of a Matrix : By a norm of a matrid® = [6\; ]nxn(i, j=1,2,3...n) is defined

as a real numbd| which satisfies the following conditions

) |A|=0,|A|=0iff A is a null matrix
i) oA =lal| A(a is ascalay

i) |A+Bf<[A~+|H

v) |AB|<|Alg

<|A

) A= Al ger mjaxz‘ al

O A"

Y2
@ |w|:||/>4|2g{§\a1\2}
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3) [A4=]4], dermax)’ ||
J

Example 3.3.4 : A=

~ b e
Qo o1 N
© o w

Then | A, =max(12,15,18= 1

|, =(12+22+ ....92)]/2 =285 16.8

A, =max(6.15,2)= 2.

3.4 Gauss-Jacobi interation method

Consider the system of linear equations

1%t Xttty =N
Ay Xt AnXot...t ag ¥ = by

(3.4.1)

Xt Xt ..t @ %= [

Intially the given equations of the systems are so arrangedatt¥0 for

i=1,2,...n and suppose that this rearrangement is (3.4.1). Now (3.4.1) is reset in
the form

- b_l. 312 a1n
=2 - 2£x,—...——
e &1 A1 2 1
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- - e
N B 2 gy
Or in brief
_1 [
i _ﬁ_j[b _Zj;ti 3 )fj( i=1,2,....n) (3.4.2)
In the Gauss-Jacobi method the iteration is generated by the formula
k+l) _ 1 k .

The initial gueSSq(O) (i=1,2,.....n) being chosen arbitrarily

To examine the convgence of the process, set

K = n]asz‘a" (3.4.4)
& |

From (3.4.3) for everyi, " :[—ai—;izjﬂ ch s(jk)} and so

‘si(kﬂ)

ST i
And so

Ha(kﬂ)

<K Ha(k) H (3.4.5)
Hence for evenk

9w

This shows that iK <1,Hs(k)H - 0 ask - o, i.e., the iteration converges.

The system of linear equations (1) is said to be srtictly diagonally dominant if

&> |a[(i=1.2,....0)

j#i
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ie.if K <1.
Thus the Gauss-Jacobi iteration converges if the given system of linear equations is

strictly diagonally dominant.
Let K <1. By (3.4.5)

{2+

He(kﬂ) < KHS(k+1) +h(K

where K(k) = (k#1) _ (k) = (k1) _ (K

Or Hs(k+l) < KK_th(k) H which gives the estimation of error

Smaller the value df, more rapid will be the convgenceAlso note that the above
condition of convegence is stitcient but not necessary

Example 3.4.1 :Solve the following system of linear equations by Gauss-Jacobi’
method correct up to four decimal places and calculate the upper bound of absolute

errors.
27x+6y—z= 54
6Xx+15y+ 2z= 72
X+ y+54z=110
Solution. Obviously the system is diagonally dominant as
6 +|-4<|27. |6 +[2<[15. +|§<|54

The Gauss-Jacoki'iteration scheme is

MESY :i(54_ 6y(k) + ik))
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Let the initial solution be (0, 0, 0). The next iterations are shown in the following table.

k X y z

0 0 0 0

1 2.00000 4.80000 2.03704
2 1.00878 3.72839 19111

3 1.24225 4.14167 1.94931
4 1.15183 4.04319 1.93733
5 1.17327 4.08096 1.94083
6 1.16500 4.07191 1.93974
7 1.16697 4.07537 1.94006
8 1.16614 4.07488 1.93999
9 1.16632 4.07477 1.93998
10 1.16632 4.07477 1.93998
11 1.16635 4.07481 1.93998

Fig.: 3.1

The solution correct up to four decimal places is
x=1.1664 y=4.0748 7=1.9400
Here

n
_ 1 _ 7 8 2(_ 8
A=max o2 [ = may o R
el©) =(3><10—5 ,4x 10° f) Therefore the upper bound of absolute error is

=52l =5 7m10°
He <A d%)=5.71<10

3.5 Gauss-Seidel iteration method

A slight variant of the Gauss-Jacobi iteration is the Gauss-siedel method in which
the system is also written in the form (2) wity Z0fori=1,2,3,..n but the
iteration is carried out successively by the formulae
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()2 1 [ —g K- _ 5 K
Y = Lfo-aph) .- a 4Y)

Xz(k+1 (bz 5‘21){'(+1 T 8 ’gk )

=L (b,- 2, - - s £57)

(i=1,2,3,..n) (3.5.1)

We Assert that Gauss-Seidel iteration also cogeelf K <1 whereK is defined in
(3.4.4).Assume the&K < 1. For everyi

8(k+1 __[h qu a] (k+1) qu}s( :| (3.5.2)

Define temporarily

j<i ‘a'l‘
3|

0<K;<K<1l and

K; = for (i=12,3,..n) (3.5.3)

‘ (k+1)
i

< Do 4]

S|a,_:!-i|zj<i e+ 2 o [

<K, Hs("+l)

+(K—Ki)Hs(k)H

So that for some,
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And so

H e(k+1)

<K, Hs(kﬂ)

qK—m”M@H

Or

o]l

IN

- (K-K))
Since 1K <KasK<1, we have

Which leads to

Ha(kﬂ)

<K Ha(k) H (3.5.5)
Hence for everk

9w

So thatHs(k)H -~ 0ask s osinceK< 1.

If K< 1, an estimate of the error is given by

Hs(kﬂ

257 |HM) where 0 = k) ) 2 gy _ (8

It may appear the Gauss-Seidrel method is more rapidly amevethan the
Gauss-Jacobi method.

Here also the condition that the given system is strictly diagonally dominant is
sufficient for the convegence of the method but not necessary

3.6 Successive Oveelaxation (S.0.R) Method

We have to sove the linear systé&f = b

where A=[6\j]nxn(i,i=l,2,3--n) is a non-singular matrix and

b=[h] (i=12,3,..n)
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Assume that the diagonal elements of mafrace non-zero. If soma; =0, then by
interchanging some rows , we can makeaali 0. This is possible g4 is non-singular

The matrixA can always be written as

A=D+L+U

Where D = [aij Eﬁj J

L _ Lower triangular matrix with diagonal elements zero

U - Upper triangular matrix with diagonal elements zero
So, AX=b (3.6.1)

becomes (D+L+U)X=b  (3.6.2)

Now multiplying by some non-zero scacwron bothside of equation (3.6.2) we have
w(D+L+U)=wb

o, wLX =wb-w(D+U)X  (3.6.3)

DX = DX (3.6.4)
Adding (3.6.3) and (3.6.4) we get,

(D+wL) X =wb+(1-w) DX-wUX  (3.6.5)

The iteration scheme is

(D+oL) X ™ = b +(1-w) DX' —UX', i=0()e (3.6.6)

(3..6.6) — (3.6.5) gives,

(D+wl)e™ =(1-w) Dd) -wUd), i=(1)e

Where i*) = x(i+) _ x where ¢i*) iis the error in the(i +1)th stage of
approximation.

or, ™ =(D+wL)*[(1-w) D-wu]d)

=mel) = m2d M = = M+ 49

where M :(D+wL)_1[(1—oo)D—ooU]
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SupposeAq,Ao,..... A, are eigen values of the matik and Xy, X,,...., X, are
corresponding eigen-vectors such that they are linearly independent.

Let el =y X +a,Xp+.t 0, X,

D = oA I x +ap S5, +ran ) X

-~ 0asi- oo,
(if all eigen values are < 1 numerically or spectral radius

<1ie]rsnjgr>]<‘)\j‘< 1

OxM_x_0asi- e

Now, detM = de{D+wL) ™" .ddi( +w)D-wU]
=detD™ de( Fw)D

=detD™ detD def tw)l

=(1-w)"

Now, detM =A; A5,....A,

OAAL A =(F )

ie. max [\|2]1-w

or, [1-of < max [A;| < 1

therefore, equation (3.6.6) will congerif (O< w< 2) wherewis real This method

is calledoverrelaxation methodwhen 1<w< 2,and is called the underrelaxation

method whem < < 1. When w=1, the method becomes Gauss — Sesd@ithod.
Example 3.6.1 :Solve the following system of equations

3 + X+ 2% =6
X +4X% +2%=5
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2%+ X +4xg=7
by SOR method takew = 1.01
Solution. The iteration scheme for SOR method is

ad ™ =apld-w a g+ 40+ a0 - g
azzxg(ﬂ) = az?ék) - V\{ azlgkﬂ) + &) gk) +t 33 %k) B l%
assxgkﬂ) = a33>ék) - V{ %P&kﬂ) t & %kﬂ) + %3(’;) - %

or

3x ) :3x_{k) —1.0{ 3+ 9+ o) - %
axY) = 10{ SOINCINPNG %
ax k) = 10{ 24K 8) 5l 4 g - ﬁ
Let x© Xgo %9 =0

The detail calculatios are shown in the following table.

k X, X, X,

0 0 0 0

1 2.02000 1.77255 0.29983
2 1.2016 1.39665 0.80526
3 0.99557 1.09326 0.98064
4 0.98169 1.00422 1.00838
5 0.99312 0.99399 1.00491
6 0.99879 0.99728 1.00125
7 1.00009 0.99942 1.00009
8 1.00013 0.99999 0.99993
9 1.00005 1.00005 0.99997

Therefore the required solution is
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¥ =1,0000 x, =1,0000 x5 =1,000C
correct up to four decimal places.
Example : 3.6.2

Consider a linear systeAx = b, where

3 -1 1 -1
A=-1 3 -1|,b=| 7
1 -1 3 -7

(a) Check, that the SOR method with valiye 1 25 of the relaxation parameter can
be used to solve this system.

(b) Compuite the first iteration by the SOR method starting at the8Int (0,0, O)T ‘

Solution :

(a) Let us verify the sti€ient condition for using the SOR methdue have to cheek,
if matrix A is sysmmetric, positive definite (spdd is symmetri, so let us check positive
definitness :

3 -1 1
_1 B ~ B

det (3) = 3 >0, def _ =850, got| 1 3 —1[=20>¢C
ts 1 -1 3

All leading principal minors are positive and so the ma#tng positive definite.

We know that for spd matrices the SOR method cayeefor values of the relaxation
parametew from the interval 0 < w < 2.

Conclusion : the SOR method with valwe= 1.25 can be used to solve this system.

(b) The iterations of the SOR method are easier to compute by elements than in the
voctor form :

1. Write the system as equations :

3 — X+ Xg=—1

X +3%—Xg=7

X = X +3%=—7

2. First, write down the equations for the GS interations :
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k+1 ( 1+ |<)_>é|<))/3
X£k+1) :(7+)(£|<+1) N >é3k))/3
gk+1) ( 7 X§k+1)+ )ékﬂ))/:g

3. Now multiply the right hand side by the parametend add to it the vectggk)

from the previous interation multiplie by the factor (&fw):

k+1:1 w>§k V\( 1+>£2k %k)/B
k+1 _ 1 W )ék v\(7+ >§k+1 )gk)lg
k+1 =(1-w) )ék v\(_7_ >§k+1)+ )gkﬂ))/g

4. Fork=0, 1, 2,.... computg(k+l) from these equations, starting by the first one.

Computation fork = 0.

Y = (1-w) £% + v\(—l+ 0 - @)/3:(1— 125 6 1.26- 4 © )}zf 8- 0.416
= (1-w) %2 + \I\(7+ 9 - @)/3:— 0250 1.26- 7 0.41667 )/6 =3 27
(1wl s A2+ )

/3=0.25:0r 1.2%~ 7 0.41667 2.7431=3 1.6

The next three interations are

X2 =(1.4972,2.1880; 2.224B

X% = (1.0494,1.8782; 2.0131
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X =(0.9428,2.0007% 1.9723

the exact solution is equal = (1,2,— 2)T

3.7 Summary

The system of linear equations has been solved by using direct approach and
iterative approach. In the direct approach Gauss elimination method and Gauss-
Jordan method have been studied in detail where as the iterative approach Gauss
Jacobi, Gauss Seidal methods are studied and their gencgerare also studied. In
SOR method also the congence analysis has been studied.

3.8 Exercises

1. Using Gauss elimination method with pivoting, solve the system of linear

equations
2% + 4% + X3 = 3,
3% + 2% — 2% = 2,
X — X+ X3=6.
(Ans: x =2.8=-1.16x3= 2.0)
2. Solve the following system of equations with and without pivoting and compare

the result with exact solution (1, 1, 1).
3. Solve the following system of equations by Gauss-Jacobi methos:

) 10+ X+ Xg=12,
2% +210+ x3=13
2% + 2% +10x = 14
(Ans: x =1, X%=1%=1)
i) 8% —3xX,+ 2x3= 20.
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4X1+11X2_ X3: 33
6% + 3% +12% = 35
(Ans: x, =3.-168,x, = 1.9858, = .911)

4. Solve the following system of equations by Gauss-Seidel method correct upto
four decimal places:

) 12x+y+6z=9, 8x+3y+2z+13,x+5y+z=7 (Ans:x=1,y=1,z=1)
i) 8x—y+z=18,2x+5y-2z=3,x+y-3z=-16
(Ans :x = 2,y = 0.9998,z = 2.9999)

5. Solve the following system of equations by S.O.R method correct upto four
decimal places:

X+y+2z=6, x—-y—-z=-4,x+2y-2z=-1. (Ans: x=1,y=2,z=23)
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Sructur e

4.0 Objectives

4.1 Intr oduction

4.2 Polynomial Interpolation

4.3 Newton’'s Forward Interpolation
4.4 Newton's Backward Interpolation
4.5 Central difference Interpolation
4.6 Lagrange’s Interpolation

4.7 Finite difference operator

4.6 Exercises

4.7 Summary

4.0 Objectives

After studying this unit one can be able to
e construct diferent forms of interpolation polynomial

e some knowledge of finite difference operators are also discussed.

4.1 Introduction

The method of obtaining the value of the function for any intermediate value of
the agument when the values of a functions are known for a set of values of the
arguments is known as interpolation. Mathematigafiythe values of the function
y= f(x) at x=a,a+ hat2h.....,ar nl be known then finding the value of the

function atx = p wherea < b< a+ nhis known as interpolation. ¥ lies outside the
above said range, then the corresponding process is called extrapolation.
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4.2 Polynomial Interpolation

Let f (x)0C™ (~e0,). The principle of interpolating polynomial is “the selection of
a function(x) from a given class of functions such that the grgphd (X) passes
through a finite set of given points”. When the functipr ¢(X) is a polynomial, the

process of representinfy(x) by ¢ (x) is calledpolynomial interpolatioriThe polynomial
interpolation is based on the following theorem knowwegrstrass theorem:

Theorem 4.2.1 :Let a function f (x)OC[a b and lete >0 be any preassigned

small numberThen, [ a polynomial$(x) for which|f (x) = (X)|<e; xO[a ] i.e.

any continuous function can be uniformly approximated by a polynomialfafisofly
high degree within any prescribed tolerance on the finite interval.

Theorem 4.2.2 :Given any real valued functiof (x) and (n+1) distinct points
Xos X» X0, Xg,....% there exist unique polynomial of maximum degree which
interpolates f (x) at the points Xy, %, Xo, Xg, -+ %, .

Exersise: Prove the above theorem.

In a polynomial interpolation the approximation functi¢|6x) Is taken to be a
polynomial y, (X) of degree<n given by

Ya(X)=a+ax+t g X+..+ g R (4.1)

and it is giveny, (%)= f(%) (i=0,1,2,....n) (4.2)

e, ag+tax+af+.+ar= (XN FEOL2...1)

Now (4.2) is a system o{n+1) linear equation with(n+1) unknowns

ag, &, &,....,a Since the

co-eficients determinant
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1 X ... X0
1 % ... x| = |‘|i>j (X - X ) # 0 byVandermonde' determinant
1 X, e X,

as the pointsq, X, X, ...., %, are distinct the values @4, &, &, .-...,&, can be uniquely
determined so thay,, (X) exists and is called interpolating polynomial. The given points
Xg, Xi» %o, ...., %, are called interpolating points or nodes such ¥gat x < X,....,< X,
and also we shall writg;, = f (% )(i=0,1,2,....n)

4.3 Newtons Forward Interpolation Formula

Let y= f(X) be a continuously differentiable function. Given sefr#1) values
(%0, Y0)» (% Y1) (%, ) of x andy, it is required to findy, (X),a polynomial of
degreen, so thaty and yn(x) coincide at tabulated points. Let the valuex die
equidistant so thats = x,+ih, ( h>0 is the step lengthi=0,1,2,..n) Since
yn(x) is a polynomial of degremn, this can be written in the form

Yo(X)=a+a(x %)+ a( x ¥( x P+t @l x § (x=%)..(x= %)
(4.3.1)

We now determine the cdedient ay, &, a,,....8, using the notation

Yo (%)= (i=0,12,...n)

ViYo_ Dyo _Dyy _ _ Vo2t p_A% g

— X X— Xn %= 2 - 2
X=X X=X h 2h 21h
By continuing this method of calculating the daménts we shall find that

We have & =Yy &=

_Dyy Aty A"y,
T M T -

a3

Substituting these values @f, a;, &,.....,g, in equation (4.3.1), we get
A%y
21h?

o ()= 3+ (3 ) 20+ (e ) (e 524 x
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_ _ A"yq
(x=3)...( x= %) s (4.3.2)
. _X=X .
Settingu == we have from equation (4.3.2)
u(u-1 u(u-1(u-2
Yn(x):yo+LAB()+—(2! a7 y+ A 3),( a2 et
u(u-1)(u-2)..(u- U+])A“y0 (4.33)

n!
Equation (4.3.3) idlewton’s forward interpolation formula .
Theerror term is given by

. :u(u—l)(u—z)...(u—n) 1 ()
(9 = 21D A s 0

mim{ % %, x} <€ <max{x,% X}

Note: Newtors forward interpolation formula is used to interpolate the valuy:e@r
the beginning of a set of tabulator values.

The diference table used in Newtsrforward formula is as follows :

X y Ay A%y A3y Ay
Xo Yo
Ay,
Xy Ya A2yo
Ay, A%y,
X, Y A%y,
- Ay,
..... Ny,
Ay,
X Yy,
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Example 4.3.1 The following table gives the valuesafor certain equidistant values
of x. Find the value o whenx = 0.612 using Newtos’forward diferene formulae.

Xx = 061 0.62 0.63 0.64 0.65
y 1.840431 1.858928 1.877610 1.896481 1.915541
Solution. The forward difference difference table is
X y Ay Ay Ay
0.61 1.840431
0.01897
0.62 1.858928 0.000185
0.018682 0.000004
0.63 1.877610 0.000189
0.018871 0.0
0.64 1.896481 0.000189
0.019060

0.65 1.915541

X—= —
Here, %, =0.61,x=0.612,h=0.01,u=>""2 = 0612 06L 05

Then,

u(u-1
y(0.612) = yo + UAy, +%A2 ¥+ 3i =0.2.

0.2(0.2-13
=1.84043% 0.2 0.01849%7————"x 0.0001

,0-2(0.2-3(02
6

=1.84043% 0.003699 0.0000%5 0.0000
=1.844115

?X 0.00000¢
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4.4 Newtons Backward Interpolation Formual

Let y= f(x) be a continuously differentiable function. Given sefrof1) values
(%0, Yo) (%, W) »--{ % , %) of x andy, it is required to findy,(X), a polynomial
of degreen, so thaty and y, (x) coincide at tabulated points. Let the valuex bt

equidistant so thax, = x, + ih, (h > Ois the step length=0,1,2,..n ) Since y, (X)
is a polynomial of degrem, this can be written in the form

Ya(X)=a+a(xx)+a( x x)( x xo)+..v g x ¥
(X=%1) .- X= %) (4.4.1)
We now determine the cdedient ay, &, a,,....,d Using the notation

Ya(%)=¥(i=0,1.2,....n)

Cy oa Yo Va1 OV - a2Vt Yeo 0% W
We have 8 = Yy, & = = % = =
A A S 2h? 21h?
By continuing this method of calculating the dasénts we shall find that
A _ 0%,
T AT

Substituting these values @f), a;, a,,....,& In equation (4.4.1), we get

DZYn
21h?

x= %) ( % %) +.4( % ¥

Y ()= 3+ (- ) 2+ (

0%,
n'h"

(X=%-1)--( x= %) -1 (4.3.2)
X~ %

Setting v= h

, we have from equation (4.3.2)

viv+l viv+1)( v+ 2
I G I GE L2 P

v(v+1)(v+ 2|) v+ =)

0"y, (4.3.3)
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Equation (4.3.3) idlewton’s backward interpolation formula.
The error term is given by
_v(v+1)(v+2)..(v+n

R (X) = (n+1)! i 109 ()

min{x %y, %, %} <& <max{ % % x}

Note : Newtors backward interpolation formula is used to interpolate the values
of v near the end of a set of tabulator values.

The difference table used in Newtsnbackward formula is as follows

X y Oy %y By ny
% Yo
A
X, Y [y,
Oy, Ty,
X, Y, 2y,
e - Cly,
e Ory.
..... 2y
A
X y.

Example 4.4.1 :From the following table of values afandf (x) determine the
value off (0.29) using Netwows’ backward interpolation formula.

X : 0.20 0.22 0.24 0.26 0.28 0.30

f(x) 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139
Solution. The diference table is

X f (X) Of () 2f (X) 3f (X)

0.20 1.6596

0.22 1.6698 0.0102

0.24 1.6804 0.0106 0.004

0.26 1.6912 0.0108  0.0002 —0.0002
0.28 1.7024 0.0I2  0.0004 0.0002
0.30 1.7139 0.005 0.0003 —-0.0001

Here, x, =0.30,x =0.30,h =0.02,V = X_h)““ =028-030- o5,
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Then,

f(0.29)=f(xn)+qu()qq)+%D2f(xn)+ U f(( %)+ ...

—05(-0.5+ 3}
2

=1.7139- 0.% 0.011% 0.00(

,70.5(-05+3(-05 2
6

=1.7139- 0.00575 0.00003#5 0.00000
=1.7081187% 1.708

x(0.000)

4.5 Central Interpolation formula

Srling’ s Interpolation formula :

For this formula the number of nodes will be taken to be oddnize2m, The

nodes beingxy, X1, X2, %m -
The Gauss forward interpolation formula is given by

u(u-1 u(u-1)(u-2
Yo(X) = W+ By + (2! )(Az Yy +A° ¥1)+ ( gl( )(A3Y—1+A4y—1) -----

where u lies 0 and 1
And Gauss Backward formula is given by

Yo (X) = ¥ + u(Ay‘lgAVO}U;!(AZ ¥1)+ u(u2 —1)(AZ?/_1+A3)L2) .

where u lies between -1 and 0
Taking mean of the above two Gass&rmulas, we get

(%)= o+ oAy +a? 3‘1)+@(A2 yi+ A3 y1)+u(u_13)!(u_ 2

(A3y_1+A4y_1)...
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The above equation is call&irling’ s interpolation formula.
4.5.2 Besse$ formula is for nis odd and is given by

u(u-1)( A%y_, +A?y,
(3 =300+ %)+ w-3)a %+ (2! )( 7
_1) (u-
u-=|u(u-1)
+ 23! A3y +...

The above relation iBessels formula.
Exercise: Obtain the digrence table fort8ling’s and Bessel'formula.

Example 4.5.1 :Use the central difference interpolation formula of Stirling of Bessel
to find the values oy at (i)x = 1.40 and (iix = 1.60 from the following table

X : 1.0 1.25 1.50 1.75 2.00
y : 1.0000 1.0772 1.1447 1.2051 2.25Pp9
Solution. The central difference table is

i X Y Ay, o, o,
-2 1.00 1.0000

0.772
-1 1.25 1.0772 —-0.0097

0.0675 0.0026
0 1.50 1.1447 —0.0071

0.0604 0.0015
1 1.75 1.2051 —0.0056

0.0548
2 2.00 1.2599

(i) For x=1.40, we take X, =1.50, then u=(1.40- 1.5Q/ 0.25 - 0.

The Besset formula gives

y(1.40 =207 %

C 1) Ay U(u-D)+ A%y A%y
u z)Ayo 21 >
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+ 1

TG —1) u(u-1)a%y,

2

_ 1.1447; 1.205% (-0 .4- 0.9 0.060.

, ~0-4(-04-3 _0.0071 0.005
o1 >

+%(—o.4— 0.9(-0.3(- 0.4 Jix 0.001

=1.118636
(i) For x=1.60, we takex, =1.50, thenu =(1.60- 1.5Q/ 0.25 0.
Using Sirling’s formula

S( s _12) Ny, +A%y,
3! 2

Ay, +A 2
y(1.60 = yo+ A0 LS A2y 4

_ 0.675+ 0.0604, (0-4)°
=1.1447+ 0.4 5 >—*(~ 0.007

,04(0.16- 3 0.0026+ 0.001!
6 2

=1.1447+ 0.02558 0.000568 0.0001H8 1.1695

4.6 Lagranges Interpolation

Let y= f(X) be a continuously direntiable function. Given set ¢h+1) values
(%0, Yo) (%, W) ---{ %, %) of x andy, it is required to findy, (x),a polynomial of
degreen, so thaty and yn(x) coincide at tabulated points. Here the values of

% (i=0,1,2,..n) are not equispaced. Singg () is a polynomial of degree, this

can be written in the form
Yo (X) = & (%= %) (% %) % )+ & x §( x J..( x }
+ap (X=%)(x= %) .. x x)+..+ a( x ¥ x §.( x x9 (451)
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where ag, &, &,....,§ are coefficient to be determined from the relation

(%)= ¥ = 1(x) (i=0.0.2,...0
Putting x = %, in equation (4.5.1), we get
f (%)
X0~ %) (%= %) %~ ¥)
Putting x=x in equation (4.5.1), we get

_ f(x)
A ) (8- %) %= %)

Similarly putting X =%, %,....% In equation (4.5.1), we get

©

f (%)
X = %) (%= %) (= %) 6~ %)

Substituting the values ddy, &, &,....,& in (4.5.1) we get

"

(x=%)(x= %) x %)

Yn(X)=

) f( )
4+ %) (x= ) X %)
(3= %) (%= %)+ %= %)

(=) (%)X %) gy,
(e =50) 0= )= )2

o 0) () (X %)
(% =%0) (% =) %= 1)

(x)+

(%n)

which is Lagrange interpolation formulaThe above formula may be written in

the following way as
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,zo(x-x)cﬁ(x)
where w(x) = (x=)( x= %)....( x ¥)
f(x):w(x)é(x—;()ﬁ(x)*Rﬂ“(x)

f(n+1) (E)

Where Ry1 (%) = w( ¥ (n+1) min{ % ¥%,-..., x}<€< maf x§ ..., X

Example 4.6.1 A function f (x) defined on the interval (0, 1) is such tHg0) = 0
f(1/2)=-1, f (1) = 0. Find the quadratic polynomigd(X) which agrees witth for
x=0,1/2,1
3
o
Solution. Given x, =0, % =1/2,% =1 and f(0)=0,f f(1/2)=-1 f(1)=0,

From Lagrange interpolating formula, the required quadratic polynomial i s

(x=4)(x= %) (x=0) (%= %)
(%= % 4= %) ( %= %) ")

=1 for 0< x<1, show that|f (x) - p(x)\sl—l2 for 0< x<1.

p( )_( )f()b)+(

%)
o)
LX) (%)
Do) (o) | %)

x=1/2)(x- x=0)( x- X—= x- 1/
:Eo—llngo—gon’(l(/z— (;E 1/2 )1X(_1)+(( 1% E] 1/)32 0

=4x(x-1).

The errorE(X)= f(x) - p( ¥ is given by

£(3)=(x %) (xc )( x %))
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or, ‘E(X)‘:|X_ %[ x| x )§|T

f"’(E)‘

<Ix—0l|x-1/2|x-11L| a8 1 |< 1in &
B 3! |

Now, [x-0/<1,|x-1/2<1/2 and [x-1<1in O< x< 1,

11_1
Hence,|E () <lz==75.
: 1
Thatis,| f ()= p(¥) <75
Example 4.6.2 :Find the missing term in the following table
X 0 1 2 3 4
y 1 2 4 ? 16

Solution.
Using Lagrangs formula

X=1(X=2)( X=4) 3 -7x%+14x~-
LO(X):Eo—lg(o—zg(o—z)): Dge?

2-9(2-9 -4

X=1)(x=2) _ x3-3x%+2x
) 24

(
(
(
(x=4) _ x3-5x2+4x
( .
(
(

Therefore,
Y(¥)=Y%lo(X+ nl( 3+ wl 3+ vl X

:x3—7x2+14x—8 X 6+ 8%, 2
3

r: %1+

75
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3_Ey2
+ X —5_x4+4x><4+ x3—32>f+ 2%:16

=5,3_ 1,2, 11,49,

247 8" 12
Thus, y(3) =8.25

Hence the missing tern is 8.25.
Example 4.6.3 :Using the following data, find by Lagrangdbrmula, the value of

f (x) at x=10

i 0 1 2 3 4
- 9.3 | 9.6 | 10.2| 104 104
y; = f(%) |11.40| 12.80 14.70 17.00 19.8

Also find the value ok where f (x) =16.00

Soluion : To computef (10), we first calculate the following products :

N

0-%)=[0-)

(10-9.3(10- 9.§( 16 104 10 104 20 1ps8- 0.01

ﬁ(xo—xj):o.4455 ﬁ (% -x%)=-0.1728 ﬁ (%o - x;) =+0.0648
j=1 j=0.j#1 j=0,j#2

| 4. (XS_XJ):_O'O7O4 and Iil (X4—Xj):+0_4320

j=0,j#3 j=0,j24

Thus,

1140 , 1280 14.70
0.7x0.4455 0.4x(-0.1728 (- 0.px 0.064

f (10) = —0.01792{

N 17.00 L 19.80
(-0.4)x(-0.0704 (- 0.Bx 0.432

=13.19784¢t
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4.7 Finite difference operator

Shift Operator E : Leth be a non-zero constant is the step length. The shift operator

E for any arbitrary functiorf (x) defined in(—co, ) is represented f (X) = f( x+ h).
Now  E?f(x)=EEf(¥Y=Ef(» B= { »2h and in general
E"f(x)= f(x+nh.

Forward dif ference operatorA: It is defined byAf (x) = f (x+ h)— f( X where
h is the step length

A is a linear operator anA=E-1, E=A+1.

Putting x = x, we get
Ay = f(x+h)- f(%)= %~ % The second order dérence is given by

D?yo =Dy =DYo= Yo- M= %~ ¥) = %2 Wt %
Similarly the 3 order diference is represented by
Dyy =Dy ~A%y= y3=3Y,+ 3y )
and k-th order diérence is given by
Ky~ i K
8% =39 [ |er
i=0
Exercise: i) Prove that first order ®ifence of a constant is O.

i) The first order dierence of a polynomial of degreds a polynomial of
degreen-1.

Backward difference operatord : The first order backward ddrence operator
is defined by

Of (x) = f(x)= f(x-h)

The central difference operator & : The central difference operatgris defined by
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5 (x) = f

x+%h)— f(x—% h)=( E%— E_%J i
x+1 )zf(x+h)— f(=0f( )

- f(x—% h):Af( x——%f)

Thus we have the resujt_ E% _ E_%

of

N

x+1h

o (x) = f{x+3

Example: i) Show thag-1=1-7.
Proof :We know that

0f (x) = (¥ - f(x-H= f(3- E* {( y=(1- EY) { X

— E™1=1-0 (proved)
(if) Show thatp — 7 = 82,
Proof :We know that

x+%h)— f(x—— h):[ 2 - E'%] i 3

=

5 (x) = f

N

1

1 _1
= 0=E2-E 2

=& =E-2+E '=(1+A)-2+(1-0)=A-0 (proved)

4.8 Summary

In this Unit we have studied Newtenforward, backward interpolations, Central
Interpolation, Bessed’and &iling’s interpolation, Lagrangg’interpolation and the
related problems&Me have also studied the some operators like shift, forwdedatite,
backward diference and central éi&rence and relations between them.
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4.8 Exercise

1. Determinef (x) as a polynomial i for the following data :

X! -4 -1 0 2 4

f (X 1245 33 5 9 1335
Ans : f(x)=3x*-5X+6X° = —4x+ 5- E

2. Given the values :

X: 5 7 11 13 17
f (X 150 392 1452 2366 5207
Evaluatef (9) using Lagrane’interpolation forula. (Ans : 810)

3. The following table gives the sales of a concern for five years. Estimate the sales for

the year (i) 1986 (ii) 1992 :

Year 1985 1987 1989 1991 1993
Sales 40 43 48 52 57
Ans : (i) 41.02 (ii) 54.46

4. Find the seventh and the general terms of the series 3, 9, 20, 38, 65,....

Ans : () f(7)=154 (i) f(x)=2(2¢+3+134

5. Using the &ling’s formula to findus, from the following table

X 20 25 30 35 40 45

Uy 14.035 13.674 13.257 12.734 12.0881.309

Ans : Uz, =13.05¢
6. Prove that
() EA=AE

(i) =P
(i) g=e"ta
(iv) A% =(1+4)8°



Unit 5 0 Numerical differentiation

Sructur e

5.0 Objectives

5.1 Intr oduction

5.2 Newton’s Forward Differentiation Formula
5.3 Newton’s Backward Differentiation Formula
5.4 Lagrange’s Differentiation Formula

5.5 Summary

5.6 Exercises

5.0 Objectives

After studying this unit one can be able to

e find numerical diferentiation of a function by using tBfent methods.

5.1 Introduction

Numerical diferentiation is connected with the computation of derivatives of a
function whose values are known at a tabular poirtie. fundamental operation of
differentiation is applied to the interpolating polynomial to evaluate the derivatives
of the given of the given function whose values are known at some tabular points.

5.2 Netwons Forward Differentiation Formula

Let y= f(x) denote a continuously dfrential function which takes the values

Yor Yir Yo, Ya ..., for the equidistant valuegy, X, %, Xs,....% Of the independent
variables x, then we have from Newt®rForward Interpolation formula as

f(X)=y+ L'Ayo"'MA2 ¥+ u(u-1)(u-2)

3
o1 30 A yp+...
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+u(u—l)(u—Z')..(u— n+])An
n!
=x%+ih (h>0is the step lengthj=0,1,2,..n"  and

Yo

Where y; = (%), x

u= X_h)b so that

df _ df du_1 df
dx dudx hdt
dy _ .oy 1 A—1,2 — QU+ 2,3
05 = (x)~—h[uAy)+ A2y + 3 D %t }
dzy_ ] ~ 1 2 a,l_6 3
R G L e T
And so on

In particular forx = x, i.e. foru=0, them

d
(d_ijx_ ~—h[Ayo 1A2Yo 1A3Yo+---}

d?y 1 a2 3
—2 | =A%y D%yt
[ 02 ]X: hz[ Yo Yo J
The above formulae are applicable for numerical differentiation at axpo@ar the
beginning of the tabulated values.

5.3 Netwons Backward Differentiation Formula

Let y= f(x) denote a continuously differential function which takes the values

Yor Yir Yo, Ya ..., for the equidistant valuegy, X, %, Xs,....% Of the independent
variables x, then we have from Newt®rForward Interpolation formula as

u(u+1 u(u+1)(u+ 2)

f(x)= yn+UAyn—1+T)A2 Yot 30 B Yy gt

u(u+1)(u+2)..(u+ n- ])A“

nl Yo
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where Yy, = f()g),)g =x%+ih ( h>0 is the step lengthj=0,1,2,...n " and

_x=%, df _df gu_1df
Us—pf— sothal = ha
dy _ .,/ \_1 2u+1 2

d%y _ cuin_ 1 [ a2 6U+ 6,3
o2 (X)"?[A Y2t 3 A)’o’f--}

and so on
In particular for x=x, i.e. for u=0, them

d
(d_ij = s+ 307p + 3%

d?y 1 A2 3
—_— ==\ AY. =AYy _~+..
[dzsz)% 2[ Yn-2 Yn-3 }

The above formulae are applicable for numericdkedghtiation at a poirt near
the end of the tabulated values.

5.4 Lagranges Differentiation Formula

Let y= f(x) denote a continuously difrential function which takes the values
f (%), f(x)......T(%) corresponding to (n+1) non-equidistant values
Xo X1» X0, Xg,....% . Since the (n+1) values of the function are given corresponding to
(n+1) values of the independent variable x, we can represent the fuyletid)rﬁ x) to

be a polynomial itx of degreen. Then we have Lagrangeinterpolation formula as
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Now

) )—wzn fx) (5.2)

i=0 2 .

(x=x%)"a(x)

For non tabular points we use the above formula but for the tabular poimg
equation (5.1) is indeterminate. Hence we proceed as

d
Example 5.4.1 : Compute% andd—xgl for x =1, using following table

112 3| 4| 5| 6
1|8 27| 64| 125 216

Solution: The diference table is
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Xy [Ay Azy A3y A4y
1] 1
7
2| 8 12
19 6
3| 27 18 0
37 6
4| 64 24 0
61 6
5125 30
91
6| 216

We havexy =1, h=1 x=1sou= X_h)b =0.

9) Ly Tatyy e 2ty Satyye.]
(deX:)% h AyO ZA y0+3A yO 4A y0+"'

dy) _1f,_1 1 _ _ .
(—)X:1_1[7—§x12+—3x 6- Ot ..J_[ 6 p=
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Example 5.4.2 : Find the value cx for whichy is minimum and find the minimum
value from the table:

X 0.60 0.65 0.70 0.75
y (x) 0.6221 0.6155 0.6138 0.6174
Solution:Taking 0.60 as origin, we have

y(X) =y + 3A36+u(u_1)A2 " u(u-1)(u- 2)A3 "

2! 3!
We have the diérence table as follows:
X y Ay A%y Y
0.60 0.6221
-0.0066
0.65 0.6155 0.0049
-0.0017 0
0.70 0.6138 0.0049
0.0032
0.75 0.6170
Putting the values, we have
y(X) = 0.622% u(- 0.006p+ “(‘;!_1) ( 0.004

whereu = 2= %0 = x=0.60

h 0.05

Also

dy _
ax 2

ie. %[—0.006&217_1( 0.004}3} =

u=1.846¢
X=X+ uh=0.60+ 0.05¢ 1.846% .69:

0(y), =0.6221+ - 0.0068 1.8460 0.00245 1.8469 0.0049 187I2¢
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5.5 Summary

In this unit numerical differentiation has been done by Using Newton’ Forward, backward,
Lagranges differentiation formulae. Using this maximum and minimum values are also
calculated.

5.6 Exercises

1. Find f'(93) from the folloing table :

x 60 75 90 105 120
fx) 28.2 38.2 43.2 409 37.J

Ans : -0.03627
2. Find the first and second order derivative\6f = at x = 15 from the following
table:
X 15 17 19 21 23 25

y=+/x 3.873 4.123 4.359 4.583 4.796 5.000
Ans: 0.1289, -0.004

3. Find the minimum values of (x) from the table:

X 0O 2 4 6
fx) 3 3 11 27
Ans: 2.25

4. Find the maximum values (f(x) from the table:
X 1.2 1.3 1.4 1.5 1.6

f (X 0.9320 0.9636 0.9855 0.9975 0.99P6
Ans: 1.58

5. The population of a certain town is given beldsnd the rate of growth of
the population in 1931, 1971

Year (X) 1931 1941 1951 1961 1971
Population on thousands(y) 40.62 60.80 79.95 103.56 132.65
Ans: 2.36425, 3.10525




Unit 6 O Numerical Integration

Sructur e

6.0 Objectives

6.1 Intr oduction

6.2 Newton Cotes Formula
6.3 Trapezoidal Rule

6.4 Simpson's Rule

6.5 Weddle’s Rule

6.6 Summary

6.7 Exercises

6.0 Objectives

After studying this unit one will be able to learn about

e the numerical integration of a function by usingfefiént rules and also the
corresponding error terms.

6.1 Introduction

b
The well-known method of evaluating a definite integﬁglf (x) dx is to find an

indefinite integral or a primitive of (X),i.e. a functiond (x) such thatp'(x) = f (x)

and then calculate the values ¢fa),¢(b) and take the value of the integral to be

d(b)-¢(a) But if the function f (x) is such that its indefinite integral cannot be

obtained in terms of known functions, as is very often the case, then the above
method fails. In such cases we may try to compute an approximate numerical value
of the definite integral up to a desired degree of accuiiduyg is the problem of
numerical integration which is also calleanechanical quadrature
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Again, if the integrandf (x) is not known in its analytic form but is represented by

table of values, then the formal method becomes meaningless, and we are turned to
numerical integration.

Closed and open type quadrature formuld mechanical quadrature formula is
called closed or open type according as the limits of integration are used as interpolating
points or not.

Degree of PrecisionA mechanical quadrature formula is said have a degree of
precisionk, (k being a positive integer), if it is exact, i.e. the error is zero for an
arbitrary polynomial of degreek < n, but there exist a polynomial of degrge-1
for which it is not exact, i.e., the error is not zero.

Composite rule Sometimes it is more convenient to break up the interval of
integration [a,b] into m sub-intervals[aj_l,aj](j=1,2,3,...m) by the points
39, &, ,....,8, Such that a=g <& < &...< &,= b apply a given quadrature

formula separately to each inter\,{a&j_l,aj] and add the resullhe formula thus

obtained will be calledomposite ule corespondingo given quadrature formula.

6.2 Newton-Cotes Formula (closed type)

b

Let the integral to be evaluated béf ) :Ia f (x)dx The interval[a,b] is sub-
divided inton equal subinterval, each of lenchh The nodes areq, X, %, ...., % -
such thatxy =a %, = b x= %+ ih h:b;na( =0,12.3,...0

The corresponding entrie§ (x ),i=0,1,2,...n are also available. Let us use

Lagranges interpolation formula to approximafe(x) by the interpolating polynomial

Yn (X)
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Integrating the interpolating polynomig, (x) we have the approximate value of the
given interval as

b n f(%)

1L(f)= dx=3 H"f

(f) Iaw(x);)(x x)w (%) X= Z () (6.2.1)

where

b 9(x) .
H; —jamdx (i=0,1,2,...n) (6.2.2)
Settingu = X_h)b, so that ,dx= hdu (6.2.3)
So w(x)=h"tu(u-1)(u-2)..(u 1 (6.2.4)
Again,

(%) =% =) (x = ) 1= xa) (%= %) {12 nX)

=in{(( —1)h} AD)(-)(-3) ()]

={i(-1)6-2) 0’ (47" (a-1)

=(-1)™ 'h”|!(n—|). (6.2.5)
Now using (6.2.3), (6.2.4), (6.2.5) in (6.2.2) we have

p = e (0-2) o
0 (-1)"" h"in-1) !{(U_ i) h}

du

_() o) ru(u-)(v-2) (e ) o
~nil(n-i)! Jo (u-i) du(i=0,1,2,.....n)

OH"=(b-a)K";

where K{'= n(ll_(lzrl_:)l J-;u(u_l)((l:__?)) {u- rj(l =0,12,....n)

(6.2.6)



90 NSOU e CC-MT-05

Thus we havd () =Zin:OHi“f (%) :(b—a)zin:O K"f(x) (6.2.7)

Where K" is given in equation (6.2.6). This is called (I1|E+1) — pointsNewton-

Cotes Numerical Integration formula of the closed type

6.3 Trapezoidal Rule

For n=1, we have from Newton-Cotes Formula

(f)=1r =(b-a) XK' (%) =(b-a)| K5 f( %)+ K f(%)]

K= —(_1)1_0 1(u -1)du= 1
where o =1 o11-0) i "2
1-1
and K11: ( 1) 1UdU:i

LI~ 2

(1) =17 =230 (xo) 1 ()]

3
Error in Trapezoidal rule is E; :—;‘_Z f" (&) :_(bls) f"(€)(a<&<b)

Geometricallythe curvey = f (x) is replaced by the straight line passing through

the point(a, f(a)) and (b, f(b)), and the integraI: f (x) dx is approximated by

the area of the trapezium bounded by the straight line, the ordinatesab and
the name trapezoidal rule.

The degree of precision is 1
Composite trapezoidal ruleSuppose the interva{la, b] is sub-divided inton

equal subinterval, each of length The nodes arexy, %, Xo,......,.% , such that

Xo=2a % =hX% :>q)+ih,h:b;na(izo,l,z,s,....n) then applying the above



NSOU e CC-MT-05 91

Trapezoidal rule to each subintervpigs, x| (i=,1,2,3,....n) and summing overwe

can obtain the compositeapezoidal rule given as

|(f):jxxolf (x)dx+jxxlz F(X) dxt ...+ : (3 o
1(f)=["t (x)dx+j;2 f(%) dx+....+J:_l f( % o

:%E f (%) + f(x1)+....+%_ f()g)}—g—gzzin:l " (&)

( by using Intermediate-value theorem)

6.4 Simpsons Rule

For n=2, we have from Newton-Cotes Formula

(f)=15=(b-a) L K (x)=(b-a)| K (%) + K f(%)+ K f( )]

where K3 :2.(0_!(1+0)!J-§U(u—2) du:%
K2= 2(17(1)2__]) !j;u(u—z) du:%
2= 2!(2— J)! (U1 du:%
1(1)=1,= O o) vt ) 1]
(b-a)°

f"(€)(a<g<b)

5
Error in Trapezoidal rule isg_ = —g_o fIv (5) =880

The degree of precision is 3

Composite Simpson’1/3rd ruleSuppose the intervdla,b] is sub-divided into
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n(= 2m) of equal subinterval, each of lendgthThe nodes areg, X, X, ...., %, , such

that xg=a x, =b, xy+ih, h:b;na (i=0,1,2,3,...n) This divides the range of
integration[a, b] into m= n/ 2 subrange then applying the above Simpsoule to

each subinterval$xy, Xo|.[ %, %] .-.-{ %-2.%] and applying Simpsos’rule to the

subrange[xzj_z, X5i J

B 109 o= fs,-2)+4 1)+ 105 )] -55 (5

Xoj-2

((ij—2<§] <Xy ; j:1,2,...,m)

Summing over all the sub-ranges, we have
m .

| (f):ZJ‘ “f (x)dx

i=1 Xoj-2

X[t (i) 4 (e + ()] G536

w|z>

=1$+ES

1S =001 (x0)+ 1 (xa) +4{ £ (30) * F(06) + ot T30} ]
#2{ f () + (%) +..+ T(%-2)}]

£S =-N ¢ (g)(a<t <b)

s 90
( by using Intermediate-value theorem)

For n=1, 2, 3, 4, 5, 6 the calculated values ®" are given in table 6.4.1
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Table for K"
i 0 1 2 3 4 5 6
n
1 1
1 2 2
1 4 1
2 6 5 6
, 1 3 3 1
8 8 8 8
, 1 » 12 32 1
90 90 90 90 90
5 19 15 50 50 75 19
288 288 288 288 288 288
A 41 216 27 272 27 41

840 840 840 840 840 840
Table: 6.4.1 Newton-Cotes quadrature tioeits (closed type)

6.5 Weddle’s Rule

The seven-point Newton-Cotes closed type formula with error is
_ (P __h
|(f)_jaf (x)dx-m[4lf(>b)+ 216f( %)+ 27f( %)+ 272f( x)+ 27f( %)+

216f + 41f :I ?20 fVIII a<E< b) ;h:b;Ga (6.5.1)

The coefficient of the ordinate s are extremely cumbrous which makes the formula
unworthy of practical computatioAccordingly we seek to modify the above formula
so that the coétients are simplified by proceeding as followWde know

A°F (x9) = (%) =6 (%) +15F( %) - 20f( x)+ 15f( x) - 6f( 39+ f{ %)
(6.5.2)

(65.1) ++11-x (6.5.2) gives on writing\*f (xp) = h® £ (€') (a<€' < )
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j:f(x)dxz W + By

Where
w = [ f ()= 1 () +5 1 () + f(%)+6 (26)+ (6)+5 {9+ { %]
(6.5.3)
and
E\N——m V(&) - 91201‘““ (£)(a<&,& <h) (6.5.4)

This is calledMeddles ruleinwhich the codicients of the ordinaltes are fairly simple

CompositeNeddles rule: Suppose the intervié, b] is sub-divided intan(=6m)

of equal subinterval, each of length The nodes arexy, X, X,...,% , such that
Xo=a % =h x =x+ih, h=b-a a( =0,1,2,3,...n) This divides the range of
integration[a, b] into m= n/6 Ssubrange then applying the abdeddles rule to
each subinterval$xy, Xs] [ X %3] :---[ %-6.%] and applyingWweddles rule to the

subrange[xzj_e,xﬁj] and summing overj =1,2,3,....m we get

() =3[ f (x)ax

i=1 Xsi-6

:i’_g Tzl[f (x6j_6)+5f(x6j_5)+ f(Xq—4)+6f(X@-C;+ f( Xp- 2)+5f( X6~ ])+

T oM gviii g0 «—m i
o) ) B )
(X6j—6<§j,§'j < Xg j:1,2,...m)

J: f (x)dx= Iy + Ej,
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wherel§, =301 (x)+ £ (%) +5{ () + (%) + F(3)+... (%9 + T %)}
+2{ £ (xo)+ T(%g) +..t F(%-2)}
+6{ f () + T (%) + ...t T(%-3)} (6.5.5)
+2{ £ (%) *+ F(42)+ .+ F(6)} | (n=212

m:_nTZ:: vm('j)_% rjn:lfVi(Ej) (a<&& <b) (6.5.6)

I§1+ dx using (i) Trapezoidal rule, (ii) Simpsos’

1/3rd rule, (iii) Weddles rule.Also check by direct integration.

Example 6.5.1 : Evaluatel =

Solution: Here, we havey = f )—ﬁ 0< x< 6.

6-

o

Divide the interval into six parts. Sb= =1

m‘

Therefore, the values oi'—l% are:

X 0O 1 2 3 4 5 6
y=f(x) 1 051/3 1/4 1/5 1/6 1/7

() By Trapezoidal rule:

6
Jodx=D{(%+ ) +2(w+ o+ w+ w+ W]

1+Xx
1 1 1.1, 1. 1
§[1+7)+2 05+3+4 5 —(H
= 2.021429

(i) By Simpsons 1/39 rule:

6
J.oﬁdng (Yo+ %) +4( v+ B+ ¥+2( wt ]
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= 1.9538730
(iii) By Weddlés rule

6
J' 1 dx:m[(y0+ %) t3( u+ Bt wt ) +2 }é]

01+x
-3 1 1
_8[1+7)+3 ﬂ

= 1.952857
By actual integration,

6
[ keanoatos 7

=log7-log1l

=1.94591(

Example 6.5.2 :The velocityr of a particle at distancs:from a point on its path is
given in the table below:

—1+—1+—1+—9+2
2 35

sinmeter| 0 [ 10| 20| 30| 40 5Q 6(¢
vinm/sec| 47| 58 64 6% 61 52 3J

Estimate the time to travel 60 meters by using Simpgsbi® rule.
Solution: Here, we havey =10.

ds —ds

We know thev = - Hence, dt

To find the time taken to travel 60 metres we have to evaluate

60 60
dt :J. d_S
0 0 Vv

Let y=%, then the table values gffor different values of are given below

10 20 30 40 50 60
0.0213| 0.0174 0.0156 0.0156 0.0164 0.0192 63

(7]
o

<k
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By Simpsons 1/3d rule,
60
o vds=[(w+ ) +4( x+ w+ W+2( v+ Y]

=%’[(0.0213+ 0.026p+ @ 0.0172 0.0154 0.0192 ( 2 0.0450164)

=1.0627
~ Time taken to travel 60 meters is 1.0627 seconds.

6.6 Summary

In this unit the numerical integration by using Newton-Cotes formula(closed type),
Trapezoidal rule, Simpsasi/3“ rule andWeddles rule have been discussed and also
the corresponding error terms are also studied.

6.7 Exercises

1. Define the degree of precision of mechanical quadrature formula. Show that the
d.p. of trapezoidal is 1.

2. Deduce the trapezoidal, Simpsof/3? andWeddles rules (without error) by
integrating Newtors forward interpolation formula.

1
4x+5

5
3. Evaluatej'0 dx by Trapezoidal rule usingllcoordinate.

Ans: 0.4055

4. find the value ofJ.;VZ\/cosx dx by (i) Trapezoidal rule and (ii) Simps@nbne-
third rule taking n = 6. Ans: (i) 1.170 (i) 1.187)

5.When a train is moving at 30m/sec steam is sHudrad brakes are appliethe
speed of the train per second afteseconds is given by

time(t) | 0 | 5| 10 | 15| 20| 25| 30| 35 4
speed V|30| 24| 19.5 16 13.6 11.f 10/0 85 7

©

Using Simpsors rule, determine the distance moved by the train in 40 sec.
(Ans: 606.66 m.)
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7.0 Obijectives

After going through this unit one will be able to learn

e the concept of programming languages, interpretampiler source and object
program.

7.1 Introduction

We have seen that the hardware or physical parts that form a computer serve no
purpose by themselve3o make a computer work, we must learn how to give
instruction to it in a language that the computer wiitlerstand.

7.2 Concept of Pogramming Language

In a natural language we speaks in, we use words to convey ideas and even
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emotions, feeling and sensatioAscomputer languages used to communicate with a
machine which can react to only simple and very clear instructions conveyed through
precise notations or word3he notations and wds which can be used to give
instructions to a computer and the rules which the instructions must obey form a
computer language.

The first set of computer language that developed were based upon the internal structure
of the computerThese languages were referred tacadesor low level languages.
Machine codeandassembly codehich used binary or mnemonic symbols were first set
of languages that were developed for computers.

7.3 Machine Language

A computer works on electricity and this enables it to receive and store information only
in the form of electric pulses. If a pulse is present it codes it as 1 and if it is not present
it codes it as Orhe computes own language is, therefore, made up of the binary numbers
0 and 1 and is written in the form of a numeric code. This language is waltddne
languageor code and is a part of a complgeslectronic circuittWVhen computers were
first made, machine language was the only language.

The utility of a machine language is that since it is written in the machine code itself, the
computer processes it quickyn the other hand, the number of people who can without
difficulty a series of instruction using zeroes and ones must indeed be vdtydewires
long term expertise to do this. Coding and decoding are tedious processes and prone to
errors. Furthemachine languages vary with the make of each computer and one may need
to learn a new machine language each time one works on a different make of machines.

7.4 Assembly Language

In the beginning, machine language was the only language askembly language
was developed. In an assembly language, ‘mnemonics’ (or alphanumeric codes) were
used to substitute the binary machine coded to machine langumege. ‘mnemonics’
were memory aids which helped the mind to relate things more.dasilgxample,
mnemonics ‘DIV’ could be used to describe the operation ‘divide’.

Assembly language made it easier for the user to write his instructionBut the
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‘mnemonics’ had to be translated to the computer into its binary pattern before the machine
could do the job. The translation was done by a special pre-stored set of instructions called
anassemblerThe assembler was supplied by the computer manufacturer and usually
embedded in ROM chips.

The advantages of an assembly language are that it helps in reducing errors and the time
involved in writing instructions. The drawbacks are that it requires the user to have a fair
knowledge of hardware and being machine dependent, the instructions for one machine
cannot be executed on another

7.5 High Level Language

In the initial phase of development, the use of computers was largely confined to a small
group of scientists and computer specialiith improvements in technology and fall in
prices, there arose a need for languages that would permit even a non-expert to communicate
with a computeiThis led to the developmentlaigh levellanguages which enable agar
number of people to use computer without having to know in detail its internal structure.
These languages arsercentedand noimachine-cengdlike the machine and assembly
codesA program written in high-level language can be run dardifit computers without
any or much modifications.

Instructions in high level languages are given using certain words from a natural language,
such as English, an a few notations. Each word or notation in these languages have one
precise meaning and we must adhere teyhéaxor the set of grammgpunctuation and
spelling rules for the languageday virtually all work is undertaken by writing instructions
in one of the high level languages.

The first high-level programming were designed in 19%@a, Algo, LOGO,
PILOT,BASIC, COBOL, C/C++,FORRAN, Java, R, python etc. are popular
examples of high-level languages.

The computer does not directly understand a high level lang@éagenslation is
undertaken by specially prepared software cdleduage pocessors or translators
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7.6 Interpreter

An interpreters translates one instruction at a time and gets it inmediately executed.
Each instruction is checked for errors and corrections are made when necessary
Interpreters do not involves much storage space but they require more time to execute.
Basic, R, Python are Interpreter based language

7.7 Compiler, Source program and object program

Compilers

Compilers take all the instructions together and then compile them into the
corresponding machine cod&he user written program (referred to as soeirce

Basis for Compiler interpr eter

comparison

input It takes an entire progrgnit takes a single line of code pr
at a time. instruction at a time.

Output It generates intermediajtét does not produce any intermediate
object code. object code.

orking mechanismThe compilation is dorjeCompliation and execution take
before execution. place simultaneously

Speed Comparatively faster | Slower

Memory Memory requirement |dlt requires less memory as it dges
more due to the creatipmot create intermediate object coge.
of object code.

Errors Display all errors aftgrDisplays error of each line one py
compilation, all at thgne.
same time.

Error detection | Diffucult Easier comparatively

Pertaining C, C++, C#, ScalaPHP Perl, Python, Ruby uses an

Programming typescript uses compilef jnterpreter
languages
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program) is fed into the computerhe compiler translates tls®urce programand
produces a complete program in machine language known asbjet program
which is loaded into main memory for execution.

Some basic comparison between Compiler and Interpreter is given in the form of
the table given belos :

7.8 Conclusion

Compiler and interpreter both are intended to do the same work et idif
operating procedure, Compiler takes source code in an aggregated way whereas
Interpreter takes constituent parts of source code, i.e., statement by statement.

Although both compiler and interpreter have certain advantages and disadvantages
like Interpreted languages are considered as cross-platform, i.e., the code is portable.
It also doesrt’need to compile instruction previously unlike compiler which is time-
saving. Compiled languages are faster regarding compilation process.

7.9 Summary

In this unit the concept of programming language like machine language, assembly
language, High level language is discusgddo the diference between interpreter
and compiler as well as the source and object program also discussed

7.10 Execise

1) What do you understand by Machine language?

2) How the machine language f@if from the assembly language?
3) Define the object and source program.

4) Write the diference between Interpreter and compiler



Unit 8 O Number System

Sructur e

8.0 Objectives

8.1 Intr oduction

8.2 Decimal Number System
8.3 Binary Number System
8.4 Octal Number System
8.5 Hexadecimal

8.6 Conversion

8.7 Summary

8.8 Exercise

8.0 Objectives

After going through this unit one will be able to learn

e different types of number systems and their conversion from one system to
another system.

8.1 Introduction

We have heard of number systems like the whole numbers, the real numbers etc. But
in the context of computer awareness, we define other types of number systems like the
binary number system, the decimal system, the hexadecimal system and\&heiit.
discuss the binary number system and others and how we can convert from one number
system to the other

The value of any digit in a number can be determined by

-The digit

-Its position in the number

-The base of the number system
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Letr be the base of a number syst&hmen to represent any given integer numsay
D, symbolically in this system, we usaumber of different characters, namely

0<1<2<.<(r-2<(r -} and represent D uniquely as

D:i(dndn—ldn—zdn—S----dZC!LCb) (8.1)
According as the number is positive or negative, whdgea positive integer and

eachd, ranges fromOto(r 1) ,such thatd, #0,0<d; <(r-1),i=0,1,2,.({n- }
The magnitude of the number will be given by

ID|=dy. ()" + g (1) + .t dyp (1) 2+ dy (1) +d o (r)°

8.2 Decimal Number System

The most commonly used number system is Decimal Number System with base
10. In this system, the ten basic characters that are used to represent number are 0,
1,2, 3,4,5, 6,7, 8 and Bhus in decimal number system the (n+1) digit number
D represented by (8.1) has the magnitude

-1

Oy (10)" + Ay (10" + by ( 10P+ ch (- 1P+ (. A0

For example, the decimal number represented by the symbol 4356 has the magnitude
4356= 4(10°+ J 1+ %. 10+ 6.0

For a fractional number whose magnitude is less than 1, the symbolic representation

starts with dot (.), called the decimal point, and the powers of the base will be
negative from -1. Foexample

83 _ ga_ g 107 2
100 83=8x10"+ % 10

Thus 607.03= & 16+ & 1b+ ¥ 1D+ 0 16+ 3 1€

Exercise 8.2.1 : Write i) %Jﬁ in decimal number system.

8.3 Binary Number System

In binary number system, the base is 2 and the symbols used for representing a
number are 0 and Thus the number1D101 in binary system is equivalent to
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IxP+1x P+ x P+ & P+ & 2+ & 5
= 32+16+0+4+0+1 = 53 in decimal system.
Using the respective radix as subscript, we write this result as:

(110103, =( 53,,
Just like decimal point, we also have binary point as:

(1101.01), = ¥ 2+ & 2+ © 2 ¢ & 0 2+ x1 73+ x174
= 8+4+0+1+0+.25+.125- (13.379,,
Binary numbers play a vital role in the design of digital computers.

Exercise 8.3.1 Write (.1013), to decimal number system.

8.4 Octal Number System

Here the base is 8 and eightfeiient symbols are 0, 1, 2, 3, 4, 5, 6 andhus
a number(7032), in octal system is equivalent to

7x8+0x &+ x &+ x 8

= 3584 + 24 + 2=(3610)

Again

(71.39,= ™ 8+ x 8+ 3 8'+ &4 ®

= 56 + 1+ 0.375 = 0.0625 (57.437Y

8.5 Hexadecimal Number System

The base is 16 and the required symbols to represent a number in this system are
0,1,23,45,6,7,8, 9 B, C, D, Eand FThe symbolsA, B, C, D, E and F
represent the decimal number 1Q, 12, 13, 14 and 15 respectiveljhe number

(BC6A)  =11x16 + 1x 16+ & 16+ 10 N

= 45056 + 3072 + 96 + 16:(48239
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The symbol 0 and 1 are generally called BIT —the bit at the extreme left having the highest
positional value is the Most Significant Bit (MSB) while the bit occupying the extreme right
position having least positional value is called the Least Significant Bit (LSB)

8.6 Conversion

Conversion of binary to decimal The decimal equivalent of a binary number is
obtained by expanding it according to the place-value of each bit.

Exercise : Obtain the decimal equivalent of the following numbers:

) 11011

i) 10010

i) 0.01101 Ans: i) (27),,, ii) (28),,. iii) (0.40629,,

Conversion from decimal to binary: There are several methods of converting
a decimal number to its binary equivaléflhe most commonly used methods are (i)
Expansion Methocnd (ii) Division and Multiplication Method

Expansion Method The given decimal number is first expressed as summation
terms each of which is a power (positive integral and negative integral) of 2.

Example 8.6.1 :Convert the decimal numbers (i) 47 (ii) 195 (88.562¢ to their
binary equivalents:

Solution: (i) (47),=32+15=32+8+7=32+8+4+3

=32+8+4+2+1

=2+22+22+ 22+ P
=1xP+0x P+ x P+ K P+ x 2+ g 5
= (101113,
(i) (195), =128 + 64 + 2 + 1
=2/ +264+ 244 20
=1xB+0x P+ x P+ k P+ & 2+ 8 F+1xF+1x P
=(1100001},

(i)  (88.5629,, =64 + 16 + 8 + 0.5 + 0.0625

=28+20+ 2+ 714 24
=1xP+x P+ x P+ Kk P+ & B+ 8 ¢
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+0xP+1x 71+ ¢ 22+ ox 23+ x 24
= =(1011000.100},

Division and Multiplication Method: The above method is laborious and not
suitable for lage numbersWe may however use the division and multiplication
method which is described as follows:

The decimal number has both an integral and fractional part, then we first convert
the integral part to its binary equivalent by the division metfbe. fractional part
must next be converted by multiplication process and the two results should be
linked up after that.

For decimal integral The given decimal integer is repeatedly divided by the base
2 of the binary number systerfihe remainder (which is either O or 1) is noted in
each divisionThe process continues till the quotient is zfree first remainder is
the least significant bit and the last one is the most significanthuits the binary
equivalent is obtained by writing down the remainder in the reversed peddérom
bottom to upward.

Example 8.6.2 :Convert(47)10 to binary equivalent.

Solution:

2 |47
23
11
05
02
01 1
00 - MSB

Thus (47),,=(10111},

- LSB

N N N NN DN

B O R B o R

For decimal fraction: The given decimal fraction is multiplied by 2, the fractional
part is again multiplied by 2 and the process is repeated till the fraction part of the
product is zeroThe integral part obtained each time, which can be either 0 or 1, is
taken in top to bottom order and arranged from left to right to provide the binary
equivalent to the decimal number
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Example 8.6.3 Convert the following decimal fractions to its binary equivalgd), ,

Solution: The result of repeated multiplication is shown below

Multiplication Integral Part Fractional Part Binary Position
0.375x2=0.790 ! 0.75 0 x 2!
075x2=150(1 0.50 1x 2?2
05x2=100 |1 0.00 1x 23

Thus the equivalent binary fraction(i879),, = (.011,
Exercise 8.6.4 Convert the decimal fractions to its binary equivale#8),

Example 8.6.5 :Convert(47.379,, to binary equivalent.
Solution: As we have already done the binary equivalent of the integral part

(47),,=(10111},
and the decimal fraction to binary(875),,=( .01},
Linking the two results, we hav@7),,+(-37910 =( 10111, +( .031

Or, (47.379,,=(101111.03}

Conversion of decimal number to octal The conversion method follows similar rules
as in the case of binary number system. Here we divide the number by the base 8 instead
of 2. It will clear in the following example

Example 8.6.6 :i) Convert(347),, to octal equivalent.

Solution:
8 | 347
8[43 |3 ~ LSB
8|05|3 1
800 |5 ~ MSB

Therefore  (347),,=(533,

i)  Convert(0.30), to octal equivalent.
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Solution:

Multiplication Integral Part Fractional Part| Binary Position
0.30 x 8 = 2.40| 2 ! .40 2 x gt

0.40 x 8 = 3.20| 3 .20 3 x 82

0.20 x 8 =1.60( 1 .60 1x 83

0.60 x 8 = 4.80( 4 .80 4 x 84

0.80 x 8 = 6.40( 6 40 6 x 8°

0.40 x 8 = 3.20( 3 .20 3 x 8%

(Recurring Starts)

Hence (0.30)10 :( m%

Conversion of binary number to octal The base of the octal system is 8 or (2x2x2).
Thus the octal base 8 is a power of the base 2 in the binary system.

A binary number is converted to its octal equivalent by grouping of three successive bits
starting from the least significant bit or the right-most digit.
Example 8.6.7 : Convert(1010111101)L, to octal.

Solution:  Three successive bits of the binary string are grouped from the right.
Binary: 010 101 1112 o1
Octal equivalent: 2 5 7 3

Hence (1010111101}, =(2573,
Note:A non-significant ‘O’has been added in the left-most group to make it a string

of 3 bits. This is only for convenience of grouping.

Conversion of octal number to binary:The octal equivalent of binary number may
be found through the same process of referring to the conversion table and arranging the
bits in order

Example 8.6.8 :Convert(412), to binary

Solution:  We have:
4 1 2 (in Octal)
= 100 001 010 (inBinary)
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Arranging in orderwe get

(412), =(10000101p,
Exercise:  Convert (i)(111010111,

iy (10.13),
(iiiy (1011.101101), to their octal equivalent.

Ans: (i) (1656), , (i) (2.6)g . (iii) (13.554,
Conversion from decimal system to hexadecimal system:

The procedure for conversion from decimal to hexadecimal is same as that of octal.
Here in this case repeated divisions is by 16.

Example 8.6.9 : Convert (16),, to hexadecimal.
Solution:
16 116
16| 7
16| 0

-
Hence(116), , * 7$1G
Conversion method from binary to system to hexadecimal system is similar to octal but
here instead of grouping by 3-bits, we arrange the binary string in groups of 4-bits

Example 8.6.10 : Convert(111003, to hexadecimal.

Solution: (111003, =( 00111093 =( 39,

Example 8.6.1 : Convert i)( A748), and (ii) (BAy-C4), to binary number system.
Solution: i) (A748),,=(101001110100100¢g

(i) (BA2.C4),,=(101110100010.110001)
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8.7 Summary

In this unit, the detailed study of Number system like decimal, bioetal, hexadecimal
and their conversion from one system to other have been studied with proper examples.

8.8 Exercises

1. What do you understand by binary number system? How it is differ from decimal
number system?

2. Convert the following decimal numbers into its binary equivalents:

a) (13])10 b) (395)10 c) (423'2310

Ans : (a) (1000001}, (b) (399),, (c) (423.29,,

3. Convert the following binary numbers to its decimal equivalent:

(a) (12003, . (b) (11.0, . (c) (10.013,

Ans : (2) (25),, (b) (3-29); . (c) (2.379),
4. Convert the following decimal numbers into its octal and hexadecimal equivalents:

(@) (231, (b) (153,

Ans : (a) (347); (E7)y. (b) (2315, (99)s-
5. Convert the following octal numbers into its binary equivalents:

(@) (346)8 (b) (135)8

Ans : (a) (1100119, (b) (101110),

6. Convert the following hexadecimal numbers into its binary equivalents:

(@) (485)16 (b) (ABBF)le

Ans : (a) (1001011011, (b) (101000111011113]
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