
PREFACE 

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,” 

the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations 

for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and 

Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based 

credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this 

entire exercise shall leverage the potential of higher education in three-fold ways – learner’s personal 

enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively 

therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising 

individual attainments towards the enhancement of our national goals.  

     In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of 

an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in 

upholding the qualitative parameters. It is time to acknowledge that the implementation of the National 

Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its 

syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of 

Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities 

in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among 

Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas 

Open University is committed to both quantity and quality in its mission to spread higher education. It 

was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate 

syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the 

CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are 

relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge 

Systems.  

     Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open 

University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s. 

From our mandate of offering quality higher education in the mother tongue, and from the logistic 

viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English. 

All our faculty members are constantly engaged in this academic exercise that combines subject specific 

academic research with educational pedagogy. We are privileged in that the expertise of academics across 

institutions on a national level also comes together to augment our own faculty strength in developing 

these learning materials. We look forward to proactive feedback from all stakeholders whose participatory 

zeal in the teaching-learning process based on these study materials will enable us to only get better. On 

the whole it has been a very challenging task, and I congratulate everyone in the preparation of these 

SLM’s. 

I wish the venture all success.      

 

Professor Indrajit Lahiri 

Vice Chancellor 
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Unit 1 rrrrr  Err or Analysis

Structur e

1.0 Objectives

1.1 Intr oduction

1.2 Reason of Numerical Errors

1.3 Measurement of Errors

1.4 Summary

1.5 Exercises

1.0 Objectives

After going through this unit one can able to learn about

l types of errors

l measurment of errors

1.1 Introdution

The process of solving physical or any scientific problems can be roughly divided
into three phases. The first consists of constructing a mathematical model for the
corresponding problem. This model could be in the form of differential equations or
algebraic equations. In most cases, this mathematical model cannot be solved
analytically, and hence a numerical solution is required. In which case, the second
phase in the solution process usually consists of constructing an appropriate numerical
model or approximation to the mathematical model. For example, an integral or a
differential equation in the mathematical formulation will have to be approximated
for numerical solution appropriately. A numerical model is one where everything in
principle can be calculated using a finite number of basic arithmetic operations. The
third phase of the solution process is the actual implementation and solution of the
numerical model.
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1.2 Reason of numerical Errors

It can be the combined effect of two kinds of error in a calculation.

l the first is caused by the finite precision of computations involving floating-
point or integer values called Round off error

l The second usually called Truncation error is the difference between the
exact mathematical solution and the approximate solution obtained when
simplifications are made to the mathematical equations to make them more
amenable to calculation. The term truncation comes from the fact that either
these simplifications usually involve the truncation of an infinite
series expansion so as to make the computation possible and practical, or
because the least significant bits of an arithmetic operation are thrown away.

1.3 Measurement of Errorss

Numerical Errors usually measured in three ways, Absolute Error, Relative Error
and Percentage Error.

Absolute Error : Absolute Error is the magnitude of the difference between the

true value  and the approximate value x
a 
. Therefore absolute error is defined as

the error between two values is defined as ,a aE x x= −  where x denotes the exact

value and x
a
 denotes the approximation.

Relative Error:  The relative error of x is the absolute error relative to the exact
value. Look at it this way: if your measurement has an error of ± 1 inch, this seems
to be a huge error when you try to measure something which is 3 inch long but
when measuring distances on the order of miles, this error is mostly negligible. The

definition of the relative error is .a
r

x x
E

x

−
=

Note : Consider you try to measure a rod of length 10 cm, and found length as
9.98 cm from your scale. Here True value or actual value of the rod 10 cm and
approximate value of the length of the rod is 9.98 cm. So, the absolute error will be

(10 – 9.98) cm = 0.02 cm and the relative error will be 10 9.98 0.002.
10
− =
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Percentage error : One can express this error in percentage as 100,a
p

x x
E

x

−
= ×

which gives the value 0.002 × 100 = 0.2 for the example taken here. This is called
percentage error.

Example 1.3.1 : If 22
7

π =  is approximated as 3.14, find the absolute error, relative

error and relative percentage error.

Solution:   Absolute error
22 3.14
7aE = −

22 21.98
7

−=

0.02 0.002857
7

= =

Relative error
0.002857

22 / 7rE =

= 0.0009
Relative percentage error = E

p
 = E

r
 × 100

= 0.0009 × 100
= 0.09%

Example 1.3.2 : Compute the percentage error in the time period for l = 1 if the
error in the measurement of l is 0.01.

Solution : Given the 2 .lT
g

= π

Taking log of both sides we have,

1 1log log 2 log log
2 2

T l g= π + −

1
2

dT dl
T l

∴ =

1 0.01100 100 100 0.5%
2 2 1

× = × = × =×
dT dl
T l

Now we will discuss some important types of Numerical Errors
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l Loss of significance
l Inherent errors
l Round-off error

l Truncation errors :

(i) Loss of significance is an undesirable effect in calculations using finite-
precision arithmetic such as floating-point arithmetic. It occurs when an operation
on two numbers increases relative error substantially more than it increases absolute
error, for example in subtracting two nearly equal numbers (known as catastrophic
cancellation). The effect is that the number of significant digits in the result is reduced
unacceptably. Ways to avoid this effect are studied in numerical analysis.

Example: As an example, consider the behavior of ( ) 2 1 1 as= + −f x x x

approaches to 0. Evaluating this function at 91.89 10x −= × using Matlab incorrectly

returns the answer 0, which shows that too many significant digits have cancelled.
(ii) Inherent errors: This type of errors is present in the statement of the problem

itself, before determining its solution. Inherent errors occur due to the simplified
assumptions made in the process of mathematical modelling of a problem. It can
also arise when the data is obtained from certain physical measurements of the
parameters of the proposed problem.

Inherent errors can be minimized by taking better data on by using high precision
computing aids. High precision refers to the number of decimal positions, i.e. the
order of magnitude of the last digit in a value. For example the number 46.398 has
a precision of 0.001 or 10–3.

Example 1.3.3 : Which of the following numbers have greatest precision?
3.1201, 2.42, 5.320205.
Solution: In 3.1202, the precision is 10–4,

In 2.42, the precision is 10–2,
In 5.320205, the precision is 10–6.
Hence the 5.320205 has the greatest precision.

(iii) Round-off errors: Generally, the numerical methods are carried out using
calculator or computer. In numerical computation, all the numbers are represented
by decimal fraction. Some numbers such as 1/3, 2/3, 1/7 etc. can not be represented
by decimal fraction in finite numbers of digits. Thus, to get the result, the numbers
should be rounded-off into some finite number of digits.
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Again, most of the numerical computations are carried out using calculator and
computer. These machines can store the numbers up to some finite number of digits.
So in arithmetic computation, some errors will occur due to the finite representation
of the numbers; these errors are called round-off error. Thus, round-off errors occur
due to the finite representation of numbers during arithmetic computation. These
errors depend on the word length of the computational machine.

Method of rounding off:  To round off a number to n significant digits first
truncate it to n digits: if truncated part is less than half a unit at last significant
place then ignore it, if it is greater than half a unit at last significant place then add
one to last significant digit: if it is exactly half a unit at last significant place then
add one to it if it is odd. So absolute error is always minimum by this process

which is less than or equal to half a unit at last significant figure (s.f) i.e.1 10
2

m−≤ × if

approximation is done to m places after decimal. Sign of equality holds in the case
when truncated part is exactly half a unit at last s.f .Reader may think that  can’ t we
do the reverse in this case i.e. if last s.f is even the we add one to it and ignore the

other case? Because in this case also 1 10 .
2

m
aE −= ×  But on a closure look we can

identify that this make the last digit of the approximated number odd which attract
more error in further calculation.

Example 1.3.4 :   Round off the following numbers, to four significant digits
i) 23.4251 ii) 32.4250 iii) 24.87500   iv) 19.995  v)  437.261 vi) 19.36235
Solution: i)  23.43    ii)  32.42  iii)  24.88  iv) 20.00  v)  437.3   v)  19.36
Example 1.3.5 :  Round off the number 54762 to four significant digits and then

calculate absolute error, relative error and percentage error.
Solution: i) The given number is 54762 ( = N)

After round off to four significant figures,
The given number would be 54760 (= N

1
)

Absolute error 54762 54760 2aE = − =

Relative error
52 3.652 10

54762rE −= = ×

Relative percentage error = E
p
 = E

r 
× 100

= 3.652 × 10–5 × 100
= 3.652 × 10–3 %
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Exercise 1.3.6 :  Round off the following numbers to four significant digits and
then calculate absolute error, relative error and percentage error.

i) 437.261 ii) 19.36235
(iv) Truncation errors: These errors occur due to the finite representation of an
Inherently infinite process. For example, the use of a finite number of terms in

the infinite series to compute the value of cos ,sin , ,xx x e  etc.

The Taylor’s series expansion of sin x is

3 5
sin ....

3 5
x xx x= − + −

This is an infinite series expansion. If only first five terms are taken to compute
the value of sin x for a given x, then we obtain an approximate result. Here, the
error occurs due to the truncation of the series. Suppose, we retain the first n terms,
the truncation Error is given by

( )
2 1

2 1 !

n

trunc
xE
n

+
≤

+

It may be noted that the truncation error is independent of the computational
machine.

Example 1.3.7 : Find the number of terms of the exponential series such that

their sum gives the value  correct to six decimal places at 

Solution: We know,

( ) ( )
2 3 1

1 ....
2! 3! 1 !

n
x

n
x x xe x R x

n

−
= + + + + +

−

Where ( ) , 0 .
!

n

n
xR x e x
n

θ= < θ <

Maximum absolute error (at )
!

n
xxx e

n
θ = =  and maximum relative error is .

!

nx
n

Hence ( )
max

1at 1is .
!

=xe x
n

For a six decimal accuracy at 1,x =  we have

61 1 10
! 2n

−< ×

or, 6! 2 10n > ×
which gives n = 10.
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1.4 Summary

In this unit, the concept of Numerical errors, measurement of errors like absolute
errors, relative errors, percentage error, loss of significant, inherent , round off and
truncations errors are discussed with different examples.

1.5 Exercises

1) If 0.333 is the approximate value of 1,
3

 find absolute, relative and percentage

errors. (Ans: .00033, 0.00099, 0.99)

2) If 
2

3
5xy

u
z

=  and error in x, y, z be 0.001,0.002 and 0.003. Compute the

relative error in u when x = y = z = 1. (Ans: .14)

3) Find the difference of 2.01 2−  correct to three digits.

(Ans: 3.53 × 10–3)

4) If 0.005,x∆ = 0.001y∆ = be the absolution errors in x = 2.11 and y = 4.15,

find the relative error in the computation of x + y. (Ans: 0.001 (approx.))

5) Use the series of ( ) 3 51log 2 ....
1 3 5e

x x xx x
x

 + = + + + + −  
 to compute the value

of log ( )log 1.2e  correct to seven deciamal places and find the number of terms

retained.

(Ans :  2,0.1823215)n ≥
6) What do you understand by Inherent errors occurs in numerical computation?
7) Write process of rounding off?



Unit 2 rrrrr  Transcendental and Polynomial Equations

Structur e

2.0 Objectives

2.1 Intr oduction

2.2 Iteration method or Fixed point iteration

2.3 Bisection method

2.4 Regula-falsi method

2.5 Newton-Raphson method

2.6 Summary

2.7 Exercises

2.0 Objectives

After going through this unit one can able to learn about

l how to find the roots of non-linear equation by using different methods.

l the covergence of methods are also discussed.

2.1 Introduction

Determination of roots of algebraic and transcendental is a very important problem
in science and engineering.

A function f (x) is called algebraic if, to get the values of the function starting from
the given values of x, we have to perform arithmetic operations between some real

numbers and rational power of On the other hand, transcendental functions include

all non-algebraic functions, i.e. , , log ,x xe a x sin ,cos ,x x 1 1sin ,cosx x− −  etc. And

others.

An equation f (x) = 0 is called algebraic or transcendental as f (x) is algebraic or
transcendental.
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The equations 7 23 7 1 0,x x x+ + + = 3 8 7 0x x+ + = etc. are the examples of algebraic

equations and on the other hand 3log cos 0,xe x x+ + = 4 cot 0xe x x− + + =  etc. are the

examples of transcendental equation. Though we know some methods like Cardan’s method,
Euler’s method, Ferrari’s method, Descartes’ method in algebra to solve algebraic equation
up to fourth order. In general there is no closed form formula to evaluate the algebraic
equation of degree greater than two.

The definition of roots of an equation can be given in two different ways:

Algebraically, a number c is called a root of an equation( ) 0f x =  iff ( ) 0f c =

and geometrically, the real roots of the equation ( ) 0f x =  are the values of x where

the graph of ( )y f x=  meets the x-axis.

Throughout our discussion, we assume that
I. The function f (x) is continuous and continuously differentiable up to a sufficient

number of times.

II. ( ) 0f x =  has no multiple root i.e., if α  is a real root of ( ) 0,f x =  in a

sufficiently small interval (a, b), then f (a) = 0 and either ( ) 0f x′ <  or ( ) 0f x′ >  in

( ), .a b

Most of the numerical methods, used to solve an equation are based on iterative
techniques. Different numerical methods are available to solve the equation f (x) =
0. But each method has some advantage and disadvantage over another method.
Generally, the following aspects are considered to compare the methods:

Convergence or divergence, rate of convergence, applicability of the method, amount
of pre-calculation needed before application of the method. etc.

The process of finding the approximate values of the roots of an equation can be
divided into two stages:

I. Location of the roots.
II. Computation of the values of the roots with the specified degree of accuracy.
The interval [a, b] is said to be the location of a real root c if f (c) = 0 for a <

c < b. There are two methods used to locate the real roots of an equation
I. Graphical method
II. Method of tabulation which is an analytic method.
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Graphical method

l In this method the graph of y = f (x) is drawn in rectangular co-ordinate system. Then

the points at which graph meets the –axis are the location of the roots of the equation

f (x) = 0.

As an example, we consider the equation 2 1 0.x x+ − = We draw the graph of

2 1y x x= + −  with respect to  0 ,x x y oy′ ′  as rectangular axes, which meets the x-axis

at A and .A′  Thus the equation has two real roots, one is positive and other is
negative. From the graph it is clear that the co-ordinate of A is lies between 0.6  and

0.7 and that of A′  is between -1.6 to -1.7. Thus 0.6 is an approximate value of the

positive root ( )say .′α  and –1.6 is an approximate value of the negative root ( )say .′α

l If  f (x) is not simple, rather complicated in form, we rewrite the equation f (x)

as ( ) ( )1 2 ,x xθ = θ  where ( )1 xθ  and ( )2 xθ  are simple functions such that, we can

draw conveniently the graphs of ( )1y x= θ  and ( )2y x= θ  with respect to rectangular

axes. Then the x-co-ordinate of the point of intersection of the graphs give the

location of the real roots of the equation ( ) 0.f x =

As an example, we consider an equation 3 4 2 0,x x− − =  we rewrite the equation

as  3 4 2.x x= +  The graphs 3 and 4 2y x y x= = −  are drawn with respect to the

rectangular axes. From the graph it is seen that the roots are in [–2, –1], [–1, 0], [2,3].

DISADVANTAGE :

The graphical method to locate the roots is not very useful. Because the drawing
of the location of the function y = f (x) is itself complicated. But it makes possible
to roughly determine the interval of the roots. Then an analytic method is used to
locate the root.

METHOD OF  TABULA TION

This method depends on the continuity of the function f (x). Before applying the
tabulation method, the following nature should be noted.

Theorem 2.1.1 : If f (x)  is continuous in the interval (a, b) and if f (a) and f (b)
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have the opposite signs, then at least one real root of the equation f (x) = 0 lies within the
interval (a, b).

Geometrically we can explain the theorem as:
 Let, f (x) > 0 and f (b) < 0. Then from the graph we can say that there must be

a point in (a, b) such that f (x) = 0
If the curve y = f (x) touches the x–axis at some point, say at x = c then c is a root

of f (x) = 0, though f (a) and f (b) may have same sign where a < c < b. For example
f (x) = (x – 3)2,  touches the x–axis at x = 3. Although f (2.5) > 9 and f (3.5) > 0 but
x = 3 is a root of the equation f (x) = 0.

A trial method for tabulation is as follows:

From the table of signs of (x), setting x =  0, ,1, 2,..........x = ± ±  If the signs of f

(x) changes its signs for two consecutive values of  then at least one root lies

between these two values.

Example 2.1.2 : Find the location of the roots of the equation 2 1 0.x x+ − =
Solution: we form a table :

x 0 -1 1 0.5 -0.5 -1.6 -1.7

f (x) - - + - - - +

Since ( )deg 2,f x =  the ( )f x  has two roots. Since ( )1 0f >  and ( )0.5 0,f <

then the location of one root is (0.5, 1). Also ( )1.6 0f − <  and ( )1.7 0.f − >  Then

the location of the other root is (–1,6, –1.7).

Example 2.1.3 : Find the number of real roots of the equation 3 3 2 0x x− − =  and

locate them.

Solution : ( ) 3 3 2.xf x x= − −  The domain of definition of the function is ( ), .−∞ ∞

we form a table :

x  − ∞ 0 1 ∞

Sign of f (x)   + - - +

f (x) = 0 has two real roots, since the function has twice changes sign, among them
one is negative root and other is greater than one.
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A new table with small intervals of the location of the root is constructed in the following:

x 0           -1         1 2

Sign of  f (x)       - + - +

Then the roots are in (–1, 0) and (1, 2).

ORDER OF CONVERGENCE:

Assume that the sequence {x
n
} of numbers to α  and let n nx∈ = α −  for 0.n ≥ If there

exists two positive constants A & p such that 1lim .+
→∞

∈ =
∈
n

n p
n

A  Then the sequence is said

to converge to α  wth the order of convergence p. The number A is called the asymptotic
error constant.

If p = 1, the error of convergence of {x
n
} is called linear and if p = 2, the error

of convergence of {x
n
}  is called quadratic etc.

2.2 Iteration method or Fixed point iteration

Let ( )f x  be a continuous function on the interval [ ],a b  and the equation ( ) 0f x =

has at least one root on [ ], .a b  The equation ( ) 0f x =  can be written in the form

( ) ( )...... 1x x= ϕ

Thus a root ξ  of the given equation satisfies ( ).ξ = ϕ ξ  Therefore the point ξ

remains fixed under the mapping ϕ  and so a root of the equation is a fixed point of
.ϕ

( )xϕ  is called the iteration function. Here we also assume that ( )xϕ  is continuously

differentiable in [ ], .a b

Using graphical or tabulation method, we first find a location or crude approximation

[ ]0 0,a b  of a real root ξ (say) of ( ) 0f x =  and  let [ ]0 0 0 0x x a x b= ≤ ≤  be the initial



NSOU l CC-MT-05 19

approximation of .ξ  Thus ξ satisfies the equation ( ) ( )..... 2 .ξ = ϕ ξ

Putting 0x x=  in (1), we get first approximation of ξ  as ( )1 0 ,x x= ϕ  and then the

successive approximations are calculated as: ( )2 1 ,x x= ϕ ( )3 2 ,......,x x= ϕ

( ) ( )1 .... 3n nx x+ = ϕ

The above iteration is generated by the formula ( )1n nx x+ = ϕ  and is called the

iteration formula, where x
n
 is the n-th approximation of the root ξ  of ( ) 0.f x =

These successive iterations are repeated till the approximate numbers nx s′

converges to the root with desired accuracy, i.e. 1 ,n nx x+ − <∈  where ∈ is a sufficiently

small number.

The sequence { }nx  of iterations or the successive better approximations may or may

not be converge to a limit. If { }nx  converges, then it converges to ξ  and the number of

iterations required depends upon the desired degree of accuracy of the root ξ .

CONVERGENCE OF METHOD OF ITERATION:

The presentation of ( ) 0f x =  as ( )x x= ϕ  is not unique, therefore the convergence

of { }nx  depends upon the nature of ( ).xϕ  Now we investigate about the nature of

( )xϕ  which yields a convergent sequence { }.nx

By Lagrange’s mean value theorem we get,

( ) ( ) ( )1 0 0 1x x x ′ξ − = ϕ ξ − ϕ = ξ − ϕ ε  where 0 1x < ε < ξ

( ) ( ) ( )2 1 1 2x x x ′ξ − = ϕ ξ − ϕ = ξ − ϕ ε   where 0 2x < ε < ξ

……………………………………………………………………………………………………………

( ) ( ) ( )1n n n nx x x+ ′ξ − = ϕ ξ − ϕ = ξ − ϕ ε  where 0 nx < ε < ξ

Thus, ( ) ( ) ( ) ( ) ( )1 2
1 0 .... n

n n nx x x εε ε
+ ′ ′ ′ ′ξ − = ξ − ϕ ε = ξ − ϕ ϕ ϕ

Assuming , ( )x′ϕ < ρ  in 0 0a x b≤ ≤  we have
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1 0
n

nx x+ξ − ≤ ξ − ρ

Thus,

1 0lim lim 0+
→∞ →∞

ξ − ≤ ξ − ρ →n
n

n n
x x  if p < 1, i.e. ( ) 1ϕ <x

( )1, . . 1′→ ∞ ρ > ϕ >if i e x

Therefore the method is convergent for ( ) [ ]0 01 in , .x a b′ϕ ≤ ρ <

ESTIMA TION OF ERROR:

Let, ξ be an exact root of the equation ( )x x= ϕ and ( )1 .n nx x+ = ϕ

Therefore, ( ) ( ) ( )1 1 ,n n nx x x c− − ′ξ − = ϕ ξ − ϕ = ξ − ϕ  , where 1nx c− < < ξ

1 ,nl x −≤ ξ −   ,[where, ( ) 1]c l′ϕ ≤ <

{ }1−≤ ξ − + −n n nl x x x

After rearrangement, this relation becomes

1 1 01 1

n

n n n
l lx x x x x

l l−ξ − ≤ − ≤ −− −

Let the maximum number of iteration needed to achieve the accuracy ε  be ( ).N ε

Then

( )
( )
1 0

1 0

1
log

, . .
1 log

N

l

x xl x x i e N
l l

ε −
−

− ≤ ε ε ≥−

For 0.5,l ≤  the estimation of the error is given by the following simple form :

1n n nx x x −ξ − ≤ −

ORDER OF CONVERGENCE:

The convergence of an iteration method depends on the suitable choice of the

iteration function ( )xϕ  and the initial guess 0.x

Let, { }nx  converges to the exact root ,α so that ( ).ξ = ϕ ξ
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Thus ( ) ( )1 .n nx x+ − ξ = ϕ − ϕ ξ  Let, 1 1 .n nx+ +ε = − ξ  Note that ( ) 0.x′ϕ ≠  Then the

above relation becomes

( ) ( )1n n+ε = ϕ ε + ξ − ϕ ξ

( ) ( )21 .........
2n n′ ′′= ε ϕ ξ + ε ϕ ξ +

( ) ( )2′= ε ϕ ξ + εn no

i.e. ( )1 0n

n

+ε ′= ϕ ξ ≠ε
hence the order of convergence of the iteration method is linear.
GEOMETRICAL   INTERPRETATION :  The geometrical meaning s of the

fixed-point iteration in different cases are illustrated by Figure.

Convergent for 

(a) Stair case solution,

(a) Divergent for

(b) Spiral case solution,
O

O O

Ox1

x1

x0

x0 x3x1 x0x x2 4

x0x2 x3x1x2

y x  =

y x  = y x  =

y x  =

ξ ξ

ξ ξx

x x

x

y x ( )= φ

y x ( )= φ

y x ( )= φ

y x ( )= φ

f x ( )

f x ( ) f x ( )

f x ( )

0 ( ) 1′< φ ξ < 1 ( ) 0′− < φ ξ <
( ) 1′φ ξ <

( ) 1′φ ξ > (b) Divergent for ( ) 1′φ ξ < −

Fig 2.1 :  Illustration for Fixed-point iteration

ADVANTAGE AND DISADVANTAGE:
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The disadvantage of this method is that a pre-calculation is required to re-write ( ) 0f x =

to ( )x x= ϕ  in such a way that ( ) 1.x′ϕ <

The advantage of this method is that the operation carried out at each stage are
of same kind, and this makes easier to develop computer program.

2.3 BISECTION METHOD

It is an iterative  method and is based on a well-known theorem which states that

if ( )f x  be a continuous function in a closed interval [ ],a b  and ( ) ( ) 0,f a f b <  then

∃  at least one real root of the equation ( ) 0,f x =  between a and b. If further ( )f x′

exists and ( )f x′  maintains same sign in [ ], ,a b  i.e. ( )f x  is strictly monotonic, then

there is only one real root of ( ) 0f x =  in [ ], .a b  This method is nothing but a

repeated application of the above theorem.

First we consider a sufficiently small interval [ ]0 0, ,a b  by graphical or tabulation

method , in which ( ) ( )0 0 0f a f b <  and ( )f x′  maintains same sign in  [ ]0 0, ,a b

then there is only one real root of ( ) 0,f x =  in [ ]0 0, .a b  Now divide the interval

[ ]0 0,a b  into two equal intervals [ ]0,a c  and [ ]0,c b  where 0 0 .
2

a b
c

+=  If ( ) 0,f c =

then c is an exact root of the equation. If ( ) 0f c ≠  then the root lies either in [ ]0,a c

or in [ ]0, .c b  If ( ) ( )0 0f a f c <  then we take the interval [ ]0,a c  as the new interval,

otherwise we take [ ]0, .c b  Let the new interval be [ ]1 1,a b  and use the same process

to select the next new interval. In the next step, let the new interval be [ ]2 2, .a b  The

process of bisection is continued until either the midpoint of the interval is a root,

or the length ( )n nb a−  of the interval [ ],n na b  is sufficiently small. The number a
n

and b
n
 are approximate roots of the equation ( ) 0.f x =  Finally 

2
n n

n
a b

x
+=  is taken

as the approximate value of the root .α
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y

a c
b x

f b( )

f c( )

f a( )

Fig 2.2 :  Illustration for Bisection method

Now the length of the interval [ ]1 1,a b  is 0 0
2

b a−
 and the length of the interval [ ]2 2,a b

is 
0 0

22

b a−
 and at the n-th step the length of the interval [ ],n na b  is 

0 0 .
2n

b a−
 In the final

step 
2

n na b+α =  is chosen as root, then the length of the interval being 
0 0

12n

b a
+

−
 and hence

the error does not exceed 
0 0

1
.

2n

b a
+

−

Thus, if ε  be the error at the n-th step then the lower bound of n is obtained from
the following relation

0 0
1

.
2n

b a
+

−
≤ ε

CONVERGENCY: let 1n+ε  be the error in approximating α  by 1,nx +  then

0 0
1 1 0

2
n n n n n

b a
x b a+ +

−ε = α − < − = →  as .n → ∞  Thus the iterative method must

be convergent. To get a root of ( ) 0f x =  correct up to p-significant figures, we are

to go up to q-th iteration so that qx  and 1qx +  have same p-significant figures.

DISADVANTAGE : This method is very slow, but it is very simple and will
converge surely to the exact root. So the method for any function only if the function
is continuous within the interval [a, b], where the root lies.
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Example 2.3.1 : Find a root of the equation 2 7 0x x+ − =  by bisetion method, correct
up to two decimal places.

Solution. Let ( ) 2 7.f x x x= + −

( )2 1 0f = − <  and ( )3 5 0.f = >  So, a root lies between 2 and 3.

Left end point Right and point Midpoint

n a
n

b
n

x
n+1

f (x
n+1

)

0 2 3 2.5 1.750
1 2 2.5 2.250 0.313
2 2 2.250 2.125 -0.359
3 2.125 2.250 2.188 -0.027
4 2.188 2.250 2.219 0.143
5 2.188 2.219 2.204 0.062
6 2.188 2.204 2.196 0.018
7 2.188 2.196 2.192 -0.003
8 2.192 2.196 2.194 0.008
9 2.192 2.194 2.193 0.002
10 2.192 2.193 2.193 0.002

Therefore, the root is 2.19 correct up to two decimal places.

Another popular method is the regula falsi method. This method was developed
because the bisection method converges at fairly slow speed. In general regula falsi
method is faster than bisection method.

2.4 Regula Flasi Method

This method is also known as method of false position, Method of chords, method

of linear interpolation.

Let a root of the equation( ) 0f x =  be lies in the interval [ ], ,a b  i.e. ( ) ( ) 0.f a f b <

The idea of this method is that on a sufficiently small [ ], ,a b  the arc of the ( )y f x=

is replaced by the chord joining the points ( )( ),a f a  and ( )( ), .b f b  The abscissa of

the point of intersection of the chord and the x-axis is taken as the approximate value
of the root.
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Let, 0x a=  and 1 .x b=  The equation of the chord joining the points ( )( )0 0,x f x  and

( )( )1 1,x f x  is

( )
( ) ( ) ( )0 0

0 10 1
...... 1

y f x x x
x xf x f x

− −= −−

To find the point of intersection, set 0y =  in (1) and let ( )2,0x  be the point.

Then,

( )
( ) ( )

0 2 0

0 10 1

0 f x x x
x xf x f x

− −= −−

Therefore, 
( ) ( )
( ) ( ) ( )0 1 0

2 0
1 0

..... 2
f x x x

x x
f x f x

−
= −

−

This is the second approximation of the root. Now if ( )2f x  and ( )0f x  are

opposite signs then the root lies between 0x  and 2x  and replace 1x  by 2x  in (2).

Then the next approximation is obtained as :

0 2 0
3 0

2 0

( )( )
( ) ( )

−= − −
f x x x

x x
f x f x

If ( )2f x  and ( )1f x  are opposite signs then the root lies between 1x  and 2x  and

the new approximation is obtained as:

( ) ( )
( ) ( )

2 1 2
3 2

1 2

−
= −

−
f x x x

x x
f x f x

The procedure is repeated till the root is obtained to the desired accuracy. If the

n-th  approximate root nx  lies between na  and ,nb  then the approximate root is thus

obtained as :

( ) ( )
( ) ( ) ( )1 ...... 3n n n

n n
n n

f a b a
x a

f b f a+
−

= −
−

GEOMETRICAL  INTERPRETATION :

The illustration of the method is shown Figure where ξ  is the root of the equation

( ) 0.f x =
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f x( )

O

x0 = a x1 x2 x
bξ

Fig 2.3 :  Illustration for Regula-falsi method

CONVERGENCE OF REGULA FALSI METHOD:

As ( ) ( ) 0,n nf a f b < considering the proper sign of ( )nf a  and ( )nf b  we can write

the equation (3) as follows:

( ) ( )
( ) ( )1

n n n
n n

n n

f a b a
x a

f b f a+
−

= −
−

or 
( ) ( )
( ) ( ) ( )1 ....... 4n n n

n n
n n

f b b a
x b

f b f a+
−

= −
−

Since, n nx a=  or ,nb  we have for both relation of (4) as

( ) ( )
( ) ( )1

n n n
n n

n n

f x b a
x x

f b f a+
−

= −
−

Or, ( ) ( ) ( )( ) ( ) ( )1+− − = −n n n n n n nx x f b f a f x b a

Or, ( )( ) ( ) ( )( )1+ ′− − α = −n n n n n n n nx x b a f f x b a  when < α <n n na b

Or, ( ) ( ) ( ) ( ) ( ) ( ) ( )1 ,+ ′ ′ ′ α − − α − α = − α = − α α n n n n n nx x f f x f x f

( )since, 0 ,α =  f  where { } { }Min , ,′α < α < αn n nx Max x
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Or, ( ) ( ) ( ) ( )
( )1 ,+

′ ′ ′α − α
α − = α −

′ α
n n

n n
f f

x x
f  where ( )0 0, ....... 5′< α α <n na b

The approximation lies in [ ]0 0,a b  and ( )f x′  is continuous, then there exist two

numbers m, M such that

( )0 nm f x M′< ≤ ≤  for all [ ]0 0, .x a b∈

Then from (5) we get, ( ) ( )1+
−α − ≤ α −n n

M mx x
m

Now putting 1,n n= − 2,...., 2,1,0n −  for n successively and multiplying ( )1n+

relations we get :

( ) ( ) ( )
1

1 1 0

+

+ +
−ε = α − ≤ α −

n

n n
M mx x

m

If we choose the interval [ ]0 0,a b  such that 1, . . 2 ,M m i e M m
m
− < <

Then 1 1lim lim ( ) 0+ +→∞ →∞
ε = α − =n n

x x
x

Therefore the method is convergent. Thus for the convergence of the Regula Falsi

Method, the interval [ ]0 0,a b  must be very small.

ADVANTAGE:

The advantage of this method is that it is very simple and the sequence { }nx  is

sure to converge. The another advantage of this method is that it does not require the
evaluation of derivatives and pre-calculation.

DISADVANTAGE:

The method is very slow and not suitable for hand calculation.

Example 2.4.1 : Find a root of the equation 3 2 2 0x x+ − =  using Regula-Falsi method,

correct up to three decimal places.

Solution. Let ( ) 3 2 2.f x x x= + − ( )0 2 0f = − <  and ( )1 1 0.f = >  Thus, one root

lies between 0 and 1. The calculations are shown in the following table.
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left end right end
n point a

n
point b

n
f (a

n
) f (b

n
) x

n+1
f (x

n+1
)

0 0.0000 1.0 –2.0000 1.0 0.6700 –0.3600
1 0.6700 1.0 –0.3600 1.0 0.7570 –0.0520
2 0.7570 1.0 –0.0520 1.0 0.7696 –0.0072
3 0.7696 1.0 –0.0072 1.0 0.7707 –0.0010
4 0.7707 1.0 –0.0010 1.0 0.7709 –0.0001

Therefore, a root of the equation is 0.771 correct up to three decimal places.

2.5 Netwon-Raphson Method

This is also an iterative method and is used to find isolated roots of an equation

( ) 0.f x =  The object of this method is to correct the approximate root 0x (say)

successively to the exact root a. Initially, a crude approximation of a small interval

[ ]0 0,a b  is found out in which only one root a (say) of ( ) 0f x = .

Let, ( )0 0 0 0x x a x b= ≤ ≤  is an approximation of the root a of the equation

( ) 0.f x =  Let, h be a small correction on 0,x  then 1 0x x h= +  is the correct root.

Using Taylor’s series expansion,

( ) ( ) ( ) ( )1 0 0 0 ..... 0,f x f x h f x hf x′= + = + + = since 1x  is a root of ( ) 0f x =

Neglecting the second and the higher order derivatives, the above equation reduces
to-

( ) ( )0 0 0f x hf x′+ =

 Or, 
( )
( )

0

0
= −

′
f x

h
f x

Therefore, 
( )
( ) ( )0

1 0 0
0

...... 1
f x

x x h x
f x

= + = −
′

Further if 1h  be the correction on 1,x  then 2 1 1x x h= +  is the correct root of

( ) 0.f x =
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Then using the previous process we get,

( )
( )

1
1

1
= −

′
f x

h
f x

Therefore, 
( )
( )

1
2 1 1 1

1

f x
x x h x

f x
= + = −

′

Processing in this way, we get ( )1n+  th corrected root as

( )
( ) ( )1 ...... 2n

n n
n

f x
x x

f x+ = −
′

This expression generates a sequence of approximate values 1 2 3, , ,......., ,....nx x x x

each successive term of which is closer to the exact value of the root a. The method

will terminate when 1n nx x+ −  becomes very small.

In this method the arc of the curve is replaced by the tangent to the curve, hence
this method is sometimes called method of tangent.

Note : the Newton Raphson method may also used to find a complex root of an
equation when the initial guess is taken as a complex number.

GEOMETRICAL  INTERPRETATION:

The geometrical interpretation of this method is shown in the figure 1. In this
method, a tangent is drawn at

( )( )0 0,x f x  to the curve ( ).y f x=

The tangent cuts the x-axis at ( )1,0 .x

Again the tangent is drawn at

( )( )1 1, ,x f x  which cuts the x-axis at

( )2,0 .x  This process is continued until

as .nx n= ξ → ∞ .

The choice of initial guess of this
method is very important. If the initial
guess is near the root then the method

f x( )

O x1 x0ξ x2
x

Fig 2.4 : Geometrical interpretation
of Newton-Raphson method
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converges very fast. If it is not so near the root or if the starting point is wrong, then the
method may lead to an endless cycle.

This illustrated in figure2. In this figure the initial guess 0x  gives the fast convergence

to the root, the initial guess 0y  leads to an endless cycle and the initial guess 0z  gives a

divergent solution.

Even if the initial guess is not close to the exact root, the method may diverge. To chose

the initial guess the following rule may be followed. If ( ) ( ) 0f b f x′′ <  the initial guess be

0x b=  and if ( ) ( ) 0f a f x′′ <  then 0x a=  be the initial guess.

f x( )

O x0 y0

z0
x

Fig: Illustration of the choice of the initial guess
of the Newton-Raphson method.

CONVERGENCE OF NEWTON RAPHSON METHOD:

Comparing with the iteration method, we may assume the iteration function as:

( ) ( )
( )

f x
x x

f x
ϕ = −

′

Thus the above sequence will be convergent, if and only if

( ) ( ) ( ) ( )
( )

2

2
1

f x f x f x
x

f x

′ ′′−
′ϕ = −

′
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 i.e. 
( ) ( )

( )
( ) ( ) ( )2

2
1, . .

f x f x
i e f x f x f x

f x

′′
′ ′′< >

′

RATE OF CONVERGENCE OF N-R METHOD:

Let, ξ  be a root of the equation ( ) 0.f x =  Then, ( ) 0.f ξ =  The iteration scheme for

NR-method is

( )
( )1

n
n n

n

f x
x x

f x+ = −
′

Let, .n nx = ε + ξ  Then from the above relation we get-

( )
( )1+
ε + ξ

ε + ξ = ε + ξ −
′ ε + ξ

n
n n

n

f

f

   Or, 
( ) ( ) ( )

( ) ( ) ( )

2

1 2

.....
2

.....
2

n
n

n n
n

n

f f f

f f f
+

ε′ ′′ξ + ε ξ + ξ +
ε = ε −

ε′ ′′ ′′ξ + ε ξ + ξ +

Or, 

( )
( )
( )
( )

2

1

....
2

1 .....
+

′′ε ξ
ε + +′ ξ

ε = ε −
′′ ξ

+ ε +′ ξ

n
n

n n

n

f

f

f

f

Or, 
( )
( )

( )
( )

2

1 ........ 1 .........
2+

 ′′ ′′ξ ξ εε = ε − ε + + − ε +   ′ ′ξ ξ  

n
n n n n

f f

f f

Or , 
( )
( ) ( )

2
3

1 0
2
n

n n
f

f+
′′ ξεε = + ε
′ ξ

Neglecting the terms of order 3nε  and higher power the expression becomes

2
1 ,n nA+ε = ε  where 

( )
( )2

f
A

f

′′ ξ
=

′ ξ
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This relation shows that NR method has quadratic convergence or second order
convergence.

Example 2.5.1 : Use Newtwon-Raphson method of find a root of the equation

3 1 0.x x+ − =

Solution. Let ( ) 3 1.f x x x= + −  Then ( )0 1 0f = − <  and ( )1 1 0.f = >  So one root

lies between 0 and 1. Let 0 0x =  be the initial root.

The iteration scheme is

( )
( )1

n
n n

n

f x
x x

f x+ = −
′

3 3

2 2

1 2 1
.

3 1 3 1

+ − += − =
+ +

n n n
n

n n

x x x
x

x x

The sequence { }nx  for different values of n is shown below.

n x
n

x
n+1

0 0 1

1 1 0.7500

2 0.7500 0.6861

3 0.6861 0.6823

4 0.6823 0.6823

Therefore, a root of the equation is 0.682 correct upo to three decrimal places.

Example 2.5.2 : Find an iteration scheme to find the kth root of a number a.

Solution. Let x be the kth root of a. That is 1 kx a=  or 0.kx a− =

Let ( ) .kf x x a= −  The iteration scheme is

( )
( )1

n
n n

n

f x
x x

f x+ = −
′

or, 1 1 1

k k k
n n n

n n k k
n n

x a kx x a
x x

kx kx
+ − −

− − += − =
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( ) 1
1 1 .n k

n

ak x
k x −

 
= − + 

  

2.6 Summary

 In this unit we have studied how to calculate the roots of a transcendental equations
and polynomial equations by the methods of tabulation, graphical, fixed point iteration,
bisection ,Regula Falsi and Newton-Raphson. Their convergence analysis have also
been studied.

2.7 Exercises

1. Solve the equation tan 1x x= −  by Regula falsi method starting with 0 2.5x =

and 1 3.0x =  correct upto three decimal places.

2. Obtain the a root for each of the following equations using bisection method,
regula-falsi method and Newto-Raphson method

i) 3 22 7 0x x x+ − + =

ii) ( )sin 10 1x x= −

iii) cos 0x x− =
3. Describe Newton-Raphson method for computing a simple real root of an

equation ( ) 0.f x =  Give a geometrical interpretation of the method. Prove that the

Newton-Raphson method converges quadratically.

4. Use  Newton-Raphson method to find the value of the following terms

i) 35 ii) 3 24

Ans.  i)  5.916080, ii)  2.884499



Unit 3 rrrrr  System of linear algebratic equations

Strucur e

3.0 Objectives

3.1 Intr oduction

3.2 Gaussian elimination method

3.3 Gauss-Jordan method

3.4 Gauss-Jacobi method

3.5 Gauss-Siedel mthod

3.6 Successive over Relaxation (SOR) method

3.7 Summary

3.8 Exercises

3.0 Objectives

After studying this unit one can

l get an idea of finding the solutions of system of linear equations by using direct
methods and iterative methods.

3.1 Introduction

A linear equation in variables 1 2, ,......, nx x x  is an equation of the form

1 1 2 2 .... n na x a x a x b+ + + =

where 1 2, ,...., na a a  and are constant real or complex numbers. The constant 

is called the coefficient of ;ix  and b is called the constant term of the equation.

A system of linear equations (or linear system) is a finite collection of linear
equations in same variables. For instance, a linear system of n equations in n variables

1 2, ,...., nx x x  can be written as
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1

11 1 12 2 1 1

21 1 22 2 2 2

1 22 2

....

....

................................................

................................................

....

n n

n n

n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

 + + + =
 + + + =





+ + + =

  (3.1.1)

The above system can be written in the form AX = B

where ( ), 1,2,3.....ij n n
A a i j n

×
 = =   is a non-singular matrix and

[ ] ( )1,2,3,...,iB b i n′= = =

Two types of methods are availavle.

i) Exact methods or Direct method

ii) Iterative methods

When A is of moderate order with co-efficients most non-zero, then usually exact
or direct methods are used. Order of A is usually < 200 and the linear system is called
dense.

When A is of large order and most co-efficients zero, then iterative methods are
used. A is sparse and order of A is sometimes as large as 106.

Exact or direct methods : Cramer’s rules, Gaussian elimination method,

Gauss  Jordan Method etc

Iterative methods   : Method of simple iteration, Gauss-Seidal iteration method

Theorem 3.1.1 : Any system of linear equations has one of the following exclusive

conclusions.

(a)No solution.

(b)Unique solution.

(c) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution; and is said
to be inconsistent if it has no solution.

Geometric interpretation
The following three linear systems
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(a) 

1 2

1 2

1 2

2 3

2 0

2 4

x x

x x

x x

+ =
 − =
 − =

 (b) 

1 2

1 2

1 2

2 3

2 5

2 4

x x

x x

x x

+ =
 − =
 − =

 (c) 

1 2

1 2

1 2

2 3

4 2 6

6 3 9

x x

x x

x x

+ =
 − =
 − =

have no solution, a unique solution, and infinitely many solutions, respectively. See
Figure1.

x1 x1 x1

x2 x2 x2

o
o o

(c) infinitely many
solutions

(a) No solution (b) a unique solution

Figure : 3.1

Note : A linear equation of two variables represents a straight line in R2. A linear
equation of three variables represents a plane in R3. In general, a linear equation of
n variables represents a hyperplane in the n-dimensional Euclidean space Rn.

Matrices of a linearsystem

Definition 3.1.2 The augmented matrix of the general linear system (3.1.1) is the
table

11 1 1

1

...

... ... ... ...

...

 
 
 
 
 

n

m mn m

a a b

a a b
                                                                                        (3.1.2)

and the coefficient matrix of (3.1.1) is   

11 1

1

...

... ... ...

...

 
 
 
 
 

n

m mn

a a

a a
                                 (3.1.3)

Systems of linear equations can be represented by matrices. Operations on equations
(for eliminating variables) can be represented by appropriate row operations on the
corresponding matrices. For example,
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1 2 3

1 2 3

1 2 3

2 1

2 3 8

3 4 7

x x x

x x x

x x x

+ − =
 − + = −
 + + =

The corresponding  augmented matrix is

1 1 2 1

2 3 1 8

3 1 4 7

− 
 − − 
 
 

Now we will do the needful row operations.

Operating 2 12R R−  and 3 13R R−  on the above, we get

1 1 2 1

0 5 5 10

0 2 10 4

− 
 − − 
 − 

Operating ( ) 21/ 5− R  and ( ) 31/ 2− R  on the above, we get

1 1 2 1

0 1 1 2

0 1 5 2

− 
 − 
 − − 

Operating 3 2R R−  on the above, we get

1 1 2 1

0 1 1 2

0 0 4 4

− 
 − 
 − − 

Operating ( ) 31 4 R−  on the above, we get

1 1 2 1

0 1 1 2

0 0 1 1

− 
 − 
 
 
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Operating 1 32R R+  and 2 3R R+  on the above, we get

1 1 0 3

0 1 0 3

0 0 1 1

 
 
 
 
 

Operating 1 2R R−  on the above, we get

1 0 0 0

0 1 0 3

0 0 1 1

 
 
 
 
 

That is, we get the solution as 3 21, 3x x= =  and 1 0.x =

Elementary row operations

Definition 3.1.3 : There are three kinds of elementary row operations on matrices:

(a) Adding a multiple of one row to another row;

(b) Multiplying all entries of one row by a non zero constant;

(c) Interchanging two rows.

Another method for solving system of linear algebraic equations is Cramer’s Rule.

Cramer’s Rule :

To solve a system of linear equations, a simple method (but, not efficient) was discovered
by Gabriel Cramer in 1750.

Let the system of linear algebraic equations are

1

, 1,2, ,
=

= =∑ …

n

ij j i
j

a x b i n (3.2.1)

Let the determinant of the coefficients of the system (3.2.1) be of oder n i.e.,

, , 1,2, ,= = ⋯ijD a i j n . In this method, it is assumed that 0.D ≠  The Cramer’s rule

is described in the following. From the properties of determinant
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11 12 1 1 11 12 1

21 22 2 1 21 22 2
1 1

1 2 1 1 2

... ...

... ...

... ... ... ... ... ... ... ...

... ...

n n

n n

n n nn n n nn

a a a x a a a

a a a x a a a
x D x

a a a x a a a

= =

11 1 12 2 1 12 1

21 1 22 2 2 22 2

1 1 2 2

... ...

... ...

... 2 ...

+ + +

= + + +
+ + +

n n n

n n n

n n nn n nn

a x a x a x a a

a x a x a x a a

a x a x a x an a

[Using operation 1 1 2 2 ]′ = + + +⋯ n nC C x C x C

1 12 1

2 22 2

2

...

...

... ... ... ...

...

n

n

n n nn

b a a

b a a

b a a

=
 [Using (3.1.1)]

Therefore, 1
1 .= xD

x
D

Similarly, 2
2 ,..... .nxx

n

DD
x x

D D
= =

Ingeneral, ix
i

D
x

D
=

where ( )
11 12 1 1 1 1 1 1

21 22 2 1 2 2 1 2

1 2 1 1

... ...

... ...
1,2,....,

... ... ... ... ... ... ... ...

... ...

i

i i n

i i n
x

n n ni n ni nn

a a a b a a

a a a b a a
D i n

a a a b a a

− +

− +

− +

= =

Inverse of a Matrix

From the theory of matrices, it is well known that every square non-singular
matrix has unique inverse. The inverse of a matrix A is defined by

1 .
adjA

A
A

− =

The matrix adj A is called adjoint of  and defined as
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11 1

1

...

... ... ... ,

...

n

n nn

A A

adjA

A A

 
 =  
 
 

 where A
ij
 being the cofactor of ija  in .A

The main difficulty of this method is to compute the inverse of the matrix A. From the

definition of adj A it is easy to observe that to compute the matrix ,adj A  we have to

determine n2 determinants each of order ( )1 .n−  So, it is very much time consuming. Many

efficient methods are available to find the inverse of a matrix, among them Gauss-Jordan
is most popular.

3.2 Gaussian elimination method

We assume that the set of linear equations given by

11 1 12 2 1 1

21 1 22 2 2 2

1 1 22 2

...

...

..............................................

..............................................

...

n n

n n

n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =

(3.2.1)

has a unique solution and we proceed as follows.

( ) ( )1 1, ,= =ij iij ia a b b ( ), 1,2,3,.....,i j n=

Let  ( )1
11 0.a ≠  Multiply the 1st equation of (1) by  ( ) ( )1 1

1 1 11i im a a= −   and add to

the ith equation when 1x  is eliminated from that equation ( )2,3,....,i n=  giving the

following equivalent equations

( ) ( ) ( ) ( )1 1 1 1
1 211 12 1 1... nna x a x a x b+ + + =

( ) ( ) ( )2 2 2
222 2 2.... nna x a x b+ + =  (3.2.2)

.......................................

......................................

( ) ( ) ( )2 2 2
22 ... nn n nna x a x b+ + =
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where  ( ) ( )1 1
1 1 11i im a a= −   and

( ) ( ) ( )2 1 1
1 1 ,iij ij ja a m a= − ( ) ( ) ( )2 1 1

1 1ii ib b m b= − ( ), 2,3,.....,i j n=  (3.2.3)

Assuming again ( )2
22 0.a ≠  We note that the set of equations (3.2.2) except the 1st is a

system of 1n−  linear equations in the 1n−  unknowns 2 3, ,.... nx x x  and applying the

above eliminations procedure to this system 2x  is eliminated from the last 2n−  equations

of the set giving the equivalent system

( ) ( ) ( ) ( )1 1 1 1
1 211 12 1 1....... nna x a x a x b+ + =   (3.2.4)

( ) ( ) ( )2 2 2
222 2 2..... nna x a x b+ + =

( ) ( ) ( )3 3 3
233 3 3... nna x a x b+ + =

......................................

.....................................

( ) ( ) ( )3 3 3
23 .... nn n nna x a x b+ + =

where  ( ) ( )2 2
2 2 22i im a a= −   and

( ) ( ) ( )3 2 2
2 2 ,iij ij ja a m a= − ( ) ( ) ( )3 2 2

2 2ii ib b m b= − ( ), 3,4,.....,i j n=                        (3.2.5)

Continuing this process, we finally obtain equivalent system of equations at the

( )1n th step−

( ) ( ) ( ) ( )1 1 1 1
1 211 12 1 1....... nna x a x a x b+ + = (3.2.6)

     ( ) ( ) ( )2 2 2
222 2 2..... nna x a x b+ + =

         ( ) ( ) ( )3 3 3
233 3 3... nna x a x b+ + =

            ......................................

            .....................................

                   ( ) ( )n n
nn n na x b=
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where  ( ) ( )k k
ik ik kkm a a=   and

( ) ( ) ( )1 ,k k k
ikij ij kja a m a+ = − ( ) ( ) ( )1k k k

iki i kb b m b+ = − ( ), 1......, , .1,2,3,....i j k n k n= +

 (3.2.7)

The upper triangular system (6) may easily be solved as follows. From the last

equation  ( ) ( ) ;n n
n n nnx b a=  then substituting this value of nx  in the last but one

equation we get the value of 1,nx −  and then again substituting the values of 1,n nx x −

in the last but two equation we compute 2nx −  and so on. Finally we get 1.x  This

process of solving an upper triangular system of linear system of equations is often
called back substitution.

When the diagonal coefficient there is unity, the last term of the constant vector

contains the value of  .nx  This can be used in the ( )1n−  th equation represented by

the second to the last line to obtain 1nx −  and so on right up to the first line which

will yield the value of 1.x  The name of this method simply derives from the elimination

of each unknown from the equations below it producing a triangular system of
equations represented by

1 112 1

2 22

1 ...

0 1 ...

... ...... ... ... ...

0 0 ... 1

n

n

n n

x ca a

x ca

x c

′′ ′     
     ′′      =
    
     ′    

(3.2.8)

which can then be easily solved by back substitution where

1
1

n n

n

j ij j
j i

x c

x c a x
= +

′=

 ′ ′= −


∑

One of the disadvantages of this approach is that errors (principally round off
errors) from the successive subtractions build up through the process and accumulate

in the last equation for .nx  The errors thus incurred are further magnified by the
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process of back substitution forcing the maximum effects of the round-off error into .ix  A

simple modification to this process allows us to more evenly distribute the effects of round
off error yielding a solution of more uniform accuracy. In addition, it will provide us with
an efficient mechanism for calculation of the inverse of the matrix A.

Example 3.2.1 : Solve the eqations by Gauss elimination method.

1 2 32 4,x x x+ + = 1 2 32 2,x x x− + =  1 2 32 2 3.x x x+ − =

Solution. Multiplying the second and third equations by 2 and 1 respectively and
subtracting them from first equation we get

1 2 32 4x x x+ + =

2 33 3 0x x− =

2 32 1.x x− + =

Multiplying third equation by –3 and subtracting from seond equation we obtain

1 2 32 4x x x+ + =

2 33 3 0x x− =

33 3.x =

From the third equation 3 1,x =  from the second equations 2 3 1x x= =  and from

the first equation 1 2 32 4 2x x x= − − =  or, 1 1.x =

Therefore the solution is 1 1,x = 2 1,x = 3 1.x =

3.3 Gauss-Jordan method

Let us begin by writing the system of linear equations as we did in Gauss elimination
method but now include a unit matrix on the right hand side of the expression. Thus,

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a

a a a

 
 
 
 
 
 

1

2

...

n

b

b

b

 
 
 
 
 
 

1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1

 
 
 
 
 
 

 ………………....……………(3.3.1)
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We will treat the elements of this matrix as we do the elements of the constant vector
b

i
. Now proceed as we did with the Gauss elimination method producing zeros in the

columns below and to the left of the diagonal element. However, in addition to subtracting
the line whose diagonal element has been made unity from all those below it, also subtract
from the equations above it as well. This will require that these equations be normalized
so that the corresponding elements are made equal to one and the diagonal element will
no longer be unity. In addition to operating on the rows of the matrix A and the elements
of , we will operate on the elements of the additional matrix which is initially a unit matrix.
Carrying out these operations row by row until the last row is completed will leave us with
a system of equations that resemble

11

22

0 ... 0

0 ... 0

... ... ... ...

0 0 ...

′ 
 ′
 
 
 ′ nn

a

a

a

1

2

...

n

b

b

b

′ 
 ′
 
 
 ′ 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

b b b

b b b

b b b

 
 
 
 
 
 

(3.3.2)

If one examines the, it is clear that so far we have done nothing to change the
determinant of the original matrix A so that expansion by minors of the modified matrix
represent by the elements a ija′  is simply accomplished by multiplying the diagonal
elements iia  together. A final step of dividing each row by ija′  will yield the unit
matrix on the left hand side and elements of the solution vector ix  will be found
. The final elements of B will be the elements of the inverse matrix of A. Thus we
have both solved the system of equations and found the inverse of the original matrix
by performing the same steps on the constant vector as well as an additional unit
matrix. Perhaps the simplest way to see why this works is to consider the system
of linear equations and what the operations mean to them. Since all the operations
are performed on entire rows including the constant vector, it is clear that they constitute
legal algebraic operations that won’t change the nature of the solution in any way.
Indeed these are nothing more than the operations that one would perform by hand
if he/she were solving the system by eliminating the appropriate variables. We have
simply formalized that procedure so that it may be carried out in a systematic fashion.
Such a procedure lends itself to computation by machine and may be relatively easily
programmed. The reason for the algorithm yielding the matrix inverse is somewhat less
easy to see. However, the product of A and B will be the unit matrix I , and the
operations that go into that matrix-multiply are the inverse of those used to generate
B.
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Example 3.3.1 : To see specifically how the Gauss-Jordan method works, consider
the following system of equations:

1 2 3

1 2 3

1 2 3

2 3 12

3 2 24

2 3 36

x x x

x x x

x x x

+ + = 
+ + = 
+ + = 

(3.3.3)

If we put this in the form required by expression (3.3.1) we have

1 2 3

3 2 1

2 1 3

 
 
 
 
 

12

24

36

 
 
 
 
 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 (3.3.4)

Now normalize the all rows by factoring out the lead elements of the first column
so that

( )( )( )1 2 3

1 2 3

2 11
3 3
1 31
2 2

 
 
 
 
 
 
 

12

8

18

 
 
 
 
 

1 0 0

10 0
3

10 0
2

 
 
 
 
 
 
 

(3.3.5)

The first row can then be subtracted from the remaining rows (i.e. rows 2 and
3) to yield

( )6

1 2 3 1 0 012
4 8 10 4 1 0
3 3 3

63 3 10 1 0
2 2 2

   
    
    − − − −    

    
 − −   −

   

(3.3.6)

Now repeat the cycle normalizing by factoring out the elements of the second column
getting

( ) ( )( )( )

11 3 0 01 262 2
4 3 3 16 2 0 1 2 3 0
3 2 4 4

0 1 1 4 2 10
3 3

      
   − − −    
  −     −    

 (3.3.7)
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Subtracting the second row from the remaining rows (i.e. rows 1 and 3) gives

( )

1 11 1 00 4 432 2
3 124 0 1 2 3 0
4 4

0 0 1 7 1 1 1
12 4 3

 − −     
    −   
  − −     − −    

 (3.3.8)

Again repeat the cycle normalizing by the elements of the third column so

( )( )( ) ( )

1 1 01 0 1 6 2 2
1 1 3 3 124 2 1 0 1 0
2 2 2 8 8

0 0 1 7 1 1 1
12 4 3

 −− −   
   

− − −   
         − 

 

  (3.3.9)

and subtract from the remaining rows to yield

( )

5 1 1
1 0 0 13 12 4 3

1 11 7 1 124 0 0
2 2 24 8 3

0 0 1 7 1 1 1
12 4 3

 − −− −   
   

− −   
         − 

 

 (3.3.10)

Finally normalize by the remaining elements so as to produce the unit matrix on the left
hand side so that

( )( ) ( )( )

5 1 1
12 4 31 0 0 13

1 7 1 224 1 1 0 1 0 11
2 24 4 3

0 0 1 7 1 1 1
12 4 3

 −
   
   − − −   
   

   − 
 

 (3.3.11)

The solution to the equations is now contained in the center vector while the right
hand matrix contains the inverse of the original matrix that was on the left hand side
of expression (3.3.4). The scalar quantity accumulating at the front of the matrix is
the determinant as it represents factors of individual rows of the original matrix. The
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row subtraction shown in expressions (3.3.6), (3.3.8), and (3.3.10) will not change
the value of the determinant. Since the determinant of the unit matrix on left side of
expression (3.3.11) is one, the determinant of the original matrix is just the product

of the factored elements. Thus our complete solution is [ ]13 11 7 ,x = −  where

( ) 12Det A = −  and

1

5 1 1
12 4 3
7 1 2

12 4 3
1 1 1

12 4 3

A−

 −
 
 

= − 
 

−  
 

  (3.3.12)

Pivoting :  We have assumed in each step  fo the Gaussian elimination that

( ) 0.k
kka ≠

To remove this restriction, begin each step of elimination process by switching rows
to put a non-zero elemnt in the pivot posion. Since A is non-singular, this is always
possible. Sometimes it may happen that the pivot element is small (actually zero, but
due to roundoff it becomes vary small). To guard against this, pivoting is used.

Let at stage ( )1 1k k n≤ ≤ −

( )max k
k ijc a=

Let 0i  be smallest row index  i k>  for which the maximum is attain. If 0 ,i k>

then switch rows k and 0i  in ( )kA  and ( );kb  and proceed with step k of the elimination

process.

All multipliesrs will now satisfy

1, 1,....,ikm i k n≤ = +    (remember ( ) ( ) )k k
ik ik kkm a a=

And this ensures the groth in the elements of ( )kA  and thus eliminating the possibility

of loss of significant errors. The pivoting is used in the solving in the linear system
of equation is shown in the example given below.
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Example 3.3.2 : Solve the following system of equations by Gauss elimination
method (use partical pivoting).

2 32 5x x+ =

1 2 32 4 11x x x+ + =

1 2 33 5 12.x x x− + − = −

Solution. The largest element (the pivot) in the coefficients of the variable 1x  is –3,

attained the third equation. So we interchange first and third equations

1 2 33 5 12x x x− + − = −

1 2 32 4 11x x x+ + =

2 32 5.x x+ =

Multiplying the second equation by 3 and adding with the first equation we get,

1 2 33 5 12x x x− + − = −

2 3 3x x+ =

2 32 5x x+ =

The seond pivot is 1, which is at the position 22a  and 32.a  Taking 22 1a =  as pivot

to avoid interchange of rows. Now, subtracting and third equation from second equation,
we obtain

1 2 33 5 12x x x− + − = −

2 3 3x x+ =

3 2.x− = −

Now by back substitution, the values of 3 2 1, ,x x x  are obtained as

( )3 2 3 1 2 3
12, 3 1, 12 5 1.
3

x x x x x x= = − = = − − − + =

Hence the solution is 1 2 31, 1, 2.x x x= = =

Some prelimary concepts

 Let V be the vector space.
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Norm of a Vector is defined as a real valued function N (x) satisfying the conditions

i) ( ) 0 , , 0 if 0≥ ∀ ∈ = =N x x V x f x

ii) ( ) ( )( ).α = α α ∀ ∈N x N x is a scalar x V

iii) ( ) ( ) ( )N x y N x N y+ ≤ +

(1) ( ) ( )def 1 21 1
, ,....,=

′= =∑
n

i ni
N x x x where x x x x

(2) ( ) { 2 1 2
def

2 1
}== = ∑

n
ii

N x x x

(3) ( ) def max ≤ ≤∞= = k i n iN x x x

Example 3.3.3 :  ( )1,0, 1,2x ′= −

Then   1
4,x =    2

6,x =   2x ∞ =

Norm of a Matrix :  By a norm of a matrix ( ), 1,2,3.....ij n n
A a i j n

×
 = =   is defined

as a real number A  which satisfies the following conditions

i) 0,A ≥ 0A iff A=  is a null matrix

ii) ( )α = α αA A is a scalar

iii) A B A B+ ≤ +

iv) AB A B≤

nnA A∴ ≤

(1) def
1

max= ∑ ij
j i

A A a

(2) 

1 2
2

def
2

.

  =  
  
∑ ij
i j

A A a
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(3) def max∞= ∑ ij
i j

A A a

Example 3.3.4 :  

1 2 3

4 5 6

7 8 9

A

 
 =  
  

Then ( )1
max 12,15,18 18A = =

( )1 22 2 2
2

1 2 ....9 285 16.88A = + + = =

( )max 6,15,24 24A ∞ = =

3.4 Gauss-Jacobi interation method

Consider the system of linear equations

11 1 12 2 1 1

21 1 22 2 2 2

1 1 22 2

...

...

...............................................

...............................................

...

n n

n n

n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =

(3.4.1)

Intially the given equations of the systems are so arranged the 0iia ≠  for

1,2,...., ,i n=  and suppose that this rearrangement is (3.4.1). Now (3.4.1) is reset in

the form

11 12
1 2

11 11 11
... n

n
ab a

x x x
a a a

= − − −

22 21
2 2

22 22 22
... n

n
ab a

x x x
a a a

= − − −

….. …… …..
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1 . 1
2 1...n n n n

n n
nn nn nn

b a a
x x x

a a a
−

−= − − −

Or in brief

( )1 1,2,...,i i ij jj i
ij

x b a x i n
a ≠

 = − =
 ∑ (3.4.2)

In the Gauss-Jacobi method the iteration is generated by the formula

( ) ( )1 1k k
i iji jj i

ii
x b a x

a
+

≠
 = −  ∑ ( )1,2,....,i n= (3.4.3)

The initial guess ( ) ( )0 1,2,.....,ix i n=  being chosen arbitrarily.

To examine the convergence of the process, set

max ijj i

ii

a
K i

a
≠=

∑
(3.4.4)

From (3.4.3) for every  i,  ( ) ( )1 1+
≠

 ε = − ε 
 

∑
k k

iji jj i
ii

a
a

   and so

( ) ( ) ( ) ( )1 1 1k k k k
ij iji j

ii iij i j i

a a K
a a

+

≠ ≠
ε ≤ ε ≤ ε ≤ ε∑ ∑

And so

( ) ( )1k kK+ε ≤ ε  (3.4.5)

Hence for every 

( ) ( )0k kKε ≤ ε  (3.4.6)

This shows that if ( )1, 0< ε →kK  as ,k → ∞  i.e., the iteration converges.

The system of linear equations (1) is said to be srtictly diagonally dominant if

( )1,2,....,ii ij
j i

a a i n
≠

> =∑



NSOU l CC-MT-0552

i.e. if 1.K <
Thus the Gauss-Jacobi iteration converges if the given system of linear equations is

strictly diagonally dominant.

Let  1.K <  By (3.4.5)

( ) ( ) ( ) ( ) ( ){ }1 1 1k k k k kK h K h+ + +ε ≤ ε + ≤ ε +

where  ( ) ( ) ( ) ( ) ( )1 1k k k k kh x x+ += − = ε − ε

Or 
( ) ( )1

1
+ε ≤ −

k kK h
K  which gives the estimation of error.

Smaller the value of K, more rapid will be the convergence. Also note that the above
condition of convergence is sufficient but not necessary.

Example 3.4.1 : Solve the following system of linear equations by Gauss-Jacobi’s
method correct up to four decimal places and calculate the upper bound of absolute
errors.

27 6 54x y z+ − =

6 15 2 72x y z+ + =

54 110.x y z+ + =
Solution. Obviously, the system is diagonally dominant as

6 1 27 ,+ − <  6 2 15 ,+ <  1 1 54 .+ <

The Gauss-Jacobi’s iteration scheme is

( ) ( ) ( )( )1 54 6
27

x k kx y z+ 1= − +

( ) ( ) ( )( )1 27 6 2
15

k k kx x z+ 1= − −

( ) ( ) ( )( )1 110 .
54

k k kx x y+ 1= − −
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Let the initial solution be (0, 0, 0). The next iterations are shown in the following table.

k x y z

0 0 0 0

1 2.00000 4.80000 2.03704

2 1.00878 3.72839 1.91111

3 1.24225 4.14167 1.94931

4 1.15183 4.04319 1.93733

5 1.17327 4.08096 1.94083

6 1.16500 4.07191 1.93974

7 1.16697 4.07537 1.94006

8 1.16614 4.07488 1.93999

9 1.16632 4.07477 1.93998

10 1.16632 4.07477 1.93998

11 1.16635 4.07481 1.93998

Fig. : 3.1
The solution correct up to four decimal places is

1.1664,x = 4.0748,y = 1.9400.z =
Here

{ }
1

1 7 8 2 8max max , , .
27 15 54 15=

≠

 
 

= = = 
 
 

∑
n

ij
i ii j

j i

A a
a

( ) ( )0 5 53 10 ,4 10 ,0 .e − −= × ×  Therefore the upper bound of absolute error is

( ) ( )0 0 55.71 10 .
1

Ae e
A

−≤ = ×−

3.5 Gauss-Seidel iteration method

A slight variant of the Gauss-Jacobi  iteration is the Gauss-siedel method in which

the system is also written in the form (2) with 0 1,2,3,.... ,≠ =iia for i n  but the

iteration is carried out successively by the formulae
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( ) ( ) ( )( )1
1 1 12 12

11

1 ...kk k
n nx b a x a x

a
+ = − − −

( ) ( ) ( )( )11
2 2 21 21

22

1 ...kk k
n nx b a x a x

a
++ = − − −

….. …… …..

( ) ( ) ( )( )1

11 1
1 , 1 1

1 ... kk k
n n n n n n

nn
x b a x a x

a
++ +

− −= − − −

( )1,2,3,....i n= (3.5.1)

The initial guess ( ) ( )0 1,2,...,=ix i n  being chosen arbitrarily.

( ) ( ) ( ) ( )1 11 1,2,3,....k k k
i ij iji j j

ii j i j i

x b a x a x i n
a

+ +

< >

 
= − − = 

  
∑ ∑

We Assert that Gauss-Seidel iteration also converges if 1<K  where K is defined in
(3.4.4). Assume the K < 1. For every i

( ) ( ) ( )1 11k k k
i ij iji j jj i j i

ii
b a a

a
+ +

< >
 ε = − ε − ε  ∑ ∑ (3.5.2)

Define temporarily

ijj i
i

ii

a
K

a
<=

∑
 for  ( )1,2,3,.....i n= (3.5.3)

0 1iK K≤ < <    and

( ) ( ) ( )1 11+ +

< <

 
ε ≤ ε + ε 

  
∑ ∑

k k k
ij iji j j

ii j i j i

a a
a

( ) ( )11 k k
ij ijj i j i

ii
a a

a
+

< >≤ ε + ε∑ ∑

( ) ( ) ( )1k k
i iK K K+≤ ε + − ε

So that for some i,
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And so

( ) ( ) ( ) ( )1 1+ +ε ≤ ε + − εk k k
i iK K K

Or

( ) ( ) ( )1

1
+ −

ε ≤ ε−
k ki

i

K K
K (3.5.4)

Since 
( )

1,
1

−
≤ <−

i

i

K K
K as K

K
 we have

Which leads to

( ) ( )1k kK+ε ≤ ε (3.5.5)

Hence for every k

( ) ( )0k kKε ≤ ε (3.5.6)

So that 
( ) 0 sin 1.ε → → ∞ <k as k ce K

If  K < 1, an estimate of the error is given by

( ) ( )1

1
+ε ≤ −

k kK h
K  where  ( ) ( ) ( ) ( ) ( )1 1 .k k k k kh x x+ += − = ε − ε

It may appear the Gauss-Seidrel method is more rapidly convergent than the
Gauss-Jacobi method.

 Here also the condition that the given system is strictly diagonally dominant is
sufficient for the convergence of the method but not necessary.

3.6 Successive Overrelaxation (S.O.R) Method

We have to sove the linear system AX = b

where ( ), 1,2,3...ij n n
A a i j n

×
 = =   is a non-singular matrix and

[ ] ( )1,2,3,.... .ib b i n′= =
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Assume that the diagonal elements of matrix A are non-zero. If some 0,iia =  then by

interchanging some rows , we can make all 0.iia ≠  This is possible as  is non-singular.

The matrix A can always be written as

= + +A D L U

Where ij ijD a = δ 

L → Lower triangular matrix with diagonal elements zero

U →  Upper triangular matrix with diagonal elements zero

So ,  AX = b (3.6.1)

becomes   ( )+ + =D L U X b (3.6.2)

Now multiplying by some non-zero scalar  on bothside of equation (3.6.2) we have

( )ω + + = ωD L U b

or, ( )ω = ω − ω +LX D U Xb      (3.6.3)

DX DX= (3.6.4)

Adding (3.6.3) and (3.6.4) we get,

( ) ( )1+ ω = ω + − ω − ωD L X DX UXb      (3.6.5)

The iteration scheme is

( ) ( ) ( ) ( )1 1 , 0 1++ ω = ω + − ω − ω = ∞i i iD L X DX UX ib (3.6.6)

(3..6.6) – (3.6.5) gives,

( ) ( ) ( ) ( ) ( ) ( )1 1 , 1++ ω = − ω − ω = ∞i i iD L e De Ue i

Where ( ) ( )1 1i ie X X+ += −  where ( )1ie +  iis the error in the ( )1i th+  stage of

approximation.

Or, ( ) ( ) ( ) ( )11 1−+ = + ω − ω − ω  
i ie D L D U e

( ) ( ) ( )1 02 1...− += = = =i i iMe M e M e

where   ( ) ( )1 1M D L D U−= + ω − ω − ω  
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Suppose 1 2, ,....., nλ λ λ  are eigen values of the matrix M and 1 2, ,...., nX X X  are

corresponding eigen-vectors such that they are linearly independent.

Let  ( )0
1 1 2 2, .... n ne X X X= α + α + + α

( ) ( ) ( ) ( )1 1 1 1
1 1 1 2 2 2, .....i i i i

n n ne X X X+ + + += α λ + α λ + + α λ

0 ,as i→ → ∞
(if all eigen values are < 1 numerically or spectral radius

1
1 . max 1

≤ ≤
< λ <j

j n
i e

( )1 0iX X as i+∴ − → → ∞

Now, ( ) ( )1det det .det 1M D L D U−= + ω − ω − ω  

( )1det det 1D D−= − ω

( )1det det det 1−= − ωD D I

( )1 n= − ω

Now,  1 2det , ,....., nM = λ λ λ

( )1 2, ,....., 1 n
n∴ λ λ λ = − ω

i.e. max 1i iλ ≥ − ω

or, 1 max 1i i− ω ≤ λ <

therefore, equation (3.6.6) will converge if ( )0 2< ω <  where is real.ω  This method

is called overrelaxation method when 1 2,< ω < and is called the underrelaxation

method when 0 1.< ω <   When 1,ω =  the method becomes Gauss – Seidel’s method.

Example 3.6.1 : Solve the following system of equations

1 2 33 2 6x x x+ + =

1 2 34 2 5x x x− + + =
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1 2 32 4 7x x x+ + =

by SOR method taken w = 1.01

Solution. The iteration scheme for SOR method is

( ) ( ) ( ) ( ) ( )1
11 11 11 12 13 11 1 1 2 3

k k k k ka x a x w a x a x a x b
+  = − + + −  

( ) ( ) ( ) ( ) ( )1 1
22 22 21 22 23 22 2 1 2 3

k k k k ka x a x w a x a x a x b
+ + = − + + −  

( ) ( ) ( ) ( ) ( )1 1 1
33 33 31 32 33 33 3 1 2 3

k k k k ka x a x w a x a x a x b+ + + = − + + −  

or

( ) ( ) ( ) ( ) ( )1
1 31 1 23 3 1.01 3 2 6k k kk kx x x x x+  = − + + −  

( ) ( ) ( ) ( ) ( )11
2 32 1 24 4 1.01 4 2 5k k kk kx x x x x++  = − − + + −  

( ) ( ) ( ) ( ) ( )1 11
3 33 1 24 4 1.01 2 4 7k k kk kx x x x x+ ++  = − + + −  

Let ( ) ( ) ( )0 00
1 2 3 0.x x x= = =

The detail calculatios are shown  in the following table.

k x
1

x
2

x
3

0 0 0 0

1 2.02000 1.77255 0.29983

2 1.20116 1.39665 0.80526

3 0.99557 1.09326 0.98064

4 0.98169 1.00422 1.00838

5 0.99312 0.99399 1.00491

6 0.99879 0.99728 1.00125

7 1.00009 0.99942 1.00009

8 1.00013 0.99999 0.99993

9 1.00005 1.00005 0.99997

Therefore the required solution is
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1 1,0000,x = 2 1,0000,x = 3 1,0000x =

correct up to four decimal places.

Example : 3.6.2
Consider a linear system Ax = b, where

3 1 1 1

1 3 1 , 7

1 1 3 7

A b

− −   
   = − − =   
   − −   

(a) Check, that the SOR method with value 1.25ω =  of the relaxation parameter can
be used to solve this system.

(b) Compute the first iteration by the SOR method starting at the point ( ) ( )0 0,0,0 .T
x =

Solution :
(a) Let us verify the sufficient condition for using the SOR method. We have to cheek,

if matrix A is sysmmetric, positive definite (spd) : A is symmetri, so let us check positive
definitness :

det (3) =  3 > 0, det 
3 1

8 0,
1 3

− 
= > − 

 det 

3 1 1

1 3 1 20 0

1 1 3

− 
 − − = > 
 − 

All leading principal minors are positive and so the matrix A is positive definite.

We know, that for spd matrices the SOR method converges for values of the relaxation
parameter w from the interval 0 < w < 2.

Conclusion : the SOR method with value w = 1.25 can be used to solve this system.

(b) The iterations of the SOR method are easier to compute by elements than in the
voctor form :

1. Write the system as equations :

1 2 33 1x x x− + = −

1 2 33 7x x x− + − =

1 2 33 7x x x− + = −

2. First, write down the equations for the GS interations :
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( ) ( ) ( )( )1
1 2 31 / 3k k kx x x+ = − + −

( ) ( ) ( )( )1 1
2 1 37 / 3k k kx x x+ += + +

( ) ( ) ( )( )1 1 1
3 1 27 / 3k k kx x x+ + += − − +

3. Now multiply the right hand side by the parameter w and add to it the vector ( )kx

from the previous interation multiplie by the factor of ( )1 :w−

( ) ( ) ( ) ( ) ( )( )1
1 1 2 31 1 / 3k k k kx w x w x x+ = − + − + −

( ) ( ) ( ) ( ) ( )( )1 1
2 2 1 31 7 / 3k k k kx w x w x x+ += − + + −

( ) ( ) ( ) ( ) ( )( )1 1 1
3 3 1 31 7 / 3k k k kx w x w x x+ + += − + − − +

4. For k = 0, 1, 2,.... compute ( )1kx +  from these equations, starting by the first one.

Computation for k = 0.

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 0 0 0
1 1 2 31 1 3 1 1.25 ·0 1.25· 1 0 0 3 0.41667x w x w x x= − + − + − = − + − + − = −

( ) ( ) ( ) ( ) ( )( ) ( )1 0 1 0
2 2 1 31 7 3 0.25·0 1.25· 7 0.41667 0 3 2.7431x w x w x x= − + + − = − + − + =

( ) ( ) ( ) ( ) ( )( )1 0 1 1
3 3 1 21 7x w x w x x= − + − − +

( )3 0.25·0 1.25· 7 0.41667 2.7431 3 1.6001= + − + + = −

The next three interations are

( ) ( )2 1.4972,2.1880, 2.2288 ,T
x = −

( ) ( )3 1.0494,1.8782, 2.0141 ,T
x = −
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( ) ( )4 0.9428,2.0007, 1.9723 ,T
x = −

the exact solution is equal to ( )1,2, 2 .T
x = −

3.7 Summary

The system of linear equations has been solved by using direct approach and
iterative approach. In the direct approach Gauss elimination method and Gauss-
Jordan method have been studied in detail where as the iterative approach Gauss
Jacobi, Gauss Seidal methods are  studied and their convergence are also studied. In
SOR method also the convergence analysis has been studied.

3.8 Exercises

1. Using Gauss elimination method with pivoting, solve the system of linear

equations

1 2 32 4 3,x x x+ + =

1 2 33 2 2 2,x x x+ − =

1 2 3 6.x x x− + =

(Ans: 1 32.8, 1.16, 2.04x x= = − = )

2. Solve the following system of equations with and without pivoting and compare
the result with exact solution (1, 1, 1).

3. Solve the following system of equations by Gauss-Jacobi methos:

i) 1 2 310 12,x x x+ + =

1 32 210 13,x x+ + =

1 2 32 2 10 14.x x x+ + =

(Ans: 1 2 31, 1, 1x x x= = = )

ii) 1 2 38 3 2 20,x x x− + =
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1 2 34 11 33,x x x+ − =

1 2 36 3 12 35.x x x+ + =

(Ans: 1 2 33. 168, 1.9858, .9117x x x= − = = )

4. Solve the following system of equations by Gauss-Seidel method correct upto
four decimal places:

i) 12 6 9,x y z+ + =  8 3 2 13,x y z+ + + 5 7+ + =x y z  (Ans : x = 1, y = 1, z = 1)

ii) 8 18,x y z− + = 2 5 2 3,x y z+ − = 3 16x y z+ − = −

(Ans : x = 2, y = 0.9998, z = 2.9999)

5. Solve the following system of equations by S.O.R method correct upto four
decimal places:

6,x y z+ + =  4,x y z− − = − 2 2 1.x y z+ − = −   (Ans:  x = 1, y = 2, z = 3)
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4.5 Central dif ference Interpolation

4.6 Lagrange’s Interpolation

4.7 Finite dif ference operator

4.6 Exercises

4.7 Summary

4.0 Objectives

After studying this unit one can be able to

l construct different forms of interpolation polynomial

l some knowledge of finite difference operators are also discussed.

4.1 Introduction

The method of obtaining the value of the function for any intermediate value of
the argument when the values of a functions are known for a set of values of the
arguments is known as interpolation. Mathematically, if the values of the function

( )y f x= at , , 2 ,.....,x a a h a h a nh= + + +  be known then finding the value of the

function at x b=  where a b a nh< < +  is known as interpolation. If x lies outside the

above said range, then the corresponding process is called extrapolation.
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4.2 Polynomial Interpolation

Let ( ) ( ), .∞∈ −∞ ∞f x C  The principle of interpolating polynomial is “the selection of

a function ( )xϕ from a given class of functions such that the graph ( )y x= ϕ  passes

through a finite set of given points”.  When the function ( )y x= ϕ  is a polynomial, the

process of representing ( )f x  by ( )xϕ  is called polynomial interpolation. The polynomial

interpolation is based on the following theorem known as Weierstrass theorem:

Theorem 4.2.1 : Let a function ( ) [ ],∈f x C a b  and let 0ε >  be any preassigned

small number. Then, ∃  a polynomial ( )xϕ  for which ( ) ( ) ;f x x− ϕ < ε [ ],∈x a b  i.e.

any continuous function can be uniformly approximated by a polynomial of sufficiently
high degree within any prescribed tolerance on the finite interval.

Theorem 4.2.2 : Given any real valued function ( )f x  and ( )1n+  distinct points

0 1 2 3, , , ,.... nx x x x x  there exist unique polynomial of maximum degree n  which

interpolates  ( )f x   at the points  0 1 2 3, , , ,.... .nx x x x x

Exersise: Prove the above theorem.

In a polynomial interpolation the approximation function ( )xϕ  is taken to be a

polynomial ( )ny x  of degree n≤  given by

( ) 2
0 1 2 .... n

n ny x a a x a x a x= + + + + (4.1)

and it is given ( ) ( ) ( )0,1,2,....,= =n i iy x f x i n     (4.2)

i.e. ( ) ( )2
0 1 2 ... 0,1,2,.....,n

i i n i ia a x a x a x f x i n+ + + + = =

Now (4.2) is a system of ( )1n+  linear equation with ( )1n+  unknowns

0 1 2, , ,...., .na a a a  Since the

co-efficients determinant
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( )
0 0

1 1

1 .....

1 ..... 0

1 .....

n

n
i ji j

n
n n

x x

x x x x

x x
>= − ≠∏   by Vandermonde’s determinant

as the points 0 1 2, , ,...., nx x x x  are distinct the values of 0 1 2, , ,....., na a a a  can be uniquely
determined so that ( )ny x  exists and is called interpolating polynomial. The given points

0 1 2, , ,...., nx x x x  are called interpolating points or nodes such that 0 1 2,...., nx x x x< < <
and also we shall write ( )( )0,1,2,....,i iy f x i n= =

4.3 Newton’s Forward Interpolation Formula

Let ( )y f x=  be a continuously differentiable function. Given set of ( )1n+  values

( ) ( ) ( )0 0 1 1, , , ,.... ,n nx y x y x y  of x and y, it is required to find ( ) ,ny x a polynomial of

degree n, so that y and ( )ny x  coincide at tabulated points. Let the values of x be

equidistant so that 0 ,ix x ih= +  ( 0h >  is the step length, 0,1,2,.... ).i n=  Since

( )ny x  is a polynomial of degree , this can be written in the form

( ) ( ) ( )( ) ( )0 1 0 2 0 1 0....n ny x a a x x a x x x x a x x= + − + − − + + − ( ) ( )1 1... nx x x x −− −

(4.3.1)

We  now determine the coefficient 0 1 2, , ,..... na a a a  using the notation

( ) ( )0,1,2,....,n i iy x y i n= =

We have  
2

1 0 0 0 2 1 0 0
0 0 1 2 2 2

1 0 1 0

2
. ,

2 2!

y y y y y y y y
a y a a

x x x x h h h

− ∆ ∆ − + ∆= = = = = =− −
By continuing this method of calculating the coefficients we shall find that

3 4
0 0 0

3 43 4
, ,..... .

3! 4! !

n

n n

y y y
a a a

h h n h

∆ ∆ ∆= = =

Substituting these values of 0 1 2, , ,....., na a a a  in equation (4.3.1), we get

( ) ( ) ( )( ) ( )
2

0 0
0 0 0 1 02

....
2!

n
y y

y x y x x x x x x x x
h h

∆ ∆= + − + − − + + −
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( ) ( ) 0
1 1....

!

n

n n

y
x x x x

n h
−

∆− − (4.3.2)

Setting 0 ,
x x

u
h
−=  we have from equation (4.3.2)

( ) ( ) ( ) ( )2 3
0 0 0 0

1 1 2
...

2! 3!n
u u u u u

y x y u y y y
− − −

= + ∆ + ∆ + ∆ + +

( )( ) ( )
0

1 2 ... 1
!

nu u u u u
y

n
− − − +

∆ (4.3.3)

Equation (4.3.3) is Newton’s forward interpolation formula .

The error term  is given by

( ) ( ) ( ) ( )
( )

( ) ( )11
1

1 2 ...

1 !
nn

n
u u u u n

R x h f
n

++
+

− − −
= ξ

+

{ }0, , nmim x x x < ξ  { }0max , , nx x x<

Note: Newton’s forward interpolation formula is used to interpolate the values of  near

the beginning of a set of tabulator values.

The difference table used in Newton’s forward formula is as follows :

x y ∆y ∆2y ∆3y ∆ny

x
0

y
0

∆y
0

x
1

y
1

∆2y
0

∆y
1

∆3y
0

x
2

y
2

∆2y
1

.... ....

.... ∆ny
0

..... ∆2y
n–2

∆y
n–1

x
n

y
n
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Example 4.3.1 : The following table gives the values of ex for certain equidistant values
of x. Find the value of ex when x = 0.612 using Newton’s forward differene formulae.

x : 0.61 0.62 0.63 0.64 0.65

y : 1.840431 1.858928 1.877610 1.896481 1.915541

Solution. The forward difference difference table is

x y ∆y ∆2y ∆3y

0.61 1.840431

0.01897

0.62 1.858928 0.000185

0.018682 0.000004

0.63 1.877610 0.000189

0.018871 0.0

0.64 1.896481 0.000189

0.019060

0.65 1.915541

Here, 0 0.61,x = 0.612,x = 0.01,h = 0 0.612 0.61 0.2.
0.01

x x
u

h
− −= = =

Then,

( ) ( ) ( )( )2
0 0 0

1 1 2
0.612 0.2.

2! 3!
u u u u u

y y u y y
− − −

= + ∆ + ∆ + =

( )0.2 0.2 1
1.840431 0.2 0.018497 0.000185

2
−

= + × + ×

( )( )0.2 0.2 1 0.2 2
0.000004

6
− −

+ ×

1.840431 0.003699 0.000015 0.0000019= + − +
1.844115.=
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4.4 Newton’s Backward Interpolation Formual

Let ( )y f x=  be a continuously differentiable function. Given set of ( )1n+  values

( ) ( ) ( )0 0 1 1, , , ,...., ,n nx y x y x y  of x and y, it is required to find ( ) ,ny x  a polynomial

of degree n, so that y and ( )ny x  coincide at tabulated points. Let the values of x be

equidistant so that 0 ,ix x ih= +  ( h > 0 is the step length, 0,1,2,.... ).i n=  Since ( )ny x

is a polynomial of degree n, this can be written in the form

( ) ( ) ( )( ) ( )0 1 2 1 ....n n n n n ny x a a x x a x x x x a x x−= + − + − − + + −

( ) ( )1 0....−− −nx x x x       (4.4.1)

We  now determine the coefficient 0 1 2, , ,...., na a a a  using the notation

( ) ( )0,1,2,.....,n i iy x y i n= =

We have  
2

1 1 2
0 1 2 2 2

1

2
, ,

2 2!
n n n n n n n

n
n n

y y y y y y y
a y a a

x x h h h
− − −

−

− ∇ − + ∇= = = = =−

By continuing this method of calculating the coefficients we shall find that

3 4 4

3 43 4 4
, ,...., .

3! 4! !
n n n

n
y y y

a a a
h h n h

∇ ∇ ∇= = =

Substituting these values of 0 1 2, , ,...., na a a a   in equation (4.4.1), we get

( ) ( ) ( )( ) ( )
2

0 1 2
...

2!
n n

n n n n n
y y

y x y x x x x x x x x
h h

−
∇ ∇= + − + − − + + −

( ) ( )1 1...
!

n
n

n n

y
x x x x

n h
−

∇− − -1 (4.3.2)

Setting ,nx x
v

h
−=  we have from equation (4.3.2)

( ) ( ) ( )( )2 3
0

1 1 2
....

2! 3!n n n n
v v v v v

y x y v y y y
+ + +

= + ∇ + ∇ + ∇ + +

( ) ( ) ( )1 2 ... 1
!

n
n

v v v v n
y

n
+ + + −

∇  (4.3.3)
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Equation (4.3.3) is Newton’s backward interpolation formula.
The error term is given by

( ) ( )( ) ( )
( )

( ) ( )11
1

1 2 ....

1 !
nn

n
v v v v n

R x h f
n

++
+

+ + +
= ξ

+

0 1 1 0min{ , , , , } max{ , , }< ξ <⋯ ⋯n nx x x x x x x

Note : Newton’s backward interpolation formula is used to interpolate the values

of  near the end of a set of tabulator values.

The difference table used in Newton’s backward  formula is as follows

x y ∇y ∇2y ∇3y ∇ny

x
0

y
0

∇y
1

x
1

y
1

∇2y
2

∇y
2

∇3y
3

x
2

y
2

∇2y
3

.... .... ∇y
3

.... ∇ny
n

..... ∇2y
n

∇y
n

x
n

y
n

Example 4.4.1 : From the following table of values of x and f (x) determine the
value of f (0.29) using Netwon’s backward interpolation formula.

x : 0.20 0.22 0.24 0.26 0.28 0.30
f (x) : 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139

Solution. The difference table is

x f (x) ∇f (x) ∇2f (x) ∇3f (x)
0.20 1.6596
0.22 1.6698 0.0102
0.24 1.6804 0.0106 0.004
0.26 1.6912 0.0108 0.0002 –0.0002
0.28 1.7024 0.0112 0.0004 0.0002
0.30 1.7139 0.0115 0.0003 –0.0001

Here, 0.30,nx = 0.30,x = 0.02,h = 0.29 0.30 0.5.
0.02

nx x
v

h
− −= = = −
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Then,

( ) ( ) ( ) ( ) ( ) ( ) ( )2 31 1
0.29 ...

2! 3!n n n n
u u u

f f x u f x f x f x
υ + +

= + ∇ + ∇ + ∇ +

( )0.5 0.5 1
1.7139 0.5 0.0115 0.0003

2
− − +

= − × + ×

( ) ( ) ( )0.5 0.5 1 0.5 2
0.0001

6
− − + − +

+ ×

1.7139 0.00575 0.0000375 0.00000625= − − +

1.70811875 1.7081.= ≃

4.5 Central Interpolation formula

Stirling’ s Interpolation formula :

For this formula the number of nodes will be taken to be odd, i.e. 2 ,n m=  The

nodes being 0 1 2, , ,...., .mx x x x± ± ±

The Gauss forward interpolation formula is given by

( ) ( ) ( )2 3
0 0 1 1

1
2!n

u u
y x y u y y y− −

−
= + ∆ + ∆ + ∆ ( ) ( ) ( )3 4

1 1
1 2

.....
3!

u u u
y y− −

− −
+ ∆ + ∆

where u lies 0 and 1

And Gauss Backward formula is given by

( ) ( ) ( )( )2 3 3
2 1 221 0

0 1

1
...

2 2! 3!n

u u y yy y uy x y u y
− −−

−

− ∆ + ∆∆ + ∆ = + + ∆ + + 
 

where u lies between -1 and 0

Taking mean of the above two Gauss’s formulas, we get

( ) ( ) ( ) ( ) ( )( )2
2 2 3

0 1 1 1 1

1 1 2
2! 3!n

u u u u u
y x y u y y y y− − − −

− − −
= + ∆ + ∆ + ∆ + ∆ +

( )3 4
1 1 ...y y− −∆ + ∆



NSOU l CC-MT-05 71

The above equation is called Stirling’ s interpolation formula.

4.5.2 Bessel’s formula is for n is odd and is given by

( ) ( ) ( ) ( ) 2 2
1 0

0 1 0
11 1

2 2 2! 2n
u u y y

y x y y u y − − ∆ + ∆= + + − ∆ +   
 

( ) ( )
3

1

1 1
2 ....

3!

u u u
y−

− −
+ ∆ +

The above relation is Bessel’s formula.

Exercise:  Obtain the difference table for Stirling’s and Bessel’s formula.

Example 4.5.1 : Use the central difference interpolation formula of Stirling of Bessel
to find the values of y at (i) x = 1.40 and (ii) x = 1.60 from the following table

x : 1.0 1.25 1.50 1.75 2.00

y : 1.0000 1.0772 1.1447 1.2051 2.2599

Solution. The central difference table is

i x
i

y
i

∆y
i

∆2y
i

∆3y
i

–2 1.00 1.0000

0.772

–1 1.25 1.0772 –0.0097

0.0675 0.0026

0 1.50 1.1447 –0.0071

0.0604 0.0015

1 1.75 1.2051 –0.0056

0.0548

2 2.00 1.2599

(i) For 1.40,x =  we take 0 1.50,x =  then ( )1.40 1.50 0.25 0.4.u = − = −

The Bessel’s formula gives

( ) ( ) ( ) 2 2
0 1 0 1

0
111.40

2 2 2! 2
u uy y y y

y u y −− ++ ∆ + ∆
= + − ∆
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( ) ( ) 3
1

1 1 1
3! 2

u u u y−+ − − ∆

( )1.1447 1.2051 0.4 0.5 0.0604
2
+= + − − ×

( )0.4 0.4 1 0.0071 0.0056
2! 2

− − − − −+

( )( ) ( )1 0.4 0.5 0.4 0.4 1 0.0015
6

+ − − − − − ×

1.118636.=

(ii) For 1.60,x =  we take 0 1.50,x =  then ( )1.60 1.50 0.25 0.4.u = − =
Using Stirling’s formula

( )
( )2 2 3 32

21 0 2 1
0 1

1
1.60

2 2! 3! 2

s sy y y ysy y s y− − −
−

−∆ + ∆ ∆ + ∆= + + ∆ +

( ) ( )
20.40.675 0.06041.1447 0.4 0.0071

2 2
+= + + × −

( )0.4 0.16 1 0.0026 0.0015
6 2

− ++

1.1447 0.02558 0.000568 0.0001148 1.1695972.= + − − =

4.6 Lagrange’s Interpolation

Let ( )y f x=  be a continuously differentiable function. Given set of ( )1n+  values

( ) ( ) ( )0 0 1 1, , , ,.... ,n nx y x y x y  of x and y, it is required to find ( ) ,ny x a polynomial of

degree n, so that y and ( )ny x  coincide at tabulated points. Here  the values of

( )0,1,2,....ix i n=  are not equispaced. Since ( )ny x  is a polynomial of degree n, this

can be written in the form

( ) ( ) ( ) ( ) ( )( ) ( )0 1 2 1 0 2.... ....n n ny x a x x x x x x a x x x x x x= − − − + − − −

( )( ) ( ) ( )( ) ( )2 0 1 0 1 1.... .... ...n n na x x x x x x a x x x x x x−+ − − − + + − − −  (4.5.1)
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where 0 1 2, , ,...., na a a a  are coefficient to be determined from the relation

( ) ( ) ( )0,1,2,...., .= = =n i i iy x y f x i n

Putting 0x x=  in equation (4.5.1), we get

( )
( )( ) ( )

0
0

0 1 0 2 0.... n

f x
a

x x x x x x
=

− − −

Putting 1x x=  in equation (4.5.1), we get

( )
( )( ) ( )

1
1

1 0 1 2 1.... n

f x
a

x x x x x x
=

− − −

Similarly putting 2 3, ,.... nx x x x=  in equation (4.5.1), we get

( )
( ) ( ) ( )

2
2

2 0 2 1 2.... n

f x
a

x x x x x x
=

− − −

..............................................................

..............................................................

( )
( )( )( ) ( )0 0 1 1....

n
n

n n n n n

f x
a

x x x x x x x x−
=

− − − −

Substituting the values of 0 1 2, , ...., na a a a  in (4.5.1) we get

( ) ( )( ) ( )
( )( ) ( ) ( )1 2

0
0 1 0 2 0

....

.....
n

n
n

x x x x x x
y x f x

x x x x x x

− − −
=

− − −

( )( ) ( )
( )( ) ( ) ( )0 2

1
1 0 1 2 1

.....

....
n

n

x x x x x x
f x

x x x x x x

− − −
+ +

− − −

( )( ) ( )
( )( ) ( ) ( )0 1

2
2 0 2 1 2

....
....

....
n

n

x x x x x x
f x

x x x x x x

− − −
+

− − −

( ) ( ) ( )
( )( ) ( ) ( )0 1 1

0 1 1

....

....
n

n
n n n n

x x x x x x
f x

x x x x x x
−

−

− − −
+

− − −

which is Lagrange’s interpolation formula. The above formula may be written in
the following way as
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( ) ( ) ( ) ( )
( ) ( )0

n
i

n
i ii

f x
f x y x x

x x x=
≈ = ω

′− ω∑

where ( ) ( )( ) ( )0 1 .....ω = − − − nx x x x x x x

( ) ( ) ( )
( ) ( ) ( )1

0

n
i

n
i ii

f x
f x x R x

x x x +
=

= ω +
′− ω∑

Where ( ) ( )
( ) ( )
( ) { } { }

1

1 0 0min , ,...., max , ,....,
1 !

+

+
ξ

= ω < ξ <
+

n

n n n
f

R x x x x x x x x
n

Example 4.6.1 : A function ( )f x  defined on the interval (0, 1) is such that ( )0 0,f =

( )1/ 2 1,f = − ( )1 0.f =  Find the quadratic polynomial ( )p x  which agrees with f for

0,1/ 2,1.x =

If 
3

3
1

d f

dx
≤  for 0 1,x≤ ≤  show that ( ) ( ) 1

12
f x p x− ≤  for 0 1.x≤ ≤

Solution. Given 0 0,x = 1 1/ 2,x = 2 1x =  and ( )0 0,f = f ( )1/ 2 1,f = − ( )1 0,f =
From Lagrange’s interpolating formula, the required quadratic polynomial i s

( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( )0 21 2
0 1

0 1 0 2 1 0 1 2

x x x xx x x x
p x f x f x

x x x x x x x x

− −− −
= +

− − − −

( )( )
( )( ) ( )0 1

2
2 0 2 1

x x x x
f x

x x x x

− −
+

− −

( )( )
( )( )

( )( )
( )( ) ( ) ( ) ( )

( ) ( )
1/ 2 1 0 1 0 1/ 2

0 1 0
0 1/ 2 0 1 1/ 2 0 1/ 2 1 1 0 1 1/ 2

x x x x x x− − − − − −
= × + × − + ×

− − − − − −

( )4 1 .x x= −

The error ( ) ( ) ( )= −E x f x p x  is given by

( ) ( )( )( ) ( )
0 1 2 3!

f
E x x x x x x x

′′′ ξ
= − − −
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or, ( ) ( )
0 1 2 3!

f
E x x x x x x x

′′′ ξ
= − − −

3

3
10 1/ 2 11. 1 in 0 1 .
3!

d f
x x x as x

dx

 
≤ − − − ≤ ≤ ≤ 

  

Now, 0 1,x− ≤ 1/ 2 1/ 2x− ≤  and 1 1 in 0 1.− ≤ ≤ ≤x x

Hence, ( ) 1 1 11. . .
2 6 12

E x ≤ =

That is, ( ) ( ) 1 .
12

− ≤f x p x

Example 4.6.2 : Find the missing term in the following table

x : 0 1 2 3 4

y : 1 2 4 ? 16

Solution.
Using Lagrange’s formula

( ) ( )( )( )
( )( ) ( )

3 2

0
1 2 4 7 14 8

80 1 0 2 0 4

x x x x x xL x
− − − − + −= = −− − −

( ) ( ) ( ) ( )
( )( ) ( )

3 2

1
0 2 4 6 8 .

31 0 1 2 1 4

x x x x x xL x
− − − − += =
− − −

( ) ( ) ( )( )
( ) ( )( )

3 2

2
0 1 4 5 4 .

42 0 2 1 2 4

x x x x x xL x
− − − − += = −− − −

( ) ( ) ( )( )
( )( )( )

3 2

3
0 1 2 3 2 .

244 0 4 1 4 2

x x x x x xL x
− − − − += =
− − −

Therefore,

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3+ + +≃y x y L x y L x y L x y L x

3 2 3 27 14 8 6 81 2
8 3

x x x x x x− + − − += × + ×−
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3 2 3 25 4 3 24 16
4 24

x x x x x x− + − ++ × + ×−

3 25 1 11 1.
24 8 12

x x x= − + +

Thus, ( )3 8.25.y =

Hence the missing tern is 8.25.

Example 4.6.3 : Using the following data, find by Lagrange’s formula, the value of

( ) 10=f x at x

( )

0 1 2 3 4

9.3 9.6 10.2 10.4 10.8

11.40 12.80 14.70 17.00 19.80
i

i i

i

x

y f x=

Also find the value of x where ( ) 16.00.f x =

Soluion : To compute ( )10 ,f  we first calculate the following products :

( ) ( )
4 4

0 0

10j j
j j

x x x
= =

− = −∏ ∏

( )( ) ( )( ) ( )10 9.3 10 9.6 10 10.2 10 10.4 10 10.8 0.01792,= − − − − − = −

( )
4

0
1

0.4455,j
j

x x
=

− =∏ ( )
4

1
0, 1

0.1728,j
j j

x x
= ≠

− = −∏ ( )
4

2
0, 2

0.0648,
= ≠

− = +∏ j
j j

x x

( )
4

3
0, 3

0.0704,j
j j

x x
= ≠

− = −∏  and ( )
4

4
0, 4

0.4320.
= ≠

− = +∏ j
j j

x x

Thus,

( ) ( ) ( )
11.40 12.80 14.7010 0.01792

0.7 0.4455 0.4 0.1728 0.2 0.0648
f


≈ − × + + × × − − ×

( ) ( ) ( )
17.00 19.80

0.4 0.0704 0.8 0.4320


+ + − × − − × 

13.197845.=
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4.7 Finite difference operator

Shift Operator E : Let h be a non-zero constant is the step length. The shift operator

E  for any arbitrary function ( )f x  defined in ( ),−∞ ∞  is represented by ( ) ( ).Ef x f x h= +

Now ( ) ( ) ( ) ( )2 . 2E f x E Ef x Ef x h f x h= = + = +  and in general

( ) ( ).nE f x f x nh= +

Forward dif ference operator :∆   It is defined by ( ) ( ) ( )f x f x h f x∆ = + −  where

h is the step length

∆  is a linear operator and 1,E∆ = − 1.E = ∆ +

Putting 0x x=  we get

( ) ( )0 0 0 1 0,y f x h f x y y∆ = + − = −  The second order difference is given by

( )2
0 1 0 2 1 1 0 2 1 02y y y y y y y y y y∆ = ∆ − ∆ = − − − = − +

Similarly the 3rd order difference is represented by

3 2 2
0 1 0 3 2 1 03 3y y y y y y y∆ = ∆ − ∆ = − + −

    and k-th order difference is given by

( )0
0

1 −
=

 
∆ = −  

 
∑
k

ik
k i

i

k
y y

i

Exercise:  i) Prove that first order difference of a constant is 0.

  ii) The first order difference of a polynomial of degree n is a polynomial of
degree 1.n−

Backward difference operator ∇∇∇∇∇ :  The first order backward difference operator
is defined by

( ) ( ) ( )f x f x f x h∇ = − −

The central difference operator :δ The central difference operator δ  is defined by
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( ) ( ) ( ) ( )
1 1
2 21 1

2 2
f x f x h f x h E E f x

− 
δ = + − − = − 

 

( ) ( ) ( ) ( )1
2

f x h f x h f x f xδ + = + − = ∆

( ) ( ) ( ) ( )1 1 1
2 2 2

f x f x h f x h f x hδ = + − − = ∆ −

Thus we have the result 
1 1
2 2E E

−
δ ≡ −

Example: i) Show that 1 1 .E− ≡ − ∇
Proof : We know that

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11f x f x f x h f x E f x E f x− −∇ = − − = − = −

1 1E−⇒ ≡ − ∇  (proved)

(ii) Show that 2.∆ − ∇ ≡ δ
Proof : We know that

( ) ( ) ( ) ( )
1 1
2 21 1

2 2
f x f x h f x h E E f x

− 
δ = + − − = − 

 

1 1
2 2E E

−
⇒ δ ≡ −

( ) ( )2 12 1 2 1−⇒ δ ≡ − + = + ∆ − + − ∇ = ∆ − ∇E E  (proved)

4.8 Summary

In this Unit we have studied Newton’s forward, backward interpolations, Central
Interpolation, Bessel’s and Striling’s interpolation, Lagrange’s interpolation and the
related problems. We have also studied the some operators like shift, forward difference,
backward difference and central difference and relations between them.
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4.8 Exercise

1. Determine ( )f x  as a polynomial in x for the following data :

x : -4 -1 0 2 4

f (x) 1245 33 5 9 1335

Ans : ( ) 4 3 23 5 6 4 5 5f x x x x x= − + = − + −

2. Given the values :

x : 5 7 11 13 17

f (x) 150 392 1452 2366 5202

Evaluate f (9) using Lagrane’s interpolation forula. (Ans : 810)

3. The following table gives the sales of a concern for five years. Estimate the sales for
the year (i) 1986 (ii) 1992 :

Year 1985 1987 1989 1991 1993

Sales 40 43 48 52 57

Ans : (i) 41.02 (ii) 54.46

4. Find the seventh and the general terms of the series 3, 9, 20, 38, 65,....

Ans : (i) ( )7 154f =  (ii) ( ) ( )3 21 2 3 13
6

f x x x x= + +

5. Using the Stirling’s formula to find 32u  from the following table

x
i

20 25 30 35 40 45

xiu 14.035 13.674 13.257 12.734 12.08911.309

Ans : 32 13.059u =

6. Prove that

(i) .E E∆ = ∆

(ii) hDE e=

(iii) 1.E−∇ = ∆

(iv) ( )2 21∆ = + ∆ δ



Unit 5 rrrrr  Numerical differentiation

Structur e

5.0 Objectives

5.1 Intr oduction

5.2 Newton’s Forward Dif ferentiation Formula

5.3 Newton’s Backward Differentiation Formula

5.4 Lagrange’s Differentiation Formula

5.5 Summary

5.6 Exercises

5.0 Objectives

After studying this unit one can be able to

l find numerical differentiation of a function by using different methods.

5.1 Introduction

Numerical differentiation is connected with the computation of derivatives of a
function whose values are known at a tabular points. The fundamental operation of
differentiation is applied to the interpolating polynomial to evaluate the derivatives
of the given of the given function whose values are known at some tabular points.

5.2 Netwon’s Forward Dif ferentiation Formula

Let ( )y f x=  denote a continuously differential function which takes the values

0 1 2 3, , , ,..... ny y y y y  for the equidistant values 0 1 2 3, , , ,.... nx x x x x  of the independent

variables x, then we have from Newton’s Forward Interpolation formula as

( ) ( ) ( )( )2 3
0 0 0 0

1 1 2
...

2! 3!
u u u u u

f x y u y y y
− − −

≈ + ∆ + ∆ + ∆ +
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( ) ( ) ( )
0

1 2 ... 1
!

nu u u u n
y

n
− − − +

+ ∆

Where ( ) 0, ,i i iy f x x x ih= = +  ( 0h > is the step length, 0,1,2,.... )i n=  and

0x x
u

h
−=   so that

1·
df df dfdu
dx du dx h du

= =

( )
2

2 3
0 0 0

1 2 1 3 6 2 ...
2! 3!

dy u u uf x u y y y
dx h

 − − +′∴ = ≈ ∆ + ∆ + ∆ + 
 

( )
2

2 3
0 02 2

1 6 6 ....
3!

d y uf x y y
dx h

− ′′= ≈ ∆ + ∆ +
  

And so on

In particular for 0x x=  i.e. for 0,u =  them

0

2 3
0 0 0

1 1 1 ...
2 3x x

dy
y y y

dx h=

   ≈ ∆ − ∆ + ∆ +     

0

2
2 3

0 02 2
1 ...

=

 
 ≈ ∆ − ∆ +    

 x x

d y
y y

dx h

The above formulae are applicable for numerical differentiation at a point x near the
beginning of the tabulated values.

5.3 Netwon’s Backward Differentiation Formula

Let ( )y f x=  denote a continuously differential function which takes the values

0 1 2 3, , , ,..... ny y y y y  for the equidistant values 0 1 2 3, , , ,.... nx x x x x  of the independent

variables x, then we have from Newton’s Forward Interpolation formula as

( ) ( ) ( ) ( )2 3
1 2 3

1 1 2
...

2! 3!n n n n
u u u u u

f x y u y y y− − −
+ + +

≈ + ∆ + ∆ + ∆ +

( ) ( ) ( )
0

1 2 ... 1
!

nu u u u n
y

n
+ + + −

+ ∆
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where ( ) 0, ,i i iy f x x x ih= = +  ( 0h >  is the step length, 0,1,2,..... )i n=  and

−= nx x
u

h
  so that  1·= =df df dfdu

dx du dx h du

( )
2

2 3
1 2 3

1 2 1 3 6 2 ....
2! 3!− − −

 + + +′∴ = ≈ ∆ + ∆ + ∆ + 
 

n n n
dy u u uf x y y y
dx h

( )
2

2 3
2 02 2

1 6 6 ...
3!n

d y uf x y y
dx h

−
+ ′′= ≈ ∆ + ∆ +

  

and so on

In particular for nx x=  i.e. for 0,u =  them

2 3
1 2 3

1 1 1 ....
2 3

n

n n n
x x

dy
y y y

dx h − − −
=

   ≈ ∆ + ∆ + ∆ +     

2
2 3

2 32 2
1 ...

n

n n
x x

d y
y y

dx h
− −

=

 
 ≈ ∆ − ∆ +    

 

The above formulae are applicable for numerical differentiation at a point x near
the end of the tabulated values.

5.4 Lagrange’s Differentiation Formula

Let ( )y f x=  denote a continuously differential function which takes the values

( ) ( ) ( )0 1, ,...., nf x f x f x  corresponding to (n+1) non-equidistant values

0 1 2 3, , , ,.... .nx x x x x  Since the (n+1) values of the function are given corresponding to

(n+1) values of the independent variable x, we can represent the function ( )y f x=    to

be a polynomial in  of degree . Then we have Lagrange’s Interpolation formula as

( ) ( ) ( ) ( )
( ) ( )0

n
i

n
i ii

f x
f x L x x

x x x=
≈ = ω

′− ω∑

where ( ) ( )( ) ( )0 1 ..... nx x x x x x xω = − − −
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Now

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )20 0
5.1

n ni i
n i i

i i i i

f x f x
f x L x x

x x x x x x
= =

′ ′ ′≈ = ω − ω
′− ω ′− ω

∑ ∑

For non tabular points we use the above formula but for the tabular points kx x=
equation (5.1) is indeterminate. Hence we proceed as

( ) ( ) ( )
( ) ( )0

n
i

n
i ii

f x
L x x

x x x=
= ω

′− ω∑

( ) ( )
( ) ( ) ( ) ( )

0

n
i

k k
i ii

i k

f x
x x f x

x x x=
≠

= ω + ω
′− ω∑

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )2
0 0

n n
i i

n k k
i ii i i i

i k

f x f x
L x x x f x x

x x x x x x= =
≠

′ ′ ′= ω + ω − ω
′− ω ′− ω

∑ ∑

( ) ( ) ( )
( ) ( ) ( ) ( )

0

n
i

n k k k k k
i ii

f x
L x x x f x

x x x=
′ ′ ′= ω + ω

′− ω∑

where

( ) ( )0 1

1 1 1 1....k k
k k k n k ii k

x
x x x x x x x x≠

′ω = + + + =− − − −∑

( ) ( ) ( )
( ) ( ) ( ) ( )0

1

= ≠
′ ′= ω +

′− ω −∑ ∑
n

i
n k k k

i i k ii i k

f x
L x x f x

x x x x x

Example 5.4.1 : Compute 
dy
dx

 and 
2

2
d y

dx
  for 1,x =  using following table

1 2 3 4 5 6

1 8 27 64 125 216

x

y

Solution: The difference table is
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2 3 4

1 1

7

2 8 12

19 6

3 27 18 0

37 6

4 64 24 0

61 6

5 125 30

91

6 216

x y y y y y∆ ∆ ∆ ∆

We have 0 1, 1, 1x h x= = =  so 0 0.
x x

u
h
−= =

0

2 3 4
0 0 0 0

1 1 1 1 ...
2 3 4x x

dy
y y y y

dx h=

   ≈ ∆ − ∆ + ∆ − ∆ +     

[ ]
1

1 1 17 12 6 0 ... 7 6 2 3
1 2 3=

   = − × + × − + = − + =     x

dy
dx

and

0

2
2 3 4

0 0 02 2
1 11 ...

12
=

   ≈ ∆ − ∆ + ∆ −      x x

d y
y y y

dx h

[ ]
2

2 2
1

1 12 16 6
1=

 
≈ − =  

 x

d y

dx

1
3

=

 ∴ = 
 x

dy
dx

 and 
2

2
1

6.
=

 
=  

 x

d y

dx
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Example 5.4.2 : Find the value of  for which  is minimum and find the minimum

value from the table:

x 0.60 0.65 0.70 0.75

y (x) 0.6221 0.6155 0.6138 0.6174

Solution: Taking 0.60 as origin, we have

( ) ( ) ( ) ( )2 3
0 0 0 0

1 1 2
2! 3!

u u u u u
y x y y y y y

− − −
= + ∆ + ∆ + ∆

We have the difference table as follows:

x y ∆y ∆2y ∆3y

0.60 0.6221

-0.0066

0.65 0.6155 0.0049

-0.0017 0

0.70 0.6138 0.0049

0.0032

0.75 0.6170

Putting the values, we have

( ) ( ) ( ) ( )1
0.6221 0.0066 0.0049

2!
u u

y x u
−

= + − +

where 0 0.60
0.05

x x xu
h
− −= =

Also

0,
dy
dx

=

i.e. ( )1 2 10.0066 0.0049 0
2

u
h

− − + =
  

1.8469u =

0 0.60 0.05 1.8469 .6923x x uh= + = + × =

( ) ( )( )min
0.6221 0.0066 1.8469 0.00245 1.8469 0.0049 0.6137426y∴ = + − × + =



NSOU l CC-MT-0586

5.5 Summary

In this unit numerical differentiation has been done by Using Newton’ Forward, backward,
Lagrange’s differentiation formulae. Using this maximum and minimum values are also
calculated.

5.6 Exercises

1. Find ( )93f ′  from the folloing table :

x 60 75 90 105 120

f(x) 28.2 38.2 43.2 40.9 37.7

Ans : -0.03627

2. Find the first and second order derivative of at 15x x= =  from the following

table:

x 15 17 19 21 23 25

y x= 3.873 4.123 4.359 4.583 4.796 5.000

Ans: 0.1289, -0.004

3. Find the minimum values of ( )f x  from the table:

x 0 2 4 6

f (x) 3 3 11 27

Ans: 2.25

4. Find the maximum values of  from the table:

x 1.2 1.3 1.4 1.5 1.6

f (x) 0.9320 0.9636 0.9855 0.9975 0.9996

Ans: 1.58

5. The population of a certain town is given below. Find the rate of growth of
the population in 1931, 1971

Year (x) 1931 1941 1951 1961 1971

Population on thousands(y) 40.62 60.80 79.95 103.56 132.65

Ans: 2.36425, 3.10525
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6.3 Trapezoidal Rule

6.4 Simpson’s Rule

6.5 Weddle’s Rule

6.6 Summary

6.7 Exercises

6.0 Objectives

After studying this unit one will be able to learn about

l the numerical integration of a function by using different rules and also the
corresponding error terms.

6.1 Introduction

The well-known method of evaluating a definite integral ( )b

a
f x dx∫  is to find an

indefinite integral or a primitive of ( ) ,f x i.e. a function ( )xϕ  such that ( ) ( )x f x′ϕ =

and then calculate the values of ( ) ( ),a bϕ ϕ  and take the value of the integral to be

( ) ( )b aϕ − ϕ  But if the function ( )f x  is such that its indefinite integral cannot be

obtained in terms of known functions, as is very often the case, then the above
method fails. In such cases we may try to compute an approximate numerical value
of the definite integral up to a desired degree of accuracy. This is the problem of
numerical integration which is also called mechanical quadrature.
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Again, if the integrand ( )f x  is not known in its analytic form but is represented by

table of values, then the formal method becomes meaningless, and we are turned to
numerical integration.

Closed and open type quadrature formula: A mechanical quadrature formula is
called closed or open type according as the limits of integration are used as interpolating
points or not.

Degree of Precision: A mechanical quadrature formula is said have a degree of
precision k, (k being a positive integer), if it is exact, i.e. the error is zero for an

arbitrary polynomial of degree  ,k n≤  but there exist a polynomial of degree 1k +
for which it is not exact, i.e., the error is not zero.

Composite rule: Sometimes it is more convenient to break up the interval of

integration [ ],a b  into m sub-intervals ( )1, 1,2,3,....j ja a j m−  =   by the points

0 1 2, , ,...., ma a a a  such that   0 1 2... ,ma a a a a b= < < < =  apply a given quadrature

formula separately to each interval 1,j ja a−    and add the result. The formula thus

obtained will be called composite rule corresponding to given quadrature formula.

6.2 Newton-Cotes Formula (closed type)

Let the integral to be evaluated be ( ) ( ) .
b

a
I f f x dx= ∫  The interval [ ],a b  is sub-

divided into n equal subinterval, each of length . The nodes are 0 1 2, , ,...., .nx x x x

such that ( )0 0, , , 0,1,2,3,...., .n i
b ax a x b x x ih h i n

n
−= = = + = =

The corresponding entries ( ) , 0,1,2,.....if x i n=  are also available. Let us use

Lagrange’s interpolation formula to approximate ( )f x  by the interpolating polynomial

( )ny x

( ) ( ) ( ) ( )
( ) ( )0

n
i

n
i ii

f x
f x y x x

x x x=
≈ = ω

′− ω∑

where ( ) ( )( ) ( )0 1 .... .nx x x x x x xω = − − −
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Integrating the interpolating polynomial ( )ny x  we have the approximate value of the

given interval as

( ) ( ) ( )
( ) ( ) ( )

0 0

n nb i n
n i ia i ii i

f x
I f x dx H f x

x x x= =
= ω =

′− ω∑ ∑∫  (6.2.1)

where

( )
( ) ( )

bn
i a i i

x
H dx

x x x

ω
=

′− ω∫  ( )0,1,2,.....i n= (6.2.2)

Setting 0 ,
x x

u
h
−=  so that , dx h du= (6.2.3)

So  ( ) ( ) ( ) ( )1 1 2 ...nx h u u u u n+ω = − − − (6.2.4)

Again,

( ) ( )( ) ( )( ) ( )0 1 1 1... ....i i i i i i i i nx x x x x x x x x x x− +′ω = − − − − −

( ){ } ( )( ) ( ) ( ){ }1 .... 1 1 2 ....ih i h h h h n i h= − − − − −

( )( ){ } ( ) ( )1 2 ...1 1 !n ii n ii i i h h n i
− −= − − − −

( ) ( )1 ! !n i nh i n i
−= − − (6.2.5)

Now using (6.2.3), (6.2.4), (6.2.5) in (6.2.2) we have

( )( ) ( )
( ) ( ){ }

1

0

1 2 ...

1 !( 1)!

+

−
− − −

=
− − −∫
n

nn
i n i n

h u u u u n
H h du

h i n u i h

( ) ( )
( )

( )( ) ( )
( ) ( )

0

1 1 2 ....
0,1,2,.....,

. ! !

n i
nb a u u u u n

du i n
n i n i u i

−− − − − −
= =

− −∫

( ) ;n n
i iH b a K∴ = −

where  
( )

( )
( )( ) ( )

( ) ( )
0

1 1 2 ...
0,1,2,.....,

. ! !

n i
nn

i
u u u u n

K i n
n i n i u i

−− − − −
= =

− −∫ (6.2.6)



NSOU l CC-MT-0590

Thus we have ( ) ( ) ( ) ( )0 0
n nn n

i i i ii i
I f H f x b a K f x= =≈ = −∑ ∑ (6.2.7)

Where n
iK  is given in equation (6.2.6). This is called the ( )1n+  – points Newton-

Cotes Numerical Integration formula of the closed type.

6.3 Trapezoidal Rule

For 1,n =  we have from Newton-Cotes Formula

( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 0 1 10=

 = ≈ − = − +
 ∑ n

T i ii
I f I b a K f x b a K f x K f x

where 
( )

( ) ( )
1 0

11
0 0

1 11
21.0! 1 0 !

K u du
−−

= − =
− ∫

and 
( )

( )
1 1

11
1 0

1 1
21.1! 1 1 !

K udu
−−

= =
− ∫

( ) ( ) ( ) ( )0 12
−

 = ≈ + T
b a

I f I f x f x

Error in Trapezoidal rule is  ( ) ( ) ( ) ( )
33

12 12T
b ahE f f a b

−
′′ ′′= − ξ = − ξ < ξ <

Geometrically, the curve ( )y f x=  is replaced by the straight line passing through

the point ( )( ),a f a  and ( )( ), ,b f b   and the integral ( )b

a
f x dx∫  is approximated by

the area of the trapezium bounded by the straight line, the ordinates at ,x a b=  and

the name trapezoidal rule.

The degree of precision is 1

Composite trapezoidal rule: Suppose the interval [ ],a b  is sub-divided into 

equal subinterval, each of length h. The nodes are 0 1 2, , ,......, ,nx x x x  such that

0 , ,nx a x b= = ( )0 , 0,1,2,3,...., .i
b ax x ih h i n

n
−= + = =  then applying the above
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Trapezoidal rule to each subintervals [ ]( )1, ,1,2,3,....,− =i ix x i n  and summing over i we

can obtain the composite Trapezoidal rule given as

( ) ( ) ( ) ( )1 2

0 1 1

....
−

= + + +∫ ∫ ∫
n

n

x x x

x x x
I f f x dx f x dx f x dx

( ) ( ) ( ) ( )1 2

0 1 1

.... n

n

x x x

x x x
I f f x dx f x dx f x dx

−
= + + +∫ ∫ ∫

( ) ( ) ( ) ( )
3

0 1 1
1 1....

2 2 2 12
n

n i
h hf x f x f x f=
  ′′= + + + − ξ
   ∑

( by using Intermediate-value theorem)

6.4 Simpson’s Rule

For 2,n =  we have from Newton-Cotes Formula

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
0 0 1 1 2 20=

 = ≈ − = − + + ∑ n
s i ii

I f I b a K f x b a K f x K f x K f x

where 
( )

( ) ( )
2 0

22
0 0

1 12
62.0! 2 0 !

K u u du
−−

= − =
− ∫

( )
( ) ( )

2 1
12

1 0

1 22
32.1! 2 1 !

K u u du
−−

= − =
− ∫

( ) ( )12
2 0

2 11
62.2! 2 2 !

K u u du= − =
− ∫

( ) ( ) ( ) ( ) ( )0 1 24
6s

b a
I f I f x f x f x

−
 = ≈ + + 

Error in Trapezoidal rule is ( ) ( ) ( )( )
55

90 2880
iv

s
b ahE f f a b

−
′′= − ξ = − ξ < ξ <

The degree of precision is 3

Composite Simpson’1/3rd rule: Suppose the interval [ ],a b  is sub-divided into
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( )2n m=  of equal subinterval, each of length h. The nodes are 0 1 2, , ,...., ,nx x x x  such

that 0 ,x a= ,nx b= 0 ,x ih+ b ah
n
−= ( )0,1,2,3,...., .i n=  This divides the range of

integration [ ],a b   into / 2m n=  subrange then applying the above Simpson’s rule to

each subintervals [ ] [ ] [ ]0 2 2 4 2, , , ,.... ,n nx x x x x x−  and applying Simpson’s rule to the

subrange 2 2 2,j jx x−  

( ) ( ) ( ) ( ) ( )2

2 2

5

2 2 2 1 24
3 90

j

j

x iv
j j j jx

h hf x dx f x f x f x f
−

− − = + + − ξ ∫

( ( )2 2 2 ; 1,2,...,j j jx x j m− < ξ < =

Summing over all the sub-ranges, we have

( ) ( )2

2 21

j

j

m x

x
j

I f f x dx
−=

=∑∫

( ) ( ) ( ) ( )5

2 2 2 1 2
1 1

4
3 90

m m
iv

j j j j
j j

h hf x f x f x f− −
= =

 = + + − ξ ∑ ∑

 c c
s sI E= +

( ) ( ) ( ) ( ) ( ){ }0 1 3 14 ...
3

c
s n n

hI f x f x f x f x f x − = + + + + + 

( ) ( ) ( ){ }2 4 22 ... ]nf x f x f x −+ + + +

( )( )
5

90
c iv
s

nhE f a b= − ξ < ξ <

( by using Intermediate-value theorem)

For 1,n =  2, 3, 4, 5, 6 the calculated values of  niK  are given in table 6.4.1
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Table for n
iK

i 0 1 2 3 4 5 6

n

1 1
2

1
2

2 1
6

4
6

1
6

3 1
8

3
8

3
8

1
8

4 7
90

32
90

12
90

32
90

7
90

5 19
288

75
288

50
288

50
288

75
288

19
288

6 41
840

216
840

27
840

272
840

27
840

41
840

Table: 6.4.1 Newton-Cotes quadrature coefficients (closed type)

6.5 Weddle’s Rule

The seven-point Newton-Cotes closed type formula with error is

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 441 216 27 272 27
140

b

a
hI f f x dx f x f x f x f x f x= = + + + + +∫

( ) ( ) ( )( )
9

5 6
9216 41 ;
140 6

viiih b af x f x f a b h −+ − ξ < ξ < =  (6.5.1)

The coefficient of the ordinate s are extremely cumbrous which makes the formula
unworthy of practical computation. Accordingly, we seek to modify the above formula
so that the coefficients are simplified by proceeding as follows. We  know

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6
0 0 1 2 3 4 5 66 15 20 15 6f x f x f x f x f x f x f x f x∆ = − + − + − +

(6.5.2)

(6.5.1) + 
140
h+ ×  (6.5.2) gives on writing ( ) ( )( )6 6

0
vif x h f a b′ ′∆ = ξ < ξ <



NSOU l CC-MT-0594

( )b
W Wa

f x dx I E= +∫
Where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6
3 5 6 5
10

b
W a

hI f x dx f x f x f x f x f x f x f x = = + + + + + + ∫
(6.5.3)

and

( ) ( )( )
7 99 ,

140 140
vi viii

W
h hE f f a b′ ′= − ξ − ξ < ξ ξ <   (6.5.4)

This is called Weddle’s rule inwhich the coefficients of the ordinaltes are fairly simple.

Composite Weddle’s rule: Suppose the interval [ ],a b  is sub-divided into ( )6n m=

of equal subinterval, each of length h. The nodes are 0 1 2, , ,..., ,nx x x x  such that

0 , ,nx a x b= =  0 ,ix x ih= +  ( )0,1,2,3,...., .b ah i n
n
−= =  This divides the range of

integration [ ],a b   into / 6m n=  subrange then applying the above Weddle’s rule to

each subintervals [ ] [ ] [ ]0 6 6 12 6, , , ,.... ,n nx x x x x x−  and applying Weddle’s rule to the

subrange 2 6 6,j jx x−    and summing over 1,2,3,...., ,j m=  we get

( ) ( )6

6 61

j

j

m x

x
j

I f f x dx
−=

=∑∫

( ) ( ) ( ) ( ) ( ) ( )6 6 6 5 6 4 6 3 6 2 6 1`1
3 5 6 5
10

m
j j j j j jj

h f x f x f x f x f x f x− − − − − −=
= + + + + + +∑

( ) ( ) ( )7 9

6 1 1
9

140 1400
m mviii vi

j j jj j
h hf x f f= =

′ − ξ − ξ ∑ ∑

( )6 6 6, , 1,2,...,j j j jx x j m− ′< ξ ξ < =

( )b c c
w wa

f x dx I E= +∫
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where ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 5 7 5 1
3 5 ...
10 − −= + + + + + +

c
w n n n

hI f x f x f x f x f x f x f x

( ) ( ) ( ){ }2 4 22 .... nf x f x f x −+ + + +

( ) ( ) ( ){ }3 9 36 .... nf x f x f x −+ + + + (6.5.5)

( ) ( ) ( ){ } ( )6 12 62 .... 12− + + + + ≥nf x f x f x n

( ) ( )7 9

1
1

9
840 8400

∈
=

=
′= − ξ − ξ∑ ∑

m
mviii vi

W j jj
j

nh nhE f f   ( ), ′< ξ ξ <a b  (6.5.6)

Example 6.5.1 :  Evaluate 
6

0
1

1
I dx

x
= +∫  using (i) Trapezoidal rule, (ii) Simpson’s

1/3rd rule, (iii) Weddle’s rule. Also check by direct integration.

Solution: Here, we have ( ) 1 ,0 6.
1

y f x x
x

= = ≤ ≤+

Divide the interval into six parts. So 6 0 1
6

h −= =

Therefore, the values of 1
1

y
x

= +  are:

x 0 1 2 3 4 5 6

y = f (x) 1 0.5 1/3 1/4 1/5 1/6 1/7

(i) By Trapezoidal rule:

( ) ( )6
0 6 1 2 3 4 50

1 2
1 2

hdx y y y y y y y
x

 = + + + + + + +∫

( ) ( )1 1 1 1 1 11 2 0.5
2 7 3 4 5 6
 = + + + + + +
  

= 2.021429

(ii) By Simpson’s 1/3rd rule:

( ) ( ) ( )6
0 6 1 3 5 2 40

1 4 2
1 3

hdx y y y y y y y
x

 = + + + + + + +∫
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( ) ( ) ( )1 1 1 1 1 1 11 4 2
3 7 2 4 6 3 5
 = + + + + + +
  

= 1.9538730

(iii) By Weddle’s rule

( ) ( )6
0 6 1 2 4 5 30

1 3 3 2
1 10

hdx y y y y y y y
x

 = + + + + + + +∫

( ) ( ) ( )3 1 1 1 1 1 11 3 2
8 7 2 3 5 6 4
 = + + + + + +
  

= 1.952857

By actual integration,

( )6 6

00
1 log 1

1
dx x

x
= +  +∫

log 7 log1= −

1.945910=

Example 6.5.2 : The velocity  of a particle at distance  from a point on its path is

given in the table below:

0 10 20 30 40 50 60

/ sec 47 58 64 65 61 52 38

s in meter

v in m

Estimate the time to travel 60 meters by using Simpson’s 1/3rd rule.

Solution: Here, we have 10.h =

We know the .dsv
dt

=  Hence, dsdt
v

=

To find the time taken to travel 60 metres we have to evaluate
60 60

0 0
=∫ ∫

dsdt
v

Let 1,y
v

=  then the table values of y for different values of s are given below

0 10 20 30 40 50 60

1 0.0213 0.0172 0.0156 0.0156 0.0164 0.0192 0.0263=

s

y
v
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By Simpson’s 1/3d rule,

( ) ( ) ( )60
0 6 1 3 5 2 40

4 2
3
hyds y y y y y y y = + + + + + + ∫

( ) ( ) ( )10 0.0213 0.0263 4 0.0172 0.0154 0.0192 2 0.0156 0.0164
3

= + + + + + +  

1.0627=

 Time taken to travel 60 meters is 1.0627 seconds.

6.6 Summary

In this unit the numerical integration by using Newton-Cotes formula(closed type),
Trapezoidal rule, Simpson’s1/3rd rule and Weddle’s rule have been discussed and also
the corresponding error terms are also studied.

6.7 Exercises

1. Define the degree of precision of mechanical quadrature formula. Show that the
d.p. of trapezoidal is 1.

2.  Deduce the trapezoidal, Simpson’s 1/3rd and Weddle’s rules (without error) by
integrating Newton’s forward interpolation formula.

3.  Evaluate 
5

0
1

4 5
dx

x+∫  by Trapezoidal rule using 11 coordinate.

Ans: 0.4055

4. find the value of  
2

0
cosx dx

π
∫  by (i) Trapezoidal rule and (ii) Simpson’s one-

third rule taking n = 6. Ans: (i) 1.170 (ii) 1.187)

5. When a train is moving at 30m/sec steam is shut off and brakes are applied. The
speed of the train per second after t seconds is given by

( )
( )

0 5 10 15 20 25 30 35 40

30 24 19.5 16 13.6 11.7 10.0 8.5 7.0

time t

speed v

Using Simpson’s rule, determine the distance moved by the train in 40 sec.

(Ans: 606.66 m.)
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7.0 Objectives

After going through this unit one will be able to learn

l the concept of programming languages, interpreter, compiler, source and object
program.

7.1 Introduction

We have seen that the hardware or physical parts that form a computer serve no
purpose by themselves. To make a computer work, we must learn how to give
instruction to it in a language that the computer will understand.

7.2 Concept of Programming Language

In a natural language we speaks in, we use words to convey ideas and even
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emotions, feeling and sensations. A computer language is used to communicate with a
machine which can react to only simple and very clear instructions conveyed through
precise notations or words. The notations and words which can be used to give

instructions to a computer and the rules which the instructions must obey form a
computer language.

The first set of computer language that developed were based upon the internal structure
of the computer. These languages were referred to as codes or low level languages.
Machine code and assembly code which used binary or mnemonic symbols were first set
of languages that were developed for computers.

7.3 Machine Language

A computer works on electricity and this enables it to receive and store information only
in the form of electric pulses. If a pulse is present it codes it as 1 and if it is not present
it codes it as 0. The computer’s own language is, therefore, made up of the binary numbers
0 and 1 and is written in the form of a numeric code. This language is called machine
language or code and is a part of a computer’s electronic circuitry. When computers were
first made, machine language was the only language.

The utility of a machine language is that since it is written in the machine code itself, the
computer processes it quickly. On the other hand, the number of people who can without
difficulty a series of instruction using zeroes and ones must indeed be very few. It requires
long term expertise to do this. Coding and decoding are tedious processes and prone to
errors. Further, machine languages vary with the make of each computer and one may need
to learn a new machine language each time one works on a different make of machines.

7.4 Assembly Language

In the beginning, machine language was the only language. Then assembly language

was developed. In an assembly language, ‘mnemonics’ (or alphanumeric codes) were
used to substitute the binary machine coded to machine language. These ‘mnemonics’
were memory aids which helped the mind to relate things more easily. For example,
mnemonics ‘DIV’ could be used to describe the operation ‘divide’.

Assembly language made it easier for the user to write his instructions. But the
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‘mnemonics’ had to be translated to the computer into its binary pattern before the machine
could do the job. The translation was done by a special pre-stored set of instructions called
an assembler. The assembler was supplied by the computer manufacturer and usually
embedded in ROM chips.

The advantages of an assembly language are that it helps in reducing errors and the time
involved in writing instructions. The drawbacks are that it requires the user to have a fair
knowledge of hardware and being machine dependent, the instructions for one machine
cannot be executed on another.

7.5 High Level Language

In the initial phase of development, the use of computers was largely confined to a small
group of scientists and computer specialists. With improvements in technology and fall in
prices, there arose a need for languages that would permit even a non-expert to communicate
with a computer. This led to the development of high level languages which enable a large
number of people to use computer without having to know in detail its internal structure.
These languages are user-centred and not machine-centred like the machine and assembly
codes. A program written in high-level language can be run on different computers without
any or much modifications.

Instructions in high level languages are given using certain words from a natural language,
such as English, an a few notations. Each word or notation in these languages have one
precise meaning and we must adhere to the syntax or the set of grammar, punctuation and
spelling rules for the language. Today, virtually all work is undertaken by writing instructions
in one of the high level languages.

The first high-level programming were designed in 1950s. Ada, Algo, LOGO,
PILOT,BASIC, COBOL, C/C++,FORTRAN, Java, R,  python etc. are popular
examples of high-level languages.

The computer does not directly understand a high level language. A translation is
undertaken by specially prepared software called language processors or translators.
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7.6 Interpreter

An interpreters translates one instruction at a time and gets it immediately executed.
Each instruction is checked for errors and corrections are made when necessary.
Interpreters do not involves much storage space but they require more time to execute.
Basic, R, Python are Interpreter based language

7.7 Compiler, Source program and object program

Compilers

Compilers take all the instructions together and then compile them into the
corresponding machine code. The user written program (referred to as the source

Basis for
comparison

input

Output

orking mechanism

Speed

Memory

Errors

Error detection

Pertaining

Programming

languages

Compiler

It takes an entire program
at a time.

It generates intermediate

object code.

The compilation is done
before execution.

Comparatively faster

Memory requirement is
more due to the creation
of object code.

Display all errors after
compilation, all at the
same time.

Diffucult

C, C++, C#, Scala,
typescript uses compiler.

interpr eter

It takes a single line of code or
instruction at a time.

It does not produce any intermediate
object code.

Compliation and execution take
place simultaneously.

Slower

It requires less memory as it does
not create intermediate object code.

Displays error of each line one by
one.

Easier comparatively

PHP, Perl, Python, Ruby uses an

interpreter.
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program) is fed into the computer. The compiler translates the source program and
produces a complete program in machine language known as the object program
which is loaded into main memory for execution.

Some basic comparison between Compiler and Interpreter is given in the form of
the table given belos :

7.8 Conclusion

Compiler and interpreter both are intended to do the same work but differ in
operating procedure, Compiler takes source code in an aggregated way whereas
Interpreter takes constituent parts of source code, i.e., statement by statement.

Although both compiler and interpreter have certain advantages and disadvantages
like Interpreted languages are considered as cross-platform, i.e., the code is portable.
It also doesn’t need to compile instruction previously unlike compiler which is time-
saving. Compiled languages are faster regarding compilation process.

7.9 Summary

In this unit the concept of programming language like machine language, assembly
language, High level language is discussed. Also the difference between interpreter
and compiler as well as the source and object program also discussed

7.10 Exercise

1) What do you understand by Machine language?

2) How the machine language differ from the assembly language?

3) Define the object and source program.

4) Write the difference between Interpreter and compiler.
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Unit 8 rrrrr  Number System

Structur e

8.0 Objectives

8.1 Intr oduction

8.2 Decimal Number System

8.3 Binary Number System

8.4 Octal Number System

8.5 Hexadecimal

8.6 Conversion

8.7 Summary

8.8 Exercise

8.0 Objectives

After going through this unit one will be able to learn

l different types of number systems and their conversion from one system to
another system.

8.1 Introduction

We have heard of number systems like the whole numbers, the real numbers etc. But
in the context of computer awareness, we define other types of number systems like the
binary number system, the decimal system, the hexadecimal system and others. We will
discuss the binary number system and others and how we can convert from one number
system to the other.

The value of any digit in a number can be determined by

-The digit

-Its position in the number

-The base of the number system
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Let r be the base of a number system. Then to represent any given integer number, say
D, symbolically in this system, we use r number of different characters, namely

( ) ( )0 1 2 ... 2 1r r< < < < − < −  and represent D uniquely as

( )1 2 3 2 1 0....n n n nD d d d d d d d− − −= ± (8.1)

According as the number is positive or negative, where n is a positive integer and

each d
i
 ranges from ( )0 1 ,to r − such that 0,nd ≠ ( ) ( )0 1 , 0,1,2,... 1id r i n≤ ≤ − = −

The magnitude of the number will be given by

( ) ( ) ( ) ( ) ( )1 2 1 0
1 2 1 0. . ... . . .n n

n nD d r d r d r d r d r
−

−= + + + + +

8.2 Decimal Number System

The most commonly used number system is Decimal Number System with base
10. In this system, the ten basic characters that are used to represent number are 0,
1, 2, 3, 4, 5, 6, 7, 8 and 9. Thus in decimal number system the (n+1) digit number
D represented by (8.1) has the magnitude

( ) ( ) ( ) ( ) ( )1 2 1 0
1 2 1 0. 10 . 10 .... . 10 . 10 . 10n n

n nd d d d d
−

−+ + + + +

For example, the decimal number represented by the symbol 4356 has the magnitude

( ) ( ) ( ) ( )3 2 1 04356 4. 10 3. 10 5. 10 6. 10= + + +

For a fractional number whose magnitude is less than 1, the symbolic representation
starts with dot (.), called the decimal point, and the powers of the base will be
negative from -1. For example,

1 283 .83 8 10 3 10
100

− −= = × + ×

Thus 2 1 0 1 2607.03 6 10 0 10 7 10 0 10 3 10− −= × + × + × + × + ×

Exercise 8.2.1 :  Write i) 22, 5
7

  in decimal number system.

8.3 Binary Number System

In binary number system, the base is 2 and the symbols used for representing a
number are 0 and 1. Thus the number 110101 in binary system is equivalent to
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5 4 3 2 1 01 2 1 2 0 2 1 2 0 2 1 2× + × + × + × + × + ×
= 32+16+0+4+0+1 = 53 in decimal system.

Using the respective radix as subscript, we write this result as:

( ) ( )2 10
110101 53 .=

Just like decimal point, we also have binary point as:

( ) 3 2 1 0 1 2 3
2

1101.011 1 2 1 2 0 2 1 2 0 2 1 2 1 2− − −= × + × + × + × + × + × + ×

= 8+4+0+1+0+.25+.125 ( )10
13.375=

Binary numbers play a vital role in the design of digital computers.

Exercise 8.3.1 : Write ( )2
.1011  to decimal number system.

8.4 Octal Number System

Here the base is 8 and eight different symbols are 0, 1, 2, 3, 4, 5, 6 and 7. Thus

a number ( )87032  in octal system is equivalent to

3 2 1 07 8 0 8 3 8 2 8× + × + × + ×

= 3584 + 24 + 2 ( )10
3610=

Again

( ) 1 0 1 2
8

71.34 7 8 1 8 3 8 4 8− −= × + × + × + ×

= 56 + 1+ 0.375 = 0.0625 ( )10
57.4375=

8.5 Hexadecimal Number System

The base is 16 and the required symbols to represent a number in this system are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The symbols A, B, C, D, E and F
represent the decimal number 10, 11, 12, 13, 14 and 15 respectively. The number

( ) 3 2 1 0
16

BC6A 11 16 12 16 6 16 10 16= × + × + × + ×

= 45056 + 3072 + 96 + 10 ( )10
48234=
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The symbol 0 and 1 are generally called BIT – the bit at the extreme left having the highest
positional value is the Most Significant Bit (MSB) while the bit occupying the extreme right
position having least positional value is called the Least Significant Bit (LSB)

8.6 Conversion

Conversion of binary to decimal: The decimal equivalent of a binary number is
obtained by expanding it according to the place-value of each bit.

Exercise : Obtain the decimal equivalent of the following numbers:
i) 11011
ii) 10010

iii) 0.01101 Ans: i) ( )10
27 , ii) ( )10

28 , iii) ( )10
0.40625 .

Conversion from decimal to binary:  There are several methods of converting
a decimal number to its binary equivalent. The most commonly used methods are (i)
Expansion Method and (ii) Division and Multiplication Method.

Expansion Method: The given decimal number is first expressed as summation
terms each of which is a power (positive integral and negative integral) of 2.

Example 8.6.1 : Convert the decimal numbers (i) 47 (ii) 195 (iii) 88.5625 to their

binary equivalents:
Solution: (i) (47)

10
 = 32 + 15 = 32 + 8 + 7 = 32 + 8 + 4 + 3

= 32 + 8 + 4 + 2 + 1
5 3 2 1 02 2 2 2 2= + + + +

5 4 3 2 1 01 2 0 2 1 2 1 2 1 2 1 2= × + × + × + × + × + ×

( )2
101111=

(ii) (195)
10

 = 128 + 64 + 2 + 1

7 6 1 02 2 2 2= + + +
6 5 4 3 2 11 2 0 2 1 2 1 2 0 2 0 2= × + × + × + × + × + ×  1 01 2 1 2+ × + ×

( )2
11000011=

(iii) ( )10
88.5625   = 64 + 16 + 8 + 0.5 + 0.0625

          6 4 3 1 42 2 2 2 2− −= + + + +
6 5 4 3 2 11 2 0 2 1 2 1 2 0 2 0 2= × + × + × + × + × + ×
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0 1 2 3 40 2 1 2 0 2 0 2 1 2− − − −+ × + × + × + × + ×

= ( )2
1011000.1001=

Division and Multiplication Method : The above method is laborious and not

suitable for large numbers. We may however use the division and multiplication
method which is described as follows:

The decimal number has both an integral and fractional part, then we first convert
the integral part to its binary equivalent by the division method. The fractional part
must next be converted by multiplication process and the two results should be
linked up after that.

For decimal integral: The given decimal integer is repeatedly divided by the base
2 of the binary number system. The remainder (which is either 0 or 1) is noted in
each division. The process continues till the quotient is zero. The first remainder is
the least significant bit and the last one is the most significant bit. Thus the binary
equivalent is obtained by writing down the remainder in the reversed order, i.e. from
bottom to upward.

Example 8.6.2 : Convert ( )10
47  to binary equivalent.

Solution:

2 47

2 23 1 ← LSB

2 11 1

2 05 1

2 02 1

2 01 0 ↑
00 1 ← MSB

Thus ( ) ( )10 2
47 101111=

For decimal fraction: The given decimal fraction is multiplied by 2, the fractional
part is again multiplied by 2 and the process is repeated till the fraction part of the
product is zero. The integral part obtained each time, which can be either 0 or 1, is
taken in top to bottom order and arranged from left to right to provide the binary
equivalent to the decimal number.
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Example 8.6.3 : Convert the following decimal fractions to its binary equivalent  ( )10
.37

Solution :  The result of repeated multiplication is shown below

Multiplication Integral Part Fractional Part Binary Position

0.375 × 2 = 0.75 0 ↓ 0.75 0 × 2–1

0.75 × 2 = 1.50 1 0.50 1 × 2–2

0.5 × 2 = 1.00 1 0.00 1 × 2–3

Thus the equivalent binary fraction is ( ) ( )10 2
.375 .011=

Exercise 8.6.4 : Convert the decimal fractions to its binary equivalent ( )10
.435

Example 8.6.5 : Convert ( )10
47.375  to binary equivalent.

Solution:  As we have already done the binary equivalent of the integral part

( ) ( )10 2
47 101111=

and the decimal fraction to binary is ( ) ( )10 2
.375 .011=

Linking the two results, we have ( ) ( ) ( ) ( )1010 2 2
47 .375 101111 .011+ = +

Or,   ( ) ( )10 2
47.375 101111.011=

Conversion of decimal number to octal:  The conversion method follows similar rules
as in the case of binary number system. Here we divide the number by the base 8 instead
of 2. It will clear in the following example

Example 8.6.6 : i) Convert ( )10
347  to octal equivalent.

Solution:

8 347

8 43 3 ← LSB

8 05 3 ↑
8 00 5 ← MSB

Therefore ( ) ( )10 8
347 533=

ii) Convert ( )10
0.30  to octal equivalent.
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Solution:

Multiplication Integral Part Fractional Part Binary Position

0.30 × 8 = 2.40 2 ↓ .40 2 × 8–1

0.40 × 8 = 3.20 3 .20 3 × 8–2

0.20 × 8 = 1.60 1 .60 1 × 8–3

0.60 × 8 = 4.80 4 .80 4 × 8–4

0.80 × 8 = 6.40 6 .40 6 × 8–5

0.40 × 8 = 3.20 3 .20 3 × 8–6

(Recurring Starts)

Hence  ( ) ( )10 8
0.30 .23146=

Conversion of binary number to octal: The base of the octal system is 8 or (2x2x2).
Thus the octal base 8 is a power of the base 2 in the binary system.

A binary number is converted to its octal equivalent by grouping of three successive bits
starting from the least significant bit or the right-most digit.

Example 8.6.7 :  Convert ( )2
10101111011   to octal.

Solution: Three successive bits of the binary string are grouped from the right.

Binary: 010 101 111 011

Octal equivalent: 2  5  7  3

Hence ( )2
10101111011  ( )82573=

Note: A non-significant ‘0’ has been added in the left-most group to make it a string
of 3 bits. This is only for convenience of grouping.

Conversion of octal number to binary: The octal equivalent of binary number may
be found through the same process of referring to the conversion table and arranging the
bits in order.

Example 8.6.8 : Convert ( )8412  to binary

Solution: We have:

4 1 2 (in Octal)

  = 100 001 010 (in Binary)
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Arranging in order, we get

( ) ( )8 2
412 100001010=

Exercise: Convert (i) ( )2
1110101110

(ii)  ( )2
10.11

(iii)  ( )2
1011.1011011  to their octal equivalent.

Ans: (i) ( )81656 , (ii)   ( )82.6 , (iii)  ( )813.554

Conversion from decimal system to hexadecimal system:

The procedure for conversion from decimal to hexadecimal is same as that of octal.
Here in this case repeated divisions is by 16.

Example 8.6.9 :  Convert (116)
10

 to hexadecimal.

Solution:

16 116

16 7 4

16 0 7

Hence ( ) ( )10 16
116 74=

Conversion method from binary to system to hexadecimal system is similar to octal but
here instead of grouping by 3-bits, we arrange the binary string in groups of 4-bits

Example 8.6.10 : Convert ( )2
111001  to hexadecimal.

Solution: ( ) ( ) ( )2 2 16
: 111001 00111001 39= =

Example 8.6.11 : Convert i) ( )16
748A  and (ii) ( )2 16

. 4BA C  to binary number system.

Solution: i)  ( ) ( )16 2
748 1010011101001000A =

(ii) ( ) ( )16 2
2. 4 101110100010.11000100BA C =

↑↑↑↑↑
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8.7 Summary

In this unit, the detailed study of Number system like decimal, binary, octal, hexadecimal
and their conversion from one system to other have been studied with proper examples.

8.8 Exercises

1. What do you understand by binary number system?  How it is differ from decimal
number system?

2. Convert the following decimal numbers into its binary equivalents:

a) ( )10
131 b) ( )10

395 c) ( )10
423.25

Ans : (a) ( )2
10000011  (b) ( )10

395  (c) ( )10
423.25

3. Convert the following binary numbers to its decimal equivalent:

(a) ( )2
11001 , (b) ( )2

11.01 , (c) ( )2
10.011

Ans : (a) ( )10
25  (b) ( )10

3.25 , (c) ( )10
2.375

4. Convert the following decimal numbers into its octal and hexadecimal equivalents:

(a) ( )10
231  (b) ( )10

153

Ans : (a) ( )8347  ( )16
7 ,E  (b) ( )8231 , ( )16

99 .

5. Convert the following octal numbers into its binary equivalents:

(a) ( )8346  (b)  ( )8135

Ans : (a) ( )2
1100110  (b) ( )2

1011101 .

6. Convert the following hexadecimal numbers into its binary equivalents:

(a) ( )16
4 5B  (b) ( )16

3A BF

Ans : (a) ( )2
10010110110  (b) ( )2

1010001110111111 .
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