PREFACE

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,”
the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations
for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and
Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based
credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this
entire exercise shall leverage the potential of higher education in three-fold ways — learner’s personal
enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively
therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of
an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in
upholding the qualitative parameters. It is time to acknowledge that the implementation of the National
Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of
Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities
in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among
Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas
Open University is committed to both quantity and quality in its mission to spread higher education. It
was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate
syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the
CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are
relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge
Systems.

Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open
University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s.
From our mandate of offering quality higher education in the mother tongue, and from the logistic
viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English.
All our faculty members are constantly engaged in this academic exercise that combines subject specific
academic research with educational pedagogy. We are privileged in that the expertise of academics across
institutions on a national level also comes together to augment our own faculty strength in developing
these learning materials. We look forward to proactive feedback from all stakeholders whose participatory
zeal in the teaching-learning process based on these study materials will enable us to only get better. On
the whole it has been a very challenging task, and | congratulate everyone in the preparation of these
SLM’s.

I wish the venture all success.

Professor Indrajit Lahiri
Vice Chancellor
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1.0 Objective

The objective of this unit is to discuss on basics of ordinary differential equations and
their solutions.

1.1 Differential Equation—Genesis, Order and Degree

Differential equations have wide level of applications in various aspects of science and
engineering. Many of the principles or laws underlying the behaviour of the natural world
are statements of relatios of rates by which things really happen. When expressed in
mathematical terms the relations are equations and rates are derivatives. The mathematical
statements of facts describing a real world problem is said to be mathematical models.
Differential equations play a significant role in framing of mathematical models. During
the last part of 17 century eminent scientists like Issac Newton, Gottfried Leibniz,
Jaeques Bernoulli, Jean Bernoulli and Christian Huygens were engaged in solving
differential equations. Many of the techniques which they built up are still in use today
During the 18 century the mathematicians like Leonhard Eainel Bernoulli, Joseph
Legrange and others added significantly to tthe enrichment of the subject. The doyens who
pioneered tot he development of ordinary differential equations as a branch of modern
mathematics are Caughigiemann, Picard, Poincareydpunoy and Birkhdf
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To understand and to investigate problems involving the motion of fluids, the flow
of current in electric circuits, the dissipation of heat in solid objects, the propagation and
detection of heat waves or the increase or decrease of population, among many others,
it is necessary to know the basics and working theories of differential equations. While
applying differential equations to any of the numerous fields in which they are useful, it
is necessary first to formulate the appropriate differential equation that describes or
models the problem being investigated.

1.2 Formal Defintion

An equation involving derivatives or differentials of one or more dependent variable
(s) with respect to one or more independent variable (s) is called a differential equation.

For example,

ij=5x+3
dx

a_y+4g:3

ox ot

Depending on the nature of differential of dependent variable (s) to the independent
variable (s) the differential equation can be classified in two categories.

1. Ordinary Differential Equation (ODE)

2. Partial Differential Equation (PDE)

Definition of ODE and PDE : A differential equation is ordinary t#frential equation
(ODE) if the unknown function or dependent variable depends only on one independent
variable. If the unknown function of dependent variable depends on more than one

independent variable then the differential equation is said to be a partial differential
equation (PDE).

1.3 Order and Degree of ODE

The order of a differential equation is the highest ordered derivative that appears in
the equation.

The degree of a differential equation is the greatest exponent of the highest ordered
derivative involving in it, when the equation is free from radicals and fractional powers.
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To find the degree of a di@rential equation, the important view is that théedéntial
equation must be a polymomial in derivatives of various or@éss.it can be mentioned
nere that the order and degree (if defined) of a differential equation are always positive
integers.

Example : Determine the order and the degree of the following ordinary differential
equations :

2 2
a. 1+ [ﬂj = Cﬂ
dx dX2

b ﬂ+y:ﬂ
) dX2 dx

N w

C_9X+Sk{ng=0
dx dx

3/2 2/3
d3y d2y
d |—| +—| =0
ax3 dx?

21213 )
H . 1+ ﬂ :Cu
Solution : a. Here i o2

So, the order and degree of the equation are two each, since the highest order
derivative is two and the exponent of the highest order derivative is also two.

d? d
b. Here —2y+ y:_y
dX dX
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Clearly the order of the difential equation is two and the degree is one.

d . (d
c. The degree of the differential equati%éﬂ“S'n[d—i):O is not defined as the

differential equation is not a polynomial in its derivatives although it has order one.

d. The order is three and degree is nine as the differential equation is a polynomial
equation in its derivatives not a polynomial in y

1.4 Origin of Ordinary Differential Equation

1. Algebraic and Geometric origin.

2. Mechanical origin

3. Physical/Chemical Science origin

4. Population and Demographic origin

5. Economics and other Social Sciences origin
6. Biological origin

In algebraic or geometric field the differerntial equations are formed by eliminating
all the arbitrary constants that involved in a relation. The elimination of the arbitrary
constants from the resulting equation gives the required differential equation whose order
is equal to the number of independent constants actually involved. For example, given
a relation

y=ad+a ()

wherea is an orbitrary constant. This relation contains only one arbitrary constant,
so the order of the ODE is one. Differentiating (1) with respest twe have

Q:ZX&

dx

. 1 dy
a=——=

1€, 2x dx

Substituting the value of a in (1), we have
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2
y- 182, (19)

" 2x dx 2x dx

2
: dyj + 2 dy 2
- 2Xc—=-4x°y=0
l.e. [dX i y

which is the required differential eqution.

There is one very good example drawn from Biology to demonstrate the need of
ordinary differential equation. Let us suppose that the rate of increase in the number of
bacteria is proportional to the number of bacteria presentl(b)et the number of bacteria
at time t.

Assuming N(t) to be a differentiable function df we can describe the above
phenomenon as

dN(t)

&t =cN(t), where c is a constant.

1.5 Classification of Ordinary Differential Equations

Q Linear and non-linear ordinary differential equatins :

An ordinary differential equation which contains a single dependent variable and its
derivatives with respect to a single independent variable as all first degree terms and
there is neither any such term involving any form of product between two or more
derivatives of different order nor any transcendental form of the depedent variable or any
of its derivatives will be called a linear differential equation.

The general form of a linear ordinary differential equation is

dny dn—ly
X)—=+aq(X o + X =r{Xx
o) ran() T g () y=r (),

whereay, a;......, 8, andr(x) are the funcitions ok only.
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dy 2 _ x . d3y o dy
— + X =€ ——4 SIN( X
For exmple, + X7y and 2 + sin( )0|

Pt se¢x) linear ordinary differential

equations.
If the condition of linearity as stated in the above definition is violated then the
corresponding ordinary differential equation is said to be a non-linear ordinary differential
equation.
2
a d
_;/erz y

d—+Xy=Sin(y) are not in linear

d
For example(x- y)? Y +5eY =3¢% and e’
dx dx X

form. These are non-linear ordinary differential equations.

1.6 Homogeneous and Non-Homogeneous Ordinary Differential
Equation

An ordinary differential equation is said to be homogeneous if there is no isolated
term in the equation, i.e, if all the terms are proportional to a derivative of dependent
variable or dependent variable itself and there is no term that contains a function of
independent variable or constant alone.

An n-th order linear differential equation of the form

d2y dn—ly

— 2+ +...+Byy=R 2
i dx" 1 ax"t " 2)
wherey is the dependent variabbejs the independent variableg, P, Po, ..... Pn

andR are either constants or functionsxof

In (2), if R =0, then (2) is called a homogeneous linear ordinary differential equation.
An ordinary differential equation which is not homogeneous is called a non-homogeneous
ordinary differential equation.

Remarks : A homogeneous ddrential equation has several distinct meanings :

d
1. A first order oridinary dierent equation of the forna%: f(%) is a particular

type of homogeneous equation.
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2.A linear diferential equation is said to be homogeneous if it has zero as a solution
otherwise it is non-homogenous.

3. Generally (2) is written in the form»%(y, y', Yy, ...... YY) =0

1.7 Solution of an Ordinary Differential Equation

A function is said to be aolution of an ordinary differential equation, over a
particular domain of the independent variable, if its substitution into the equation reduces
to an identity everywhere within that obtain.

A function ¢ is said to be a soution of ODEXFf/, V', V', ...... y) = 0 if
F(x (%), (x),0" (%), .......p( «): C

where ¢ (x) stands fon-th derivative of the functionx — ¢ (X) with respect to
the indenpendent variable

The solution of an ordinary differential equation is called general solution if it contains
a number of arbitrary constants equal to the order of the differential equation. This solution
sometimes called complete solutionor acomplete primitive or acomplete integral.

If the solution of an ordinary differential equation witras dependent andas
independent variable can be obtained in the fgrmf(x) then that form of solution
is said to be amxplicit solution. An implicit solution of an ordinary diferential
equation is a solution that is not in explicit form rather can be expressed in the form
¢ (xy) = 0.

A solution of a differential equation by giving particular values to the arbitrary
constants in its general solution is calledaaticular solution of that equation.

The general solution of any differential equation may not include all possible solutions
of the differential equation. There may exist such a solution which cannot be obtained
by giving any particular value to these arbitrary constants in the general solution. This
is called asingular solution of that ordinary differential equation.

Theorem : Any n-th order ordinary dferential equation can have omand not more
thann, independent first integrals and so its general solution cannot have more than
arbitrary and independent constants.
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1.8 Summary

This unit provides the basic understanding of ordinary differential equation, its order
and degree and certain basic classifications.

1.9 Exercises

1. Determine the order and degree of the following differential equation :

2
a (%] +a=0
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2.0 Objective

The objective of this unit is to discuss on various types of first order and first degree
ordinary differential equations and their salution strategies.

2.1 First Order Ordinary Differential Equations

Q First Order and First Degree Ordinary Differential Equations :

Standard form for a first order ordinary differential equation in the dependent variable
is with the independent variable xg% = f(x,y), wheref (x, y) is a continuous real valued
function defined on some rectangular region in sgblane.An ordinary diferential
equation of first order and first degr%= f(xy) can be written as

M(x, y)dx + N(x, y)dy = O

2.2 Cauchy-Lipschitz Condition

A function f(x, y) defined on a rectangular region Rk x| < a,|]y —Yo| <b is
xy-plane is said to satisfy Cauchy-Lipschitz condition if there exists a positive constant
A such that.
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If(x, y) —f(x Y2l <A | y1—y2| for all & y1).(x, y2) €R2
The above constantis known as Lipschitz constant for the corresponding function.

2.3 Picard’s Theorem

The first order and first degree differential equat-gén: f(x,y), wheref (x, y) defined

on a rectangular region RX —X| <a, |y —Yo| < b in isxy-plane, will have a unique
solution subject to the following conditions :

(i) f(x, y) is continuous in R
(i) | f(x, y) | £ M, where M is a fixed real numbefor all (x, y) in R i.e,f(X, y)
IS bounded IR ;

(i) |f (xy1) —=f(x y2)| < A |yr — Vo] for all x, y1), (v, ¥») € R, A being the Lipschitz
constant.

2.4 Solution Srategies for First Order and First Degree Differential
Equation

We can classify these equations according to the methods by which they are solved.
(i) Equations with SeparabMariables
(i) Homogeneous Equations
(iif) Exact Equations
(iv) Linear Equations
(v) Bermouli Equations
(i) Equations with SeparableVariables :

When a first order and first degree differential equagéﬁ f(x,¥) can be arranged

in the form%=%’w(y)¢0 then we havay(y)dy = ¢ (X)dx..

Integrating we havefy(y)dy = [¢(X)dx + ¢, where c is an arbitrary constant. This
method is known as method of separable variables.

In other words, in standard form Mdx + Ndy =0, White= M(x) andN = N(y)

then we can apply this method.
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3x2

. dy_
Example : Solve X 1+y?’

Solution : Here given one is a first order and first degree differential equation

dy 3x2
o f(xy), wheref(x, y) =

1+ y2

Now, f(x, y) = % where@(x), = 32, y(y) = 1 +y?

So, we can apply the method of separable variables.
Thus [y(y)dy = Jo (X)dx + c, where ¢ is an arbitrary constant.

i.e., J(1 +yd)dy = [3x2dx

3
Therefore,y+y?=x3+c, which is the required solution.

X2

Remarks : In the above exampl%=1+ ¥ if we put it in the standard form, we
have 2dx + {~1(1 +y3}dy = 0.

Comparing this equation with the equatibtdx + Ndy = 0, getM = 3x2 and
N={(1+y)h

It is clearM = M(X) andN = N(y). So observing this we can apply the above method.

(i) Homogeneous Equations :

X
If a functionf(x, y) can be expressed in the form eith@@(%] or yn(P(;j then

f(x, y) is said to be homogeneous function of degree x andy.

When the functiotM andN are homogeneous functions gf and y of same order
then the differential equatidvidx + Ndy = O is called a homogeneous differential equation.

There is another way to check the homogeneity of a first order and first degree equation
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;—'Z =f(x,y). If f (tx, ty) =f(x, y) for any reat, then

differential equation.

&

v f(x,y) is called a homogeneous

Remarks : A functionf(x, y) is said to be homogeneous of degneéf f(tx, ty)
=t"f(x, y) in x andy andt be any non-zero real.

_ 3x?
For example we take& ) ry?
. dy _ : 3x2
We put the above in the forr’g—— f(xy), where f(xy)=———
X X“+y

Now for any real t(hon-zero).

3(tX)2 _ 3x2
(tx)2 +(ty)2 X2+ y2
Therefore, the given differential equation is homogeneous.

f(tx, ty) = =f(xy)

Again, here we have
@y 3¢

So Mdx + Ndy = 0, whereM = 3x2 andN = -2 — y2,

2
Now, M =x2(p( yj and N :XZqJGj, where @(XJ:B and UJGJ =-1-%

X X X

It is clear that M andV are homogeneous functionsx@randy of order 2. i.e.M
andV are homogeneous functions of same order

. . . dy_ 3¢ . .
Hence the given differential equtlo&—m Is a homogeneous differential

equation.
Problems : Verify whether the following diérential equation are homogeneous

(i) (x2 —2y2)dx+ xydy =0,
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(ii) xz(;—"i—sxy— 2y*=0,

-y
(i) x;ﬂzy+2xex ,
X

Xg:ysinx+x
X dXx X

(v) X%:\/XZWZ

(i) Exact Equations :

The differential eaquatioMdx + Ndy = O is called exact differential equation if
there exists a function = u(x, y) such thatdu = Mdx + Ndy and its general solution
is u(x, y) = ¢, wherec is an arbitrary constant.

Thorem : The necessary and sufficient condition for the ordinary differential equation
Mdx + Ndy = 0 to be exact on a rectangular regdn|x —xg| <@, |y —VYo| <b in xy-

(iv) xsin

~OM _ON
plane ISy “ax I R.

Note : xdx + ydy = d(xy)

xdy - ydx _ d(bglJ
Xy X

)

W2 +y2 X

Exmaple : Check whether the equatior € y)dy + (y — x)dx = 0 is exact.
Solution : Here we havex(+ y)dy + (y —xX)dx = 0

Comparing the eqution witMdx + Ndy = 0, we have

M=y-X, N=x+Yy
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By the statement of last theorem the given differential equation is exact.
Example : Check whether the equatigulx + xdy = xy(dy — dx) is exact or not.
Solution : Here we haveydx + xdy = xy(dy — dx)

ie. (y + xy)dx + (x — xy)dy = 0

Comparing the equation witlldx + Ndy = O we getM =y + xy, N = X — Xxy.

oM ON
—=1+Xx,——=1-vy,
Now ay ox y
M oN
'y OX

Hence the given equation is not exact.

2.5 Working procedure to solve an exact equation

Step 1. Calculatg Mdx treatingy as constant and omitting arbitrary contant.
Step 2. Calculaté Ndy treatingx as constant and omitting arbitrary contant.

Step 3.Add with the result of step 1, the result of step 2 deleting those terms which
are already been taken in step 1.

Step 4. Equating the result in step 3 to an arbitrary constant, we get the general solution
of the equation.

Example : Solve (43 + 3y2 + cosx)dx + (6xy + 2)y = 0.
Solution : Here we have & + 3y? + cosx)dx + (6xy + 2)dy = 0.
Comparing this equation witkldx + Ndy = 0, we get
M = (43 + 3y2 + cosXx), N = (6xy + 2)

oM oN

_:6y =6
NoW gy =>% o =Y
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oM _ N . o
So, By ox and hence the given equation is exact.
Now, [ Mdx = (4x3 + 3y2 + cosx)dx = x* + 3xy2 + sinx, omitting arbitrary constant
J'Ndy = [ (6xy + 2)dy
= 3xy? + 2y, omitting arbitrary constant

Thereforex* + 3xy2 + 2y + sinx = ¢, wherec is an arbitrary constant, is the required
solution.

Example : Solve cosx. sinydx + sinx.cosydy = 0.
Solution : Here we have cos. sin ydx + sinx. cosydy = 0
i.e. of the formMdx + Ndy = 0, whereM = cosx siny andN = sinx. cosy.

N oM d oN
ow ay = COSX. COoSsy an ox = COSX. CosYy.

Hence the given differential equation is exact.

Therefore,f Mdx = [ cosx. sinydx = sinx. siny and[ Ndy = [ sin x. cosy dy =
sin x. siny

Hence the required solution is sinsiny = ¢, wherec is an arbitrary constant.

Exercises :

Solve :(x + 2y)dx + (2 + y)dy = 0.

Solve : (y + 3x3)dx + (X2 + 2y)dy = 0

Solve : (& + yddx + y(2x — 3y)dy = 0

Solve : §? — Xy + 6)dx — (X — Xy + 2)}dy = 0

Solve : (y —y)dx + (X2 + X)dy = 0

Solve : (2v2 — 3du + (ud2 — u + 4v)dv = 0

Solve : (cody — Xy2)dx + (cogy + X sirPy — 23y)dy = 0
Solve : (1 +xy?d)dx + (x?y + y)dy = O.

=

© 0o N o o~ DN

Solve : (1 H2 + xy9)dx + X3y +y + Xy)dy = 0
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Solve

Solve :

Solve :

Solve

Solve :
Solve :
Solve :
Solve :

Solve :

Solve
Solve

Solve

W2+ w2 —2dw + (2 +wz—-w)dz=0
(Ry — tany)dx + (x2 —x se@ y)dy = 0

(cost cosy — cotx)dx — sinx siny dy = 0
:( + sint — cost)dr + r(sint + cost) dt = 0
By — 42 + 6)dx + (X — 62 — 1y = 0
(sit — 2 cos2t)dr + r cos (2 sinr + 1)t = 0
[ +y cos ky)]dx + x cos ky)dy = O

ydy + (Y2 + x?)dy = 0

gy dx + (> —x3dy = 0

(R = 3y)dx + (X - Xdy =0

(8% + 2y)dx + (2¢y® - x7)dy = 0

3+ XyAdx + (2 + Ay)dy = 0

2.6 Integrating Factor

Let Mdx + Ndy = O be a non-exact first order and first degree ordinary differential
equation A non-zero functionu = u(x, y) is called an integrating factor of the equation
Mdx + Ndy = O if w(Mdx + Ndy) = O becomes an exact differential equation

i.e.u(x, y) is said to be the integrating factor of the differential equation Mdx + Ndy
= 0, if we can findu = u(x, y) such thatu(Mdx + Ndy) =du = 0

Theorem : The number of integrating factors of an equalitaix + Ndy = 0 is infinite.

2.7 Rules for Finding Integrating Factors (I. F.)

Rule 1.If the given equatioMdx + Ndy = Ois a homogeneous such tidx + Ny

# 0, thenw is an integrating facto(l.F.).

Example : Solve :ﬂz

X2+y2

dx Xy
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Solution : Here the given equation can be written in the form Mdx + Ndy = 0, where
M=x%+y% N=—xy
oM ON _

Now, — =2y, —~=—
EY, y I y

M , oN
Therefore,W?ﬁa—X, so the given differential equation is not exact.

Now Mx + Ny =x(x2 +y?) +y(=xy) =x3 +xy2 —xy2 =x3# 0

1 1

So, ILF= =
Mx+Ny 3

Multiplying I. F to the both sides of the given equation we have

)(—lg(x2 + yz)dx—x—xgdyzo

or d(|ogx) +X(Mj =0
1 X X

or. d(logx) —%d(%) =0

2
Integrating we ge’qogx_l(lj =¢, Where c is an arbitrary constant.
2\ X

Example : Solve &2y — Xy?)dx + (X2y —x3)dy = 0

Solution : Here, M =(x2y—2xy2),N =(3x2y—x3)

oM _ ON
Therefore,Wia So, the given differential equation is not exact.
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Here, Mx+ Ny = x(x°y - 2xy?) + y(3x%y - x°)=x %y 22 0

1
X2y2

So, |.F.=

Multiplying I. F. to the both sides of the given equation we have

x2y2 [(xzy—2xy2)dx+(3x2y— xs)dyJ =0

Or, [1 2) X+ — dy——dy 0
y X y

or, d(a _ 2d(log %) + 3d(log y) = 0

X
Integrating we get§‘2|09X+ logy=c where ¢ is an arbitrary constant.

Example : Solve {3 — 2y)dx + (2xy2 — xd)dy = 0
Solution : Comparing the given differential equation wtbx + Ndy = O, we get
M= (2 - 2), N = (2¢* - X

oN

oM
Thereforea—y 75&, So, the given differential equation is not exact.

Now, Mx + Ny = x(y® — 2¢y) + y(2xy? — x3) = Xy(y? —x?) # 0

I
3xy(y2 —xz)

Multiplying I. F. to the both sides of the given equation we have

So. I. E=

']
sy

(-2

3xy(y2 - xz) >

dy=0
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-2

2v*-x)
or d
) 3X(y2 _ Xz)

dx + 3y(y2—x2) y=0

%+ﬂ+ ydy_XdX:O

or, y yz_xz

or, 2d(log x) + 2d(log y) + d(log (2 —x3)) = 0
Integrating we get log? + logy? + log §? —x?) = logc i.e.x?y? (y> —x?) = ¢, where
c is an arbitray constant.
Rule : 2.1f Mx —Ny # 0 and the equation can be written &&)} ydx + {g(xy)} xdy
=0, i.,e. Mdx + Ndy = 0 then the integrating factor of the given equation is of the form

1
Mx — Ny

Example : Solve (xysin(xy)+ cos(xy) ydx+( xysin(xy)y cos(xy) xdy
Solution : Here given differential equation is of the form

f(xy)ydx + g(xy)xdy = O

wheref(xy) = (xy sin (y) + cos &y)), g(xy) = (xy sin &y) — cos £y))
Here,M = (xy sin Ky) + cos ky)) y andN = (xy sin(xy) — cosky)x
Now Mx — Ny = 2xycosky)

1

So, l'FZZ)(yTS(Xy)

Multiplying I. F. to the both sides of the given equation we have

(xysin(xy) + co{xy)) e+ (xy sifxy) - cobxy))

dy=0
2xy cog( xy) Xy cofxy) i

or, %{tan(xy) + %} ydx + —;{ tan( xy) _El} xdy = (
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y
or, tan (xy) d(xy) + d(log x — d(log y) =0
Integrating we have,
log | see(xy)| + log x —log y = log ¢
or, X sec (xXy) = cywhere c is an arbitrary constant.
1 (oM ON _ .
Rule : 3.1f = oy ox be a function of x onlysay¢ (x), then Jex)dx is an
integrating factor of the given equatidfdx + Ndy = O.
Example : Solve & +y2 + 2)dx + 2ydy = 0

Solution : Here M = € + y?2 + ), N = 2y

or, %tan(xy){ ydx + xdy} +%{d—; —ﬂ} =0

ON

aﬂ:z —=0
Therefore, dy Y, I

oM _ 0N
Therefore,a—y ¢& . So, the given differential equation is not exact.

1({oM ON 1
Now, W[W_&j:?y(zy_o) =1 =¢ (x) (say)

Thus I. F = I.F.= & @) = J1ox - ox

Multiplying I. F. to the both sides of the given equation we have
e(x2 + y?2 + X)dx + 2ye*dy = 0

or, edx + 2xeXdx + y%exdx + 2ye*dy = 0

or, dex?) + d(y%e) = 0

Integrating we gee*x2 + exy2 = ¢, wherec is an arbitrary constant.

ON oM

1 . .
Rule : 4. If V(& a_y] be a function of alone. say (y), then Jaydy is an

integrating factor of the given differential equatdidx + Ndy = 0.
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Example : Solve (X34 + 2xy)dx + (23 — x9)dy = 0
Solution : Comparing with the equatioMdy + Ndy = 0, we have
M= (3x%y* + 2y), N = (2¢y® - %)

oM
Therefore, 5 =12x%y3+ , N _ 6x2y° - 2x
oy X

1(oN oM 1 1 2.2 2,3
—| = |F— 77— | XYy = 2X-1Xy - X
S0, M(ax 6y] ( Y )

Xy (3xy2 + 2)
2 o .
=y T o(y) (say) which is a function of only.

—I—§dy -2lo 1
Thus,|. F=e 4 =e gy=—2
y

Multiplying I. F. to the both sides of the given equation we have
%(3x2y4+ 2xy)dx+i2(2x3y2—x2)dy= 0
y y

2
or, 3x2y2dx+ 25dx+ 2x3ydy—x—2dy =0
y y

2
or, d(X3y2)+—2xde2x ¥ -0
y

or, d (x3y2) +d[X—5J =0

: 3.2, X -
Integrating we ge™y +7—C
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Rule 5. If Mdx + Ndy = O can be expressed in the fostyP(mydx + nxdy) +
xMyB(myydx + nyxdy)=0, whereo., B, g,y, 8, m, n, my, n;, are constant anchn; — nmy
# 0, thenxk is an integrating factor of the given equatidx + Ndy = 0, where

a+h+l_B+k+1 dv+h+1_5+k+1
= a -

m n : m m
Example : Solvex? (2ydx + 3xdy) + y2( —2ydx + 2dy) = 0
Solution :

We can rewrite the iven equation in the following form :
x2y6(2ydx + 3xdy) + x8y2 (— ydx + 2xdy) = O

i.e., x2yP (mydx + nxdy) + x*yd(myydx + n;xdy) = 0
where,a=2,b=0,y=0,d=2,m=2,n=3m =-2,n = 2.
Therefore, |. F= x"yk where

a+h+1:B+k+1 y+h+1l o+k+1

m n my m

2+h+1 0+h+1 O+h+1 2+k+1
72 T3 T2 2
Solving the above equations we hdve — 3 andk = — 1.
Hence, I. F =3y

x_3y_1-x2( 2ydx + 3xdy) + x 3y ly 2(— dx+ Xdy) = (

i.e 2d—;+3ﬂ+ 2z(_—ydx+xdyJ: 0

y X X2

2
y
or, d(2 log x) + d(3 logy) + d(;] =0

2
Integrating above we get 2logt 3logy + y—2: c. wherec is an arbitrary constant.
X

(iv) Linear first order ODE :
A particular type of first order and first degree ordinary differential equation of the
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dy
dx
is called a Linear Ordinary Dérential Equation of first order in.y

form =2+ Py=Q, where each ofP andQ is either a function ok only or a constant,

For the above form of ODFedeX is an interating factor (I.F) i.e. the given ODE

can be integrated on multiplying this factor to both the sides. This can be evident from
the following analysis.

Multiplying both sides of the iven ODE byfPdx we have

pax dy Pax
e[ & + e[ Py = e.Q
which gives

%(ye[ dej _d Pax

or, d(y.e[ de)= (e[ de.Q)dx
Integrating above we can have the desired solution through the following step :

y.e[ P = f(e[PdX.Q) dx+c

i.e y.(I1F)=J(1F).Qdx+c

where ‘c’ is an arbitrary constant.

We can summarize the steps involved in solving such equations.

Sep 1. Put the equation in the for%+ Py=Q

Sep 2. Obtaint I.F as of P,

Sep 3. Simplify y.(1.F)=[(1 F)Qdx+c, where c is an integration constant.
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_ dy 4x 1
Example : Solve fZ +———y=

3
X< +1 (x2+l)

: 4 1
Solution : Here P+ 2X , Q= 3

X“+1 (x2+1)

Here integrating factor is given by

IF = e[PdX:eX2+l :elog(x +1) :(X2+1)2

Hence we havey.(I.F.)=[(I F)Qdx+c

ie. y.(x2+1)2:1(x2+1)2. dx+c

(x2 + 1)3

2
or, y.(x2 +1) = tari x+c

(v) Bernoulli’s Equations :

The first order ordinary differential equation of the fo%@+ Py=Qy" where P and

Q are continuous function of x and n is a real nummbdmown as Bernoulk’ Equation.

dy — N
From awt Py =Qy

we havey™ PR Pyl =Q

= —ndy dv
If we put "=y then we can havél-n)y™" =

Thus the quation transformsgé+ (1-n)Pv=(1-n)Q which is a first order liner ODE

in v, its integrativing factor being/ (- Pox.
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Then its solutionis given by

V.(LF)=(1-n)[Q(I F)dx+c

ie. V,e[(l_n)PdX:(l—r)_[ Q.é(l_n)PdX dx +

1-n) Pdx
or, yt-n o " (1- ] QLA P gy,
where c is an arbitrary constant.

Example : Sove 2X2%= axy + y2.

S dy (=2}, _1 2
Solution : Here dx+( X jY—ZXZ-y
dy ) p:__z, __1
Therefore, 3 +Py=Qy*. where P=57.Q P
dv_ 1 dy 1dy 1

S0 dx~ "2 dx Now we can have‘?-&-P-y= -Q,

. dv _
l.e., &—P.\/— -Q,

Which is a first order lincar ODE in

2
Therefore integrating factor of the above.l5 _ e[ (=P)dx _ ef X _ Jogx®=x?
2_(=D) 2
VXS = [~—.x“dX
Hence | 2

. 1.2 X
ie, V'X =—5+C
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2

+§=c where c is an integrating constant.

2.8 Summary

The present unit emphasizes on first order and first degree ordinary differential
equations with the conditions of haring unque solution and different working procedures
to solve them analytically

2.9 Exercises

(A) Solve the following exact equations :
1. (x+2y)dx+(2x+y)dy=10
2. (2xy+3x2)dx+(x +2y)dy
3. (6x+y )dx+y 2x —3y)dy =

4. (y?- 2xy+6x) (x —ay+ z)dy_(

o

(2xy—y)dx+(x2+x)dy=0

6. v(2w? - 3Jdu+(32 -3+ 4)dv= ¢

7. (co?y —~3%y2)ax+( cody -2 sify —)dy=
8. (1+xy2)dx+(x2y+ y)dyz

9. (1+ y2+xy2)dx+(x2y+ y+ 2xy)dy=

10. (w*+wz?— 2) dw+ 2%+ w2z —w)dz= 0

11. (2xy—tany)dx+(x2 e se%y)dy:
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12.
13.

14.

15.

16.

17.

18.

19.

20

2

|_\

(cosx coy —cat)dx —sikn sipdy =

(r +sint —cog)dr +r( sit+ cogdt=
x(3xy—4y3+ 6)dx+(x3 — &2y 2 —)dy= (
(sint -2 codt|dr+r cos( 2 sin+ )t =
[ 2x+ ycos(xy) Jdx+ x cogxy)dy = (
2xydx+(y2+x2)dy=o

—2><yc|x+(y2 —xz)dyz 0
(2x=3y)dx+(2y ~X)dy= ¢

. (3x2y3+ 2xy)dx+(2x3y3—x2)dy= 0

) (x3+3xy2)dx+(y3+ 3x2y)dy= 0

B. Solve the following Equation :

1.

2.

(1+y)dx=(1-x)dy

xcos ydx =y coé xdy
eVdy = (ex + x2) dx

ydx + (1+ x2) tan_lxdy =C

xxll—y2 dx=y 1-x2 dx

Sec?x. tanydx+ seé y .tardy =

- Xlogxdy + \Il—yzdx =0

33
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8. xLcox ydy+ y_1 codxdx=

9. 3~ tany dx —(1—eX) setydy =

10. x(ey+4)dx+ e Ydy=0

11. dy=./y—xdx
12. (eX +1) ydy = (y2 + 1)exdx

13.dy = y. secx. dx
(C) Determine whether the given ODE is exact or not and if exact find the solution

1. (3x+2y)dx+(2x+y)=0

N

NI
3. (2y+ Yo+ X2+ 4y)dy = 0
4. (3x2y+ 2)dx—(x3+ y)dy: 0
5. (xy+2y? ~g e+ 33+ 4y —Gay=
. (6seéx+secx tax gx+ (tam+ Rdy=

2
) [iz*' x]dx+[x—3+ y]dy:O
y y

(D) Solve the followings :

[o2]

\‘

1. (2xy—3)dx+(x2+ 4y)dy= oy Q= 2

2. (3x2y2—y3+ 2x)dx+(2x3y —3y 2+ jdy: oy( —p=
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3. (Zysinx COX + y2 sin<)dx+( sifix -9 cq%dyz 9, (8
4. (yex+2ex+yzsinx)dx+(sir?x - cox)dy= o (G
E. Solve the following differental equation :

1. (x+2y3)dy=ydx
2. coty dx —tanxdy = (
3. (x+y)dy+(y—-x)dx=0

4. ydx+ xdy = xy(dy —dx)
5. xdx + ydy + k(xdy — ydx) = 0

6. xdy—ydx — cos{ )dx—(

dy

2 _
BTy = ycox

7. sinx=%

dy  ,_\2
8. XgetY=Y logx

9. x2%+xy+2m= 0

10. (xycosfy)+ singy )¥ix + X2 cosfy dy = |
11. (smx cosy +e? )dx+ (cox .sig+ tapdy=
12. (1+4xy+ 2y2)dx+(l+ &y + 2(2)dy= C
13. (1+xy) ydx+(1—xy)xdy= 0

14. (1+ 32 + bxy? )dx+(1+ 3%+ 6<2y)dy— (

15. (Iogy+ )dx+( +2y)dy 0
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16. (2xy+ex)ydx—exdy= 0

17. xzydx—(x3+ y3)dy= 0

18. (X2y2+ xy+1)ydx+(x2y2—xy+ ])xdy: 0

10. 3(x2 + yz)dx+ x(x2+ 3y %+ 6y)dy: 0

20.(xy3+ y)dx+ 2(x2y2+ X+ y4)dy= 0

(F) Prove thaty@ is an integrating factor of the equation :

(x2 + xy4) dx + 2y3dy =0.

(G) If x*yPbe an integrating factor of the equation (2y dx + 3x dy) + 2xy(3y dx +
4x dy) = 0, finda andp.

(H) If x*yB be an integrating factor of the equation

(—3x‘1— 2y4)dx+(—3y‘1+ xy3)dy= 0, then find the values of and B.

l. Solve : xcosx%@ y(x.sink+ cog)=
. dy _ X
J. Solve : dx+2xy_e

(o2 4\ dy a2
K. Solve : (x +1)—I + 2xy = 4
dy
L. Solve : COSZX.dy+y= tarx

M. Solve : (x2y3+ 2xy)dy=dx

2
N. Solve : %+%-|OQY=X—y2.(Iogy)
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3.26 Analysis of Sability of an Equilibrium Point of a One Dimensional Flow
3.27 Sability Analysis ofThe Equilibrium Points

3.28 Summary
3.29 Exercise

3.0 Objective

The objective of the present unit is to discuss on the various aspects of first order but
not of first degree and second order ordinary differential equations; the strategy of series
solution and some basic discussions dynamical systems as an application.

3.1 Equation of first order but not of first degree

An ordinary differential equation of first order and n-th degree can be written as—

Qp "+ QP .. + Qi pt Q=0 (A)

where pz%{and Q Qe Q are functions ok andQ O.

There can be three special cases for the above equation :
(a) Solvable for p.

(b) Solvable for x.

(c) Solvable fory

(a) Solvable for p :

Let us assume that the left hand side of differential equation (A) can be expressed as a
product of n-linear factors ipby the following form :

(p= (% Y){ P= B(XY) v (p—h(xY)=

Le. p=Hf(xY), p= B(X Y- p= (X Y]

all of which are first order and first degree equations. Solving each of the equations we
can have the solutions as—

Fl(x, y,cl)=0, R(XY,6)=0, ... E(xyg)= ! (B)
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whereg, c,.....,¢, are constants.

As the differential equation (A) is of the first order we must have only one arbitary constant
in its general solutiou. without loss of generatify,.....,g, can be replaced by a single arbitrary
constant c. Thus the general solution of the differential equation i.e, one parameter soluton of
the equation is given by—

FL(% ¥.0). (X ¥ Q. R( x,y.$= ( wherecis an arbitrary constant.

Example :Solve :p*+ 2xp—3x*=0

Solution : Now p?+ 2xp—3x2= 0

ie: X (p+3x) =0

So,p=x andp+3x =0

e dy_, dy__
|.e.,&—x, dX— 3X

2
Integrating we gey =% +q, y= _% 2+

As the given dierential equation of the first ordere must have only one arbitrary constant
in its general solution i.&,, c,, can be replace by a single arbitrary constant

Hence the general solution is —
X2 3 . .
y-—-¢ (y+§ ¥ — c) = 0 wherec is an arbitrary constant.

(b) Solvable for x :

If the differential equaton (A) be solvable for x, then it may be put in theXarrigy, p)
(©)

Now dx_1_1
dy dy p
dx

Thus diferentiating wr.t. y we get the following form 1 _ ¢ (y, p%) (D)
p y
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Eliminatingp between (C) and (D) , we get the solution of the differential equation as a
relation betweer,yand arbitrary constant If the elimination op is difficult x andy may
be expressed in terms pfwherep acts as a parameter

Example : Solve : x=a- P (@)

1+ p2

Solution : The given equation can be written as :
This equation of the form = f(y,p)

Differentiating both sides with respectytave get.

d 3°d
P \/1+ p> & (1+ pz)i Y
1 1 dp
lLe., =+ —=0
p ) 3 dy
(1+ p )2
|e, dy:—%dp
(1+p?) 2
. 1
Integrating, we gey + c=
\/l+ p2
i.e., (y+ c)2: 1 (b)

1+ p?’

wherecis an arbitrary constant.

Now from (a), (x— a)? = p°
,(x—a) "L ©
+p

Eliminatingp from (b) and (c) we get

(x—a)? +(y+ §?=1, which is the general salution of (a).
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(c) Solvable fory :
If the differential equation (A) be solvable fgrthen it may be put in the from

y = fxp. (B)
Differentiating both sides of (E) with respect of x we have an equation of the form
p=F(x %)
Now it can be solved to get solution of the fotrtp, x,¢)=0
Eliminting p between (E) and (F) we get the general solution of the differential

equation (A).

Example : Solve y= ptan p+ log(cosp); ng—i.
Solution : The equation is of the formg= f(x p).

Differentiating both sides with respect xpwe get

pz(tan p+ p.seé p —ta %

ie p=pseé %

i.e.dx = seép. dp.
Integrating botht sdid we tek+c = tanp, wherec is an arbitrary constant. Then

1
p= tan_l(x+ ¢ and cosp= >
1+(x+c)

Thus the general solution is

y=(x+c)tan(x+ g+ lo 1
J1+ (x+c)?

Lagrange Equation :

A first order ODE of the formy = x¢(p+wy( p (G)
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where p= %{ and¢ (p) and y(p) are known functions qf diferentiable on a certain

interval, is called Lagrange Equation.
Now differentiatinm (G) with respect towe have

p=0(p+{w (p+7" (.

dx . o'(p) ,_ v'(p)
€ " o(p)=p” " P-o(P

which is a linear equation ir. This can be solved easily and eliminatipgrom
this solution and the given equation will give us the complete solution.

Example : Solve :y = 2Xp—F
Solution : Here given equation is of the form

y=xo(p)+w(p ()

where o(p)=2p,y(p)=-p

So, it is a Lagrange equation.

Differentiating (a) with respect t® we have p=¢o(p)+{x'( p+vy'( p %

i.e p=2p+{2x+(-2p} %

ax
or, ~P-gp= 2x—2p

dx 2
—+=x=2
or, dp p

which is linear in x.
Therefore integrating factor of the differential equation (b) is given by—

I.F. :e[idp: dog p2= F?
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So, the solution of (b) is—

xp2=12p2dp+ c

e, x p2=% p>+ ¢, wherec is an arbitrary constant.
2
of, X=?|o+i2
p

2

Now putting this value ok in the given equation, we geyt=2—g+%

. . . 2p ¢ 2c p2 .
Thus the general solution is given Ixyt?+—2 and y :FJFT’ wherep is the
p
parameter
Clairaut’ s Equation :
An ODE of the formy = px + @(p) (H)

is known as Clairaud’ Equaton.
Now differentiating both sides of (H) with respectxave have.

p= p+{X+¢'(p}-£

i.e {x+0¢'(p}. ap_g

dx
This gives either$=0 ()
or, x+¢'(p=0 (J)

From (I) we gep=c, where c is an arbitrary constant. Putting this valup=af in
(H) we get y=cx+¢(9 which is the general solution of this Clairguéquatiou.
Again eliminatingp from (H) and (J) we get another soluton which does not

contain any arbitrary constaithis solution is caled tr@ngular solutonof the Clairaus
equation (H).

Example : Find the general and singular solution of
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d
(y—pxX(p-3)= p where pzaz

Solution : The given equatiofly - px)( p—1)= p

can be written as

y= IOX+pL_1, which is a Clairau$ equation.

Then differentiating both sides with respect to x we get

x% 1 dp

dX_(p_l)Z " dx

ie. {X‘(pil)z}'$= 0

1
- : dp _ X————==0
i.e elther&—o or, (p—1)2

p=p+

AP _ g g _
Now ax =0 gIVeSP=C....covvnnnnnn, (b)

Eliminating p from (a) & (b) we get the gensal solutioryascx +c%1

where c is an arbitrary constant

. 1 . 2 1
Again x— =0gives (p-1)" ==
Jx+1
or p=M2T= ... c
p X (©)
Jx+1
Eliminating p from (a) and (c) we haye= ‘f\)Fl.x+ \/1;
X

<
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(@)
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e (y—x—])zz 4x. This is the singular solution of the given equation.

Exercises :

1. Find the general and singular solution pf xp+ ?, where pz%{

2. Find the general and singular solution p£ xp+m, where pz%{.
3. Sove the folowing differential equations
I. x=4p+4p
ii. Xx=py-p
lii. yZlogy=xyp+ ¢
V. y=2px+ ¥ p
V. Xy(p2—1)=(x2—y2) r
Vi. xp?—2yp+ ax=0
Vii. 6p?y? — y+ 3px= 0
viii. xp?+(y—=X.p- y=0
4. Solve : x?(y-pY= £y

5. Reduce the diérential equationx®p?+ py(2x+ y=0 in Clairauts form by the

substitutiony = u, xy = vand hence solve the differential equation.
6. Use the transformation = x2,v= y? to solve the euatioiipx— y)( py+ 3= K
7. Use the transformation = x?,v= y— xto solve the equatioRp? — 2yp+ x+ 2y= 0

_1
S to solve the equatioy?(y— px= ¥ ¢

><Il—\

8. Use the transformatiod =

~<
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3.2 Singular Solution

A singular solutionis a solution of the given first order higher degree differential equation
which is not obtained from the general solution by assigning particular values to the arbitrary
constantinvolved init. It is the equation of an envelope of the family of curves represented
by the general solution.

Let o(x, v, ¢) = 0 represent a family of curves. From the notion of envelope it can be found
that the c-discriminant af(x, y, ¢) = 0 is the c-eliminant 0§ (x, y,c)= 0 andg—qé =0 provided
o(x Y, 0 % are continuons in the domain of thd@iéntial equationAs for example let the

family of curves be

y?=4cx.We considen(x, y, ) = 4cx— V. Then% = 4x Eliminating c fromp(x, y,¢)=0

and,
% =0,we getx =0,y =0ie.xy=0 gives the required c-discriminant.
Letf(x,yp) =0 denote a first order tBfential equatiorThe p-discriminant of the equation
f(x,y,p) = 0 is defined as the p-eliminant between the equigigm) = 0 andg—lfo =0 provided

f(x,y.p), g—p are continuous in the domain of thefeliéntial equationThe p-discriminant

represents the locus for each of the point of wi(icly,p) = 0 has equal values of4s for

example we consider a differential equatigfy+ p(x- y) - x= 0.
of
Let. f(xy,p= P y+ (% y— x 0. Thengy=2py+ X~y

L of
Eliminating p fromf (x, y.p)= Oanda—Io =0, we get.
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2

57 v+ o=

i.e. (x+ y)2=0

or, x+ y=0, which is the required p-discriminant.

Remark :

It is easy to observe that the equations are of the same degree in ¢ and p, and therefore
whenever there is a p-discriminant, there is a c-discriminant.

Note :

The singular solutions of a differential equation can be found by exploring the
following situations :

(a) p-equation has multiple roots.

(b) c-equation has multiple roots.

Envelope of a system of curvegx y,c)=0,if it exists, satisfies the differential
equation f(xy, p=0and this soluton is evidently a singular solution. Thus if
E(x y)=Orepresents the envelope then E is a factor of both c-discriminant and p-
discriminant and also the soluton of the differential equation.

We have already seen that both the p-discriminant and c-discrimingéfx gf p) = 0and
its solution ¢(x, y,c)= 0 respectively contain the envelope (if it exists) of the system of
curveso(x, y,c¢)=0 . But it can be seen that the c-discriminant and p-discriminant contain
other loci which are different from the envelope and generally they do not satisfy the
differential equation. These are callextraneous loci

Not the p-discriminant relation gives the locus of such points for which p has at
least two equal values. It may so happen that these two equal values of p belong to
two distinct curves which amot consecutive but which touch each other at that point
of consideratonThis point wll satisfy the p-discriminant but not the c-discriminant.
Also the point not being on the envelope Iwnot satisfy the differential equation
f(xy, Pp=0. The locus of such points which are the points of contact of two non
consecutive curves at which the p has equal values is ¢taiddcus So if T(x y)=0
be thelocus,then T(x,y) is a factor of p-discriminant but not of c-discriminant.

The c-discriminant relation is the locus of such points for which ¢ has at least two
equal values. It may so happen that each curve of the farily,c)=0 has a double
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point whose nature is that of a node and then the locus of the nodes is called the nodal locus.
Thus if N(x,y)=0 be the nodal locus, then N(x,y) is a factor of c- discriminant but not of
p-discriminant.

If each member of the family(x, y, ¢) = 0 has a cusp then the locus of those cusps is known
as cuspidal locus. Thus if C(x,y)=0 be the cuspidal locus, then C(x,y) is a factor of both c-
discriminant and p-discriminant but not the soluton of the differential equation.

Here using symbols E,N,T and C for envelope, nodal locus, tac-locus, cuspidal locus
respectively we can summarize the results int the following ways :

Discr_ o(xy,0): E. N2 C* =0
Discr, f(x,y,p) : ET®C =0
Example : Examine for singular solution and extraneous loci, if any for the differential

equation

4)(p2 _(3)( _3)2 = Oeerrrnnnnens (a)

3X-a
Solving forp we get P=% odx

. dy ,3x-a
I.e, &—i 2\/;
3x-—a

. dy== d

or. dy= == dx
3 1

Integrating we gety +c= i[xz - axz] =+J/x(x-a)
therefore (y+c)% = x(x— @%.ccocveuen. (b)
i.e. c?+2cy+ Y — X X— 5)2 =0 ceeeeeennnnnnns (c)

From, (c), Discr ¢(x y,0) : 4y2—4{y2 —x(x—a)z}z C

or, x(x— a)2 Z0 e, (d)
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From (a) Discr f(xy,p) : 0—4.4X (3x-8? = 0 ..cooovririiine, (e)

So from (d) and (e), x is the common factdence x = 0 is the singular solution of (a).

Again 3x —a= 0is atac-locus since it appears twice in the p-discriminant relation (e) but
does not occur in (d).

Alsox—a =0 s a nodal-locus since it appears twice in (d) but does not occur in (e).

Exercises :
a. Solve the following equations and find the singular solution, if any :
W) v?(1+ p?)=a?
(i) sap®= 27y
(i) p*=ay(xp-2y?, put y=12
(iv) p?(2-3y)°=41-y)
(V) xp?—2py+ 4x= 0

b. Examine for singular solutions of the equations :

2
(i) 3y=2px—2p7

(ii) axp? = (3x-1?
(iii) x3p2+ xPypr =0
(iv) y*(y-xp=x'¢
(v) (8p3—27)x= 12p2y

(Vi) p*=y*(y+ xp
c. Reducting the differential equation :
xp2—2py+ x+2y=0

to Clairauts form by the transformations’ =u and y—-x=v, find its singular
solution, if any
(d) Reducing the differential equation :
xzp(2p+1)+ 2pxy+( pr 2 >?+( pl-.’Dzz C
to Clairauts form by the transformationsry = u and xy—1 =y, find its singular
solution, if any
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3.3 Second Order Differential Equation

A linear ordinary differential equation of nth order is given by

dny dn—ly dn—2 y
+R +P F o + P y= F(X) 1
N e o n (1)
In the domainD O R, where each d?;, P,,........ P, is either a constant or a function
of x andF is function of x onD.
In P, P, , ....,P, are all constants then the differential equation
dny an—ly dn—2 y
+ +P o + R, y= F(X) is known dinear ordinary differential
a0 g g " y

equation with constant coefficients.

Now in the linear ordinary differential equation with constant coefficients of the above
. d .
form if we replace& by D in (1) we have

(D"+ PD" 1+ P,D" =2+ .. +P)y = F(x) 2)
i.e. f(D)y = F(x) ©
wheref(D) = D" + PD"~ 1+ P,D"~2+ ... +P
If F(x) = 0, (3) becomes

fD)y =0 “)

(4) is called theorrespoinding homogeneous equatioto (1) and solution of (4)
is called thecomplementary function or complementary solution or C. Fof (1) The
solution due to non homogeneous pé#&fx) is called the particular solution
(PI) of (1). The complete or general solution of the differential eqution (1) is thus
y=C.F+PI

n:

3.4 Theorem : Existence Theorem

Let P, P,,...... ,P,, be some constants and let a poinbe in p, b] within R. If
a,, o,, ....,0, are anyn constants there exists a solutipaf f (D)y = 0 on p, b] satisfying

0(X) = 0y, @F(Xg) = Oy wvrery, O 7 X)) =
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3.5 Theorem : UniguenessTheorem

Let X, be in p, b] within R and letoy, a,,.... &, be any n constant$hen there is
at most one solution of f(D) = 0 satisfying

0(x0) = %0, ¥ (%) =02 oo X) =g -

3.6 Wronskian

Thewronskian of n differentiable functiony,, y, ..... Y, denoted byM(x) or W(y;,
Yor oY) O W (Y, Yy, oo Y, : X), is defined by

Y1 Y2 o M
W Yoo Yo 20 = T
yf_l yg_l B

Theorem : The functiony;, y,, ....y, will be linearly independent solutions of the
equation
n n-1 n-2
9V, g2 Vg & Y +Ry= (¥
dx” dx"" dX™

if FandP, , P, ... Pn are analytic ira] b]

Definition : Any sety,, y, ....) - of nlinearly indepdent solution of the homogeneous
linear nth order dferential equatiori(D)y = 0 in [a, b] is said to be dundamental set
of solutionsin the interval [a,b].

Theorem : If y = f(X) be the general solution of the equation

n n-1 -2
d"y, A d“y
dx" X" a2

andy = ¢ (X) be a solution of the equation

+..+Ry=0 (@)

n n-1 n-2
dy, Rd VYipd Y,
dx” dxX" 1 a2

et By y= X (b)
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theny = f(x) + ¢(X) is the general solution of the equation (b).

Theorem : If y =y, is a solution of the reduced equation (4Dintheny = c,y,
is a solution of (4) as well, wheig is an arbitrary constant.

3.7 Theorem : Principle of Superposition

2
If y, andy, be two solutions of the dirential equatiorP( X)Z—Xzy +Q( X)%(/+ R ¥ 0,

then the linear combinatianyy, + ¢y, is also a solution for any values of the constants
Cys Cy.

3.8 Theorem

2
If y, and y; be two solutions of the diiential equatiorP( X)(:I—Xzy +Q( X)%+ R ¥ ¥0

and if further there is a point where tiAéonskian ofy, andy, is non zero, then the
family of solutionsy = c,y; +c,y, with arbitrary codfcients g, c, includes every solution
of the equation

d?y dy
P(X)—=+ Q( X)—+ 0
(953 + ARG K3 w0,
Last theorem states that, as long as\iltenskian ofy, andy, is not every where
zero, the linear combination = c,y, + ¢y, spans all the solutions of the equation

d?y dy
P(X)—=+ Q( X)—+ 0
(N + A R Y w0,

In this case the expressigre cy; + Cy, is said to be the general solutidrhe
solutionsy, andy,, with non zeroWronskian, are said to formfandamental set of
solution of (5).

Now we pay our attention to the equation of the following form :

Pﬂ+Q$’+ Ry=0 (5)

dx? dx
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where P £ 0), Q andR are all constains.
We take the following simple example :

2
%— y=0 (6)
Comparing (6) with (5) we will gé? = 1, Q = O,R = —1.We can easily verify that
y, = € andy, = e* are two solutions of (6)/e can also conclude that the functions
CY; = C,€%, Cy, = C,e7* satisfy the diferential equation (6) as well. Further the function
y = c,e¥ + c,e* is also a solution of (6), for any arbitrary values pfa. Again the
Wronskian in this case is given by

X X

Y1 ¥Y2| e e

v oy

2

W( %, ¥, 9=

€ —-e

Hence,y=qé& + g €* is the general solution of (6)

As the codicientsc,, c, in the general solutiop = c,e* + c,e*are arbitrarythis
expression represents a doubly infinite family of solutions of (6). Based on this
observation. we suppose a trial solution of (5) of the fgrm e™ wherem is the
parameter to the determinethen one can have

y =™, %::memx, Z—ig:mzé“"

Substituting the above results in (6) we obtain
Pmée™ + Qmeé™ + Re™ = Q

(Pm? + Qm+ R) @™ =0

Since &% =0, we have, P+ Qm + R = 0.

Equation (7) is called thAuxiliar y Equation (A. E.) for the ordinary diierential
equation (5).

Now we re-write (5) in the following form :

d’y, dy

¥+p&+qy:0 (8)
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R
where p=% and q:E' Then theA. E becomes m+ pm + g = 0. (9)

Now we have three ddrent types of roots of th&. E. (9)
a. Roots ae real and distinct

b. Roots ae real and equal

c. Roots ae complex conjugate

In the corresponding bomogeneous equation (4) for tferetitial equation (3) we
puty = €™ as a trial solution and this gives the auxiliary equation f (m) = 0

Case-i.If m;, m,.... m, be the distinct real roots of the auxiliary equation f(m) = 0
then the solution of (4) is given by

y=Ge"*+ ¢ 2%+ .. .+ g BnX where,c, C,, .....,C, are constants.

Case-iilf m, m,, ...,m, be the real roots of the auxiliary equatigm) = 0 and if
furtherm=m, = ....m = m, then the solution of (4) is

y:(01+ CX+..+ G >E'1) 8%+ g B4+ g, B2 X+ M
Case-iiiIf a+ i3 be the roots of the auxiliary equatitim) = 0, then the solution

of (4) must contain the terme®* (c,cos {3x) + c, sin (Bx)).

Note : If a £ i3 be the roots of the auxiliary equation f(m) = O repeated r times, the
solution of (4) contains the term.

e (c, +CX + ... tc X~ cos Bx) + e (b, + bx + ... +bx" ~ 1) sin (Bx).

The general form of non homogeneous ordinarfedhtial equation with constant
coeficients is given by (2) or (3)To solve a non homongeneous linear ordinary
differential equation we first solve the corresponding homogeneous equation by the
method as discussed above and this will give this corresponding C. F

To get the Pl we employ the following scheme :

Pz
'_ﬁ X where X = F(x)
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1
Now the general method of finding the expressioanEg)’X is a laborious one.

1
We shall explain below the short methods for find'rpHJ—)X for some standard form

of functions.

3.9 Method of finding the particular integral (P. I)

Rule 1.1f X = P(x), whereP(x) is a polynomial of degree. Then

1 .1
Pl = WX-WP(X)

Note : First expressf (D) in the form (1 +p(D)). Then expandingl + ¢(D))* as
an infinite series in ascending powers of D and then operaR{)n
Rule 2. If X = e ‘@ being a constant, then
1 X = 1 X
f(D)  f(D)

Pl =

ax 1

€ Ta),iff(a) #0

- eaxf'>(<a), if f/(a) 2 0,f(a) = 0

In general,

Xn

P.I:eaxf”—(a)’ if f(&) = 0,f/(8) = 0, ..., f""(a) =0, f"(a)# 0

Rule 3. X = sinf@x) or, sin @x + b) or, cos @x) or, cos ax + b)
Let f(D) = ¢ (D?), ¢ (a2 # 0.

Pl X= sin(ax) = 1 sin@x) = %sin(ax)
f(D)  f(D) @#D?) ¢-a%)
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1 .
- b) = b
or, f(D)sm(ax+ ) cp(Dz) sin (ax+ b)
= ! 3 sin (ax+ b)
A-a%)

or, = cos@x) = 1 cosfx) = ! cos @x)

f(D) ®(D?) @-a%)
or, = f(lD) cos@x+ b)= (p(Dz) cosfx+b)= (p(_az)cos(ax+ b)
If ¢ (—a?) =0, then

SV S .
P I _ﬁx_ f(D)sm(ax)_x f,(D)sm(ax)
1 . 1
or, = ﬁsm(ax+ b) :Xf'(D sin(ax+ b)
or, = f(lD) cos(ax) :x%cos(ax)
or, = Lcos(ax+ b) =x 1 cog ax+ b)
" (D) f*(D)

Rule 4. If F(X) = ¢ y(x) wherey(x) is a function ofx only.

1, 1
f(D)" ~ f(D)

. 1
Then P1I. = Y(x) = @X-WUJ( 3

Rule 5. If F(X) = x"y(xX) wherew(x) is a function ofx only.

1 1

Then PI = f(D)X: (o) anIJ(X):{X_ f(D)} f(lD)llJ(x)

NSOU.

CCe. MT -07
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3.10 Properties of D-operator

(a)D, D? D3, ..... denote the ddrentiations with respect toonce, twice, thrice.....
respectively

1 1 1
(b) D' D23 denote the indefinite integration with respeck tince, twice,

thrice,..... respectively

() %X=Ide

) #x = [[[ - X (X"

Example : Solve D2+ 2D + 1)y = x3 + X2 + x.

Solution : Let y = €™ be the trial solution of the corresponding homogeneous
equation of the given equatiomhen theA. E. is of the form

m+2m+1=0

lem=-1, -1

Therefore, the C. F of the given féifential equation is of the form

C. E = (a + bxe*, where a, b are arbitrary constants.

The particular integral is

(x3+ X2+ x)

Pl (D +1)°

=D + 12 (E+x2+Xx)

=(1-D +3D?2-4D3+ ... )+ x2+X)
C+x2+xX) —2. 3+ X+1)+3(&+2) =24
=x3-5¢+ 15 - 20

Thus the general solution is given by
y=C.F+Pl=(@a+bx ex+ (x3- 52+ 15 — 20)
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Example : Solve (D2 — D + 2)y = &

Solution : Lety = @™ be the trial solution of the given equatidrhen theA. E.
is of the form

m-3am+2=0

eem=1, 2

Therefore, the C. F of the given féifential equation is of the form
C. E =a® + be®, wherea, b are arbitrary constains.

Now letf(D) = D2 - 3D + 2

The particular integral is

1 X X X ; ’
=——e =— =
P (D) f'(1)e , sincef’(1) # 0,f (1) =0

= — X€e-.

Thus the general solution is given = C. E + P | = ae* + be® — xex
Problems : (a) Solve : D? + 4)y = sin 3.

(b) Solve : D2 + 9)y = sin X + 5 cos .

(c) Solve : D2 — 2D + 2)y = cosx + sin X.

(d) Solve : P2 — D + 6)y = € COSX.

(e) Solve : D2 — 4D + 4)y = Xe* cosX.

(f) Solve : P2 — D + 6)y = x%e*,

3.11 Homogeneous LinearDifferential Equations with Variable
Coefficients

A linear ordinary dfierential equation of the form

n ﬂ’ + Ryt aty
dx” dx*?

whereP,, P,, ..., P, are constants arXis either a constant or a function>obnly

X —+RX T—+...... +Ry= X (1)
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is called ahomogeneous lineadifferential equation. This is also known akuler’s
Equation.
Now we want to change the independent variable by using the relation

x=¢, I.e.,Z = log x (2)
. ax . d d
This glves,dz=—x, e, — = xiz xD = D”, whereD = i, D’'= x—,

X dz dx dx dx
ThusxDy = DYy
e QY =y dy
Now, since 4z de

2 2
M:E(ivj _ xi(xﬂ’j _ 2%y, dy
dZ dz\ dz dx\  dx Al dz

2 2
XZM:M— dy— D'(D'—]_)y

SO, T e g a2
Similary

e NECE ®)

Now using the relations given by (2) and (3) thdedéntial equation (1) will be
changed into the form of a linear féifential equation with constant cbefents. Then
we can write it in the fornfi (D")y = X’ , whereX’, is a function ofz only.

So, we can solve the probldifD")y = X" by the method of linear dérential equation
with constant codtients.
Now let us suppose that a second ordefledihtial equation takes the following
form:
2

(axs o S +(axr § P+ Q= ) @

-b
where P Q, a, b are constants and F is a function of >{o§1, °°j which is a

homogeneous linear tifrential equation as well.
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2
2d%y dy o _ ;
m : X + x—+ y=log xsin( lo
Example : Solve o2 Fax y=log (logx)

Solution : First we change the independent variabte z by the transformatior
=€, ie,z=log x

dy _ dy od?y _d?y_dy
—Z =x—= X—2=—“—-_-
S0, dz  dx and dé dZ dz
The given equation reduces to
(D2+ 1y =12z sinz (a)

Lety =€™be the trial solution of the reduced equation off{agn the corresponding
A. E. is of the formm? + 1 = 0, Som =i, —i.

Therefore the C..F=A sin z + B cos z, wher&, B are arbitrary constants.

Now, P.I= (z.sin2)

72 1 .
= -Zcosz+——(D(zcos3)
o
_ 2 1 ,
=-"—cosz+———( cosz— z sin3
]
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_ 7 1 1
= -—cosz+———( cosg) -
(D,z +1)

2
~Z_cosz+ zi( cos) - Pl
2 2D

z2 1 .
= ——co0sz+ z=-sinz— P.|
2 2

z2 1 .
Therefore, PI. = —Icosz+ zz-smz

Therefore the general solution of the equation (a) is given by

. z? 1
y=Asinz + B cosz —Tcosz+ ZZ’ sin z

By puttingz = log x the general solution of the given equation is

cos (logx) + (log x)%- sin (log x),

2
y = A sin (logx) + B cos (logx) - (Ioix)

0 <X < o,

3.12 Method of Undetermined Coefficients

We consider the following problem of the non homogeneodsréiitial equation

d®y, ,dy

—+P—=+Qy=R

02 x Qy (1)

The method of undetermined cbeients is a procedure for finding the particular
solution of the equation (1) wheReis an exponential, or a sine or cosine, a polynomial,

or some combination of such functions.

Now, we are going to study this method of undermined fimbexits throug an
example.
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2

A7y, o dy, A
Supposey + P&*f Qy= &~ (2)

If we differentiatee®, we have the same function with some numeric constant. Now
this is the procedure to find the particular integral. Soylet ¢ be the PI. of (2),

and we guess that
Y, = AeX 3)
might be a particular solution. Hefeis the undetermined cdigient and it is to
be so chosen that (3) satisfies (Bhen

A(a2+ Pa+ Q) &= &

1
A=—— & 2
Hence, a2 + Pa+ Q' if a2 +Pa + Q=0.
Now if a2 + Pa+ Q = 0, then & is a root ofA. E. We take
yp = AxeX 4)

Then from (2) we geA= if2a+P =0

2a+p’

Again, if 2a + P = 0, then we takg, = Ax?e® and we repeat the above procedure
if the order of the dierential equation is more than two.

Therefore : If y, andy, are two solutions of the non homogeneousedkhtial
equation (1) then their dérencey, -y, is a solution of the corresponding homogeneous
differential equation.

If, in addition, Y, and Y, determine a fundamental set of solutions of the
corresponding diérential equation (2), thewi, —Y, = cy, + cy,, wherec, andc, are
certain constants.

Example : Solve by the method of undetermined €io&fnts, the equationD? +
1)y = 10e* for the conditiony = 0, Dy = 0 whenx = 0.

Solution : Here it is given thatlf2 + 1)y = 10 (1)

Lety = €™ be the trial solution of the reducedfdiential equation of (a)hen the
A.Eis



NSOU. CCe MT - 07 63

E).

m+1=0,ie,m=i —i.

The complementary functon is

C. E =C,cosx + ¢, sinx.

wherec, andc, are certain constantd/e assume the particular integral in the form
P | = Ae¥, whereA is a constant to be determined (since 2 is not a root &.the

So, D2 + 1)Ae* = 10
i.e. DA = 10X
orbA=2

Thus the general solution is given by
y = C,COSX + C, sinXx + 2e%

From the conditiory = 0 whenx = 0 we getc, = — 2 and from the conditioDy
= 0 whenx = 0 we getc, = — 4. So the final complete solutionyiss — 2 cosx — 4
sin x + 28
Working Rule :

(a) R=eX

(1) Whena is not a root oA.E. i.e.e€* is not in the complementary function, take

Yp = AeX

(2) Whena is a simple root oA. E. i.e.e® is in the complementary function, take

Yp = AxeX,

Yp

(3) Whena is a double root oA. E. i.e.e®is in the complementary function, take

= Ax2e®x

(b) R = sin (ax) or cos &x)

(1) When sinéx) or cos (ax) is not in C..Ftake
Y, = Asin @x) + B cos @x)

(2) When sin &x) or cos &x) is in C. F, take
Yp = X (A sin @X) + B cos ax))

(C)R=gy +ax+ ... +a X"
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(1) if P#0,Q = 0, we takey, = Ag+ AX + ..... A X"

2 ifP#0,Q=0, we takeyp = XAy + AX + L AAXD

(3)if P=10, Q = 0, we takg, = x* (Ay + AX + ...+ AX")

(d) R =¢e*sin (bx) or sin (bx) (g, + a;x + ... +a X)) or, €* (g, + ax + .... +a X")
Modify y, accordingly with the help of (a), (b) and (c).

3.13 Method of Variation of Parameters

The main advantage of the method of variation of parameters is that it is a general
method. In principle, it can be applied to any ordinaredéntial equation, and it requires
no detailed assuptions about the form of the solution. In fact later in this section we use
this method to derive a formula for a particular solution of an arbitrary second order linear
non homogeneous d#rential equation. On the other hand, the method of variation of
parameters eventually requires evaluation of certain integrals involving the non
homogeneous term in the f@ifential equation.

We seek a method of finding a particular integral of an ordinafgreiitial equation
for which the complementary function is knowihis is the main objective of the method
of variation of parameters.

Now we consider the following second order lineafedéntial equation

d?y, dy

—Z+p2+qy=r

2 Pat (1)

wherep, g, r are given continuous functions ¥a We now assume thaty, +
c,y,,wherec,, ¢, are both constant, be the general solution of corresponding homogeneous
equation.

d?y, dy
—+p—=+qy=0
dx? de V

i.e. the C. Fof (1)

Now we replacec,, ¢, by the functionA andB respeectivelyThis gives

y = Ay, + By, (2)
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Then we try to determin& andB so that the expression in (3) is a solution of the
non homogeneous equation (1) rather than the homogeneous equafidms(&)ethod
is known as thévlethod of variation of parameters

Calculations yield the expressions of the desired functiénsand B as

A= f y yz dX and B= j )dx. Substituting these two expressioraind

y1 y
B in (3) we get particular integral of the non homogeneous equation (1).
Theorem : If the functionsp, g, r are continuous functions in an open interval | and

if the functionsy,, y, are linearly independent solutions of the homogeneous equation

. d? dy _ .
corresponding to the non homogeneous equagrgzﬁ p&+ qy=r, then a particular

solution of this equation ig = Ay, + By, and the general solution ys= c}y;, + cyy, +
Ay, + By,.

Note that the two solutiong, y, of the corresponding homogeneous equation (2)
are linearly indendpent.

Let us consider a second orderfeliéntial equation
d?y  dy

+p—=+qy=r
2 P W (a)

in which p, q are constants and=r(x).The corresponding homogeneous equation
of the diferential equation (a) is as follows

d?y  dy
+p—+qy=0 b
@ dx ®)

Then the general solution of the fdifential equation (b) i.e. the complementary
function of (a) is

Y. =Au+Byv (9

whereA, B are constants.
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Now asu andv are two linearly independent solutions of (b) we have

Let us assume the general solution in the fgrrs A.u + B.v
Here A andB are treated as functions xf
Differentiating (f) with respect tg, we get

dy _ ( du, dv) [ dA dj
-2 Uu—+ +—
dx dx dx

Let us choos@ and B in such a way that

dA dB
u—+v—=0
dx  dx

Then from (g) we get

(a5 %
dx dx dx

Differentiating both sides of (1) with respectxowe get

d’y _ d?u dev dAdy dud

02 a2 dxdy dxdx

. dy d?y .
Now putting the values of, 0 Bl in (a), get

dxdx dxd

dx? d dx

2
A{d—+Pdu+ qu]+ ixzv+ P£V+ qa ( dA_du —dB—dI

(d)

(€)

(f)

(9)

(h)

()

()
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S (d_AﬂuE‘_djzr K
O ldx dx  dx d (k)

Now using (h) in (k) we can get

dA du_ udA dv_

dx dx v dx dx

i.e., —(uﬂ—vﬂj dA= vrd»
dx dx

or, —W(u, v ; x) dA = vrdx

dv du
The expressioW (u, v ; X) = (U&—V&j gives the corresponding wronskian.

Integrating we geta= _IW(L
u

v )

dx+ g, wherec, is an arbinary constant.

Similary, we haveBzf dx+ G wherec, is an arbitrary constant.

w(u.v.X)

Using the above expressiondfndB in (f) the general solution takes the following
form

_ _ V.r ur ‘
y=aur oV LJ‘W(u,v:x) dxt ‘fW(u,vn@ d

Working Rule :

Sep 1 : Find the complementary function of the giverfefiéntial equation (1). Let
the complementary function be C.FA. u + B. v

Sep 2 : CheckWronskianW(u, v) # 0.

Sep 3 : Supposey = A. u + B.v whereA andB are functions ok.

vr

Sep 4 : CaIcuIateAz‘jW(—

d
u,v:x) x*a
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u.r
B=|———dx+ i .
and jW (Vi) &, wherec, andc, are arbitrary constant

Sep 5 : Put the values of\, B in the expression att&p 3 and this will give the
general solution of the given tifential equation.

Exercises :

a. Solve the following diirential equations with constant cfiefents :

i. —=2 —y=x2cosx

iv. —5 tY = cosec x
dx2

d?y
V. —2+2y=x2e3x+ € cos 2>
dx
2
vi. 97y ﬂ+y:xe"sinx
d®  dx
2
vii, 97Y_ ﬂ+4y=excosx
d  dx
2
vii. M—5Q+6y=x(x+ é‘)
dé  dx

iX. (DZ—D+1)y= 2sin ()
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X. (D2 —1)y= xsin( x)+(1+ x2) &
b. Solve the following homogeneous linearfeliéntial equations :

i 2diy_ dy
o2 Y +5y=2log x
02 d y= g

. 2d ay 3xdy+4y= 258
dx2 dx

2
o297y oy 20y=(1+ X)?

dx? dx
iv. xzﬂu 9, y= logx.sinx(logx
dx?
V. de_zy_ xﬂ+4y= coq logx + xsirf logk
dé  dx
Vi, X2 ﬂ+4xﬂ+ 2y = x+ sinx
T dd

2y
vii. (5+2¢)° = 2d Y g5+ ) W, gy=
dx? dx

2
viii (2+3x)23 +5( 2+ &)jy— = B x+ X
X

c. Solve the following dferential equations, using the method of undertermined
coeficients:

d? d%y_,dy
-2+ By =12+ 154
Twe Cax Y

2
i %w:eﬂx2
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d2y .

~9y=x+ X - Si»
2

y

iii.
iv. d—+ 2$’+ 5y = 3sinx

i
2
d®  dx

2
v. a7y, 4y = sin2x

dx?

2
A gAY, 5y = axe
dx

VI. —5

dx?

2

vii. T+ ay=2sin2x
dx

d. Solve the following dftrential equations, using the method of variation of

parameters :

2
i 9 4y = atanx

dx?

2
2d% dy+9y= sec(3ogx’

XS —2 + X—2
dx2 dx

2
a7y, y =se€ x.tanx

dx
_d?y dy. .
iv. —5 —3—=+2y=9%"
dx2 dx
d2y 2
V. -—y=
dx® 1+ &
2 X
A dx NG
. d?y _dy &
Vi, —5—-3—=+2y=
d  dx 1+ &
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.. d2y dy
— 2224+ 2y=¢€tanx
Viil. o dx y
2
iX. xzd—y+x$/— y= x2,0<x<oo
dx2 dx

2
X. XZ(:I_x2y+ X%— y= X & ,0<x<0

3.14 Simultaneous Linear Differential Equations with Constant
Coefficients:

The system of a linear simultaneous ordinarjed#ntial equations with constant
coeficients is of the following form :

$1(D) X, + ¢,5(D) X, + ....... +¢,,(D) x,=f, (1)
0,1(D) X; + ¢,5(D) X, + ....... +¢,,(D) x,=f, (1)

01(D) X, + 9o(D) X, + ... +¢,,(D) x,= f (1), wherex,, x,, ..... x, are the dependent
. - . . d .
variables and; (D), 1. j = 1, 2, ....n are all rational functions ob =— with constant

dt
coeficients andf,(t), i = 1, 2, ... n, are the function of the independent variable

The method of operator :
Let x, y be the dependent variables artzk the independent variablEhe equation

N L . d
with involve derivatives ok andy with respect td. Let us denote the operat%1t= by

the symbolD.
Let us consider the simultaneous lineafedléntial equation with constant ctiefent
for two variables as

@ (D)x+@,(D)y= f(9 1)
and lle(D)X+ljJ2(D)y= a(t) (2)

where @,(D),o,(D),y,(D),y,(D) are all rational functions oD with constant
coeficients andf andg are functions of.
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Now we operate both sides of (1) wih(D) and both side of (2) with, (D).
We get,

V(D)o (D)X + wp(D)d, (D)y = w,(D) f(t)

0,(D)y; (D)x + 9,(D)w;, (D)y = 6,(D) gt

Subtracting we get,

[W,(D)0, (D) — d,(D)w, (D)x = y,(D) f(t) — d,(D) g(t) which is a linear equation in
x and can be used to fixdas a function of. Value ofy can be obtained as a function
of t by substituting the result of in (1) or (2).

dx d
Example : Solvea—7X+ y=0, d—f—Zx—Sy:O

Solution : The given equations ar® (- 7x +y =0 (@)
(D-5y-2=0 (b)
Putting the value of = — © — 7x in (b), we have

=D-50-7x-2x% =0

So, P?-1D +37x =0 (c)

Let x = @M be the trial solution of the equation (@hen theA. E is of the form
m —12n+ 37 =0

eem=6+i

Therefore, the general solution of the equation (c) is
x:e6t( Acost+ Bsini), whereA, B are arbitrary constants.

Putting the value ok in (a), we have
=—D-7x=-0 - 7){(A cost + B sint)}= € [(A —B) cost +
(A + B)sint].
Hence, the solution of the given simultaneous linear equation is given by
x = €8 (A cost + B sint)
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and,
y = €% [(A - B) cost + (A + B) sint]
dx dy _t
: —+y=d, “2-x=¢
Example : Solve at y=¢€, at :

Solution : The equations are

Dx+y=¢ ()

—X+Dy=¢t (b)
Differentiating both sides of (a) with respectttowe get

D?x + Dy = €

ie.DX+ (x +et) = ¢ [using (b)]

e, O?+ 1x=¢€ —¢et (©)

Let x = €M be the trial solution of the reduced equation of Ttien theA. E is of
the form

(m+1)=0

le.m= i

The complementary function of (c) is

C. E = A cost +B sint, whereA, B are arbitrary constants,

t e—t

Now, P.|.=( et—e‘t) = % -

D2 +1)(
Therefore, the general solution of (c) is

t —t

. e e .
X =(Acost+ Bsint) 47 - whereA, B are arbitrary constants,

Putting the above expressionin (a), we have

_e!
2

N |

y=e—D {(Acost+ B sint) +
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\ e—t

Therefore, y =A sin t — B cost 4—2— -

Hence, the solution of the given simultaneous linear equation is given by

~t
x=( Acost+ Bsint) + %

N | @

t ot
and, y= Asint- Bcost+%—e—

Exercises:

Solve the following simultaneous linear féifential equations :
. dx dy t

—+5x-2 =é,—— X+ 6y= é
I. at y at y=

dx dy

i, —+4x+3y=1t,—2+ 2x+ 5y= &
"t Y= Y

.. dy ., dy
—+4x+ 3y=sint—+ X+ 5y= é
"t y at y

dx d
iv.— =5x+ 4y —2 = —x+
- dt y dt y

dx dy
— =4xX-2y,— = 5x+ 2
Vot Yt Y

d
i, —=-3x+4y—==-2x+ 3
Vi. q ydt Y

. dy . dy dy
WL, s y=0, Vs 554+ 3y= 0
Vi 5t ot Y=5 y
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3.15 Series Solution of the Ordinary Diffrential Equations:

The solutions of many differential edgigns can be expressed in terms of elementary
functions, all of whose mathematical properties are well known. When required, the
analytical behaviour of solutions that involve elementary functions can be explored by
making use of their familiar propertied/ith either a pocket calculator of a software
package, the method of calculating functional values is usually based on a series expansion
of the function concerned.

Most of the ordinary differential equations cannot be solved in terms of elementary
functions, yet some form of analytical solution is often needed rather than a purely
numerical one. So the fundamental question that then arises is how to obtain a solution
in the form of a series, when only thefeiential equation is knonw

Definition : A function f defined in the interval | containingis said to benalytic

at x, if f(X) can be expressed as a power sefié¢s) =Y~ a(x-%)", which has

a positive radius of convergence.
Defintion : Consider then-th order linear ordinary differential equation

Yy + Py D+ P XY -2+ L +Py(x)y= f(X)

A point X, is called allordinary point of the given differential equation if each of
the coefficientsP, _,, P, _, .....,Pyandf (X) are analytic ak,.

Definition : Consider then-th order linear ordinary differential equation

YO + Py D+ P, (YN D+ L + Py(Xy=0 ()
A point x, is called asingular point of the given different equation if it is not an
ordinary point, that is, not all of the coefficies_,, P, _,, ...., P, are analytic ak,

A pointx, is called aregular singular point of the given differential equation if it
is not an ordinary point but alk & x)" ~ ¥ P (x) are analytic for k = 0, 1, 2, ..... (n -

. -k
1) i.e., all the limits given be'LmXO(X—m)” (¥ exist and finite.

A point X, is called arirregular singular point of the given differential equation
if it is neither an ordinary point nor a regular singular point.
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3.16 Note: Test of Singularity at Infinity

To determine whether the point at infinity is a singular point or not, we transform

. N 1
the equation (a) by SUbStI'[utIrszf

2 2

dx dt dé  dt? dt
Then the differential equation (a) becomes
y((tn)) + 0, l(t)y(n -0 + o> Oy -2 @) + ... + B, _,®y®) =0 (b)

If t = 0 is a singular point of (b) then the original equation (a) has a singularity at
infinity.

Then

Example : Find the ordinary and singular point (if any) of the differential equation

2
ZXZz—Xzy + 7TX(x+ 1)%— 3y=C

Solution : The given differential equation

2x2ﬂ+7x(x+1)ﬂ’—3 = ¢ be wri
dX2 dx y=(, can be written as

d?y, 7x(x+1) dy_3y_,
b 2x@ dx 28

2
d
Comparing the above differential equation wrth—ilI 2y+ pl(X)—di,’f (¥ y=0,
X

we have,

3
R(X)=—7
2x 0( ) 2x2
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Since neither lip_, , p,(X) not lim,_, , py(X) does exist hence,(X), py(X) are not
analytic atx = 0.

Therefore,x = 0 is a singular point

. T(x+1) 7
Now, lim, o (X — O p,(¥) = “m X—o =3 and
i, o (¢~ 0 ) = fim [ -5 ]= 33
XxX— 0 0 X0 2x 2

So both the limits exist and finite and hence the point x = 0 is a regular singular point.
All the pointsx (# 0) are ordinary points.

Example: Show that the e uatlogz—y— 2x_dy n(n+1)y=0 has a singularity at
P R F Ay S

infinity.
. N 1 . .
Solution : Substltutlngx=f to the given equation we have

dy_ _,2dy andd—zy t46\)/ o3y

dx dt dx? dt? dt

Using the above results the given equation reduces to

t4d 2y+ gt dy+n(2 )y:O
dt¢ tc-1dt  tc-1

d? 2 dy. n(n+1)
dt2y+t(t2 —1) d{+t2(tn2—1) y=0 (2)

Sincet = 0 is a singular point of the equation (a) thus the given ODE has a singularity
at infinity.
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3.17 Series Solution about an Ordinary Point :

Theorem : Letx, be any real number and suppose that the coeffidigntsP,_., ....,
P, in

fFO)y =y () + P, (0 YO~ D () + Py _, (Y =2 (x) + ... +py(X) Y(X) have
convegent power series expansions in powersxof &) in an interval x —x,| <r,
r > 0.

If oy, o, ..., o, are anyn constants, there exists a solutipnof the problem
f(D)y = 0, such thay(xy) = o, V(X)) = 0, ..., "~ 1x,) = o, with a power series

expansion@(x) =Y K=oc (X~ >g,)k convergent forjx — x,| < R where the radius of
convegence is R>r.

Theorem : Suppose thax, is an ordinary point of the-th order linear ordinary
differential equationy™(x) + P, _; (Qy"~3%x) + P, _,(X) Y" =2 (X) +..... +p(X)y(X)

= f(x), where the coefficientsP, _, (X): P, _ AX), ..., pp(X) andf(x) are analytic ak
= X, then it has two non-trivial linearly independent power series solutions of the form

> mooan(x= )", [x-x% |< R, for some R > 0, wherg, s are constants and these power

series converges in some interyal- x; <R, R > 0 aboutx,, R being the radius of
convergence of the power series.
Example : Find the series solution of the following ordinary differential equation
d2y

(x2 +1)d—X2+ x%(/— y=0

Solution : The given differential equation can be written as

d2y+ X dy 1 y
b x+1dx 2+1

=0 (a)

2
d
Comparing the above eqution with the equal%)%+ p_I_(X)d_))(/"' (X y=0,
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Po(¥) =7

we have py(X) = (X2 +1) :

x2+1’

We have fori = 0, 1
PO = (1) * - X (1)
= (D)L x -l -x+xr=-x+..), -1<x<1.

So,p;(X) fori =0, 1 can be expressed as power seriexand that are convergent
for — 1 < x < 1 i.e. all the coefficients(x) andp,(x) are analytic ak = 0.

Hencex =0 is a ordinary point of the differential equation (a) and we take therefore.

Y()=Y moamX, (-1 <x<1) (b)
Y_ < -1 ﬂ/_ - _ -2

Now —==3>'na,x"~, and === > n(n-1)a, X", - 1 <x < 1.
dx 5 dx® =

. _ dy d?y
Putting these expressions oy,d—i,d—xg in (&), we have

[of
(x2+1)2?1°:2n(n—1) a2+ XY g X =D g X 0
n=0

Therefore,

00

in(n—l)ahf+l+ Z(n+2)(n+1)ah+2>{1+§ nanx”_i a,x"=0
n=2

n=0 n=1 n=0

We shift the index of summation in the second series by 2 i.e. we replacén
+ 2) and use the initial value= 0.Also we shift the index of summation in third series
by 1 i.e. we replaca by (h + 1) and use the initial value = 0.
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Then we get,2a, - ag+ (6ag+ a) X
+ 2n=2{n(n-1a+(n+(n+ 1 aup+ na- g} R=0

Equating the coefficients of various powerxofo zero. we get

28, —a;= 0= a2=%

62, +3,= 0=> a,= -
and, n(n-1@a, + "+ 2)nh+ 1)a,,,+ng —a, =0

. :n—l f S 2
I. €., 3ny2 _n+2a” ornz= 2.

Now puttingn = 2, 3, 4, ..... in the above recurrence relation, we get

1 1
a4——za2——§ao

and so on

Substituting the values af,, a;, a,, ....... in (b) we get the required solution as

2 4 48 1 2 2.4
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3.18 Series Solution about Regular Singular Point (Frobenius
M ethod)

Theorem : If the pointx, is a singular point of the differential equation

2
ao(x)d_2y+ a( x)%/+ a( ¥ y=0, then it has at least one non-trivial solution of the
dx X

form y(x)=Ix- %[ Y h=o G(* %), and this solution is valid in some interval
|x=x |< R, where r is a certain constant (real or complex) and R > O.

If x = 0 is regular singular point, we shall use this method to find the series solution
aboutx = 0.

Consider the differential equation of the form

d?y, P(x) dy, Q3
dé  x dx @

where the functions RB( and Q X) are analytic for all k| <R, R> 0.

y=0 (a)

We assume a trial solution

y(x)=> n=oa X", @#0,0< x F (b)
dy _ o n+r-1 ﬂ_ o _ n+r-2
Now &—Zn:o(nﬂ)anx and => h=o(n+r)(n+r-1)a,x

SinceP(x) andQ(x) are analytic ak = 0, then
P(X) = cy+ X + Cx% + ... ,Q(X) = dy + dx +dx® + ...

Thus

3 o(n+ ) (n+ r-Lapx™" + (Co + O X+ G+, ) D h=o(n+r)ax™" +
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(d0+d1x+ Ay +..... )Z(ﬁozo% Rr = (©)

Since (c) is an identifywe can equate to zero the daénts of various power of
X. The smallest power of is X", and the corresponding equation is

{r(r = 1) +cyr +dta; =0
Since, by assumptioga, # 0, we get,
r’+@c,—1y +d, =0

This equation is known asdicial equation of (a). Solving this quadratic equation
for r. one obtaing,; andr,,.

Case-l : Letr, andr, be the roots of the indicial equations apé-r, is not equal
to an integerThen the complete solution is given by

y(x) = AlyX¥)], =,; + B.[Y¥)], -5 0 <x <R, whereA, B are arbitrary constants.

Case-ll : Letr, andr, be the roots of the indicial equations apdr,. Then complete
solution is given by

v(9)= ALY R, + B{aya—()}o -

Case-lll. Letr, andr, be the roots of the indicial equations and differs by an integer
and if some of the coefficients g{x) become infinite whenr =r,, we modify the
form of y(x) by replacinga, by by(r —r,). Then we obtain two indepdenent solutions

)
by puttingr =r, in the modified form of/(x) and%, 0 <x <R The result of putting

r =r,in y(x) gives a numerical multiple of that obtained by puttireg r, and hence
we reject the solution obtained by putting: r, in y(X).

Example: Find the power series solution of the equation using Frobenius method
23y"(X) + xy(X) — x + 1)y(x) = 0 in powers ok.

Solution : The given differential equation can be written as
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9+ 231

2X 2)(2

(3=0 (@)

2
d
Comparing the above differential equation V\%ttg + pl(X)d—i/+ (X y=0, we have

(X == and po(X)=—(X+1)

% ol Here the poink = 0 is a singular point.

Now limy_» (x=3%) p(¥ = Iiquo(x-o)z—l)f% and

(x+1)

2x2

My o (x= %) Ro(¥) = IimXHO(x—o)Z{— } =_71. So both the limits exist and

finite. Hence the poink = 0 is a regular singular point.

Let us assume that the trial solution of the given equation is
y(x)=> hoa X", 8y # 0, 0 <X < oo (b)
Now, y' ()= peo(n+r) g X" ™ and

V(=3 fmo(m+ 1)(n# 1-1) 2,072, 0 < x < o0

Putting these values in (a), we have

zxzi (n+r)(n+r=2)a, X2 Xi (n+r)a XM (x+ )i X" =0

n=0 n=0 n=1

= 2i(n+ Nn+r-Dax™ + 3 (n+r)a,x™" _ 3 a XL 3 anx™ =0
n=0

n=0 n=0 n=0
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= i{z(n+r)(n+r—1)+(n+r)-]}anxn+r _ Y a™l=g
n=0 n=0

= S{(en+2r+)(n+r-Pa,x™ - Y a, X" =0
n=0 n=0

Equating the coefficent of smallest powexpohamelyx' to zero the indicial equation
becomes

1
{@r + 1)t - 1)}a, = 0.As ay #0 the roots of the equation are= 1 andr =—§.

1) 3
Here the roots of the indicial equation are distinct and the differerke(fsz) =§

which is not an integeNow equating the cokdient of x"*', we obtain the recurrence
relation as
@n+2+1)n+r—-1p —-a,_,=0

an-1
2n+2r+Y(n+r-1

"

Putting n = 1, 2, 3.... we get

azzL
(2r +5)(r +1)

and so on

Putting these values in (b) we get
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X X2
y(x):ao>{|:1+(2r+l)r +(2+3(2+ o ;l+ ..... ()

Puttingr = 1 in (c), we get

X, =, = aox|:1+g+—+...}, 0 < X <eco. Next puttingrz_% in (c), we get

1 2
- X
[y(x)]rzl =gx? {1‘ A } 0 <x < oo. Hence the required solution is given by
2

y) = A[Y(X] .+ B[ 3] __1, 0 < x <o, whereA andB are two arbitrary
2

constants.

Exercise :

1. Use method of Frobenius to solve the following differential equation

2
XM+${+ xy=0

dx®  dx
2. Use method of Frobenius to solve the following differential equation
x2%+ x%(/+(x2—1) y=0
3. Use method of Frobenius to solve the following differential equation
(x2 - x)g+(3x— 1)$/+ y=0
dx dx

4. Find the series solution of ODE :
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2
a7y, dy
dx

dx?

5. Find the series solution of ODE

+x2y=0 about the point x = 0.

d—2y+ y=0 about the point x = 0
A2 P '

6. Find the series soluton of ODE

2
2X2d_y+

2_\dy, _ - _
o (2x X)d + y=0 about the point x = 0

dx
7. Find the series solution of ODE

2
%—3x2y:o about the poink = 0 and givery(0) = 1 andy'(0) = 1.

8. Find the series solution of ODE

d?y _,dy

e dz

9. Find the series solution of ODE

+2y=0 about the poink = 0

d?x dy
1- 2 — 4+ 2x—2-vy=0 i =
( X )d > de y=0 about the poink = 0.

10. Find the series solution of ODE

2

d°y  _dy .
1+ 212 Y Y =0 =
( X )d > de y=0 about the poink = 0.
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3.19 Bessels Equation

The ordinary differential equation

d®y, dy

X2 d—X2+X& + (X2 —n2) y = 0

wheren is a non-negative real numbes called
Bessels equation of order‘n’.

3.20 Application of Bessels Equation:

Bessels equation appears in the problems relatedilboations, electric fields, heat
conduction etc.

Regular Sigularity about x = 0

H H ﬂ+iﬂ+ l—i =0
The Besseb equation can be ewritten as B x dx 2 y

1
X
be expressed in power series abwut 0, it follows thatx = 0 is a singular point of

2 2
Since< and (1 —”—2) are not analytic at = 0 i.e. since% and (1 —”—2) cannot
X X

2
Besseeb equationAgain, )l(imOX% =1 and)'(iinoxz[l‘%J = -2 So both these limits exist

and are finite. Hencg = 0 a regular point of Bessglequation.

3.21 Solution of Besseb Equation : Besseb Function

As x = 0 is a regular singular point of Besse¥quation we can express its solution
in the form of power series aboxt= 0 using Frobenius methotle can takey =

> anX™", g, # 0. Solving we get
m=0

y =CJ(x + C,J,. (¥

Here C, andC, are two arbitrary constant3,(x) is called theBessels function of
the first kind of order n and it is given by
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B 00 (_1)m 2m+n
WX = 2 mrne e (gj

m=0
J_(X) is called theBessels function of the first kind of order —n and it is given
by
00 (_1)m X 2m-n
() = mZzom!r(_n+ m+1) (E)

Here 1’ is not an integer
If “n’ is an integer then the complete solution is

y = a,d,(x) + a,J,(X) JJd—(X) = a,J,(X) + ay,(¥)

whereY, (x) = Jn(x)j d2 andY,(x) is called theBussels function of second kind

X
xJn“ (%
of order n or theNeumann’s function.
Derivations :
o -1)™ (ijmm

(1) We haved (x) = ¥ oemimm| %
m=0

ST G AL ¢ i

SO, Xan(X) = mzzo m'F( n+ I’TH'l) Z2m+n

Therefore,

d & (-)M2m+n) XML
Ix X1 = nzom S2men

0 (_]an 2(m+n)-1
= s m.M'XzZm+W1 [r(n+1) =nr(n)

m=0
00 (_1)m (5)2m+ 1
= Xn%:om!.l'(n—1+ m+ 1) 2
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) (_1)m X
=x" 2 MLI(n=1) + m*1] (E

m=0

)(n—1)+ 2m

0 [ ]= ¢33 DOD00E (1)

We have

. —)M 2m-n
(2 L0 =X m@

m=0

K " (X)Z(m—n)
SO, X_nJ_n(X) - mzzom”-(_rH. m+1) (2)2m—n

Therefore,

d > (-)M2m-n) x2M--1
ax XY = m%m!f(—m m+l)  ()2mn

0 (_1)m_(m_ n) X2(m— n)-1
2 mir(m=-n.(m " (2m-nl

m-0

o § e

I “nNl2
m:Om..r(m N2

B [ (_1)m é (_n_l)+2m
x" 2 miLT(—n-1+ m+1)| 2

m=0

018 [x™M(¥]=¥"10,| DOODDOG (2)
(3) We have

) (_1)m X 2m+n
J(x) = mZ:O mir(n+ m+1) (E)

0 (_1)m (X)Zm
So, X_an(X) = z mir(n+ m+1)’ (2)2m+n

m=0

89
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Therefore,
d _ < (ymam (P
d—X[X_an(X)] - n%:lm!r( n+ m+1)'(2)2m+n

D A ) i
m:1(m—1)!r(n+ m+1) (2)2m+n—1

00 (_1)m X 2m+n-1
W”mZ::l(m—1)!r(n+ rml)'(?)

n 0 (_1)m’+1 X 2(m+1)+n-1 1=mm
x rT1(2::0m’!r(n+ rﬁ+2)(§) [we putm — 1 = ni]

S (x

2m'+(n+1)
o MIT(n+1) + mi+1]’ 5)

0 %[X-an}z_x—an+1()9 000006 (3)

(4) From (1)

L %3, = X3, (%)

S0 () + XN (X = X, (%)

ie. D30 + 3 (X) = jpy(x) 000000 (4)
From (3)

S x0T = %, 49

X (%) + x () = %L (%)

e 1M + 3 (0 =y, 000008 (5

Adding (4) and (5) we get,
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23, (%) =3 ,x) =3,

= 3 (9=3[3a(- %3] DOOODD (6)

Subtracting (5) from (4) we get,

23,00 = 3400 + 3, 4 409

- Jn(x):z—’;[Jn_l(»+ Im(¥]|00D00E (7)

From (7) we can have
2
Jii1 09 =510 —J, ((® 000006 (8)

Now, for n = 1 in (8)

I5(X =§J1(>9— Y 00000 (9)

Again, forn = 2 in (8)

3,0 = Z23,(0 — (9

=30 = 2 (0 — LK)

= 2123, - 3,001 = 1,(x) [using (9)]

0 JS(x):[i 1]31(X)—§~1(>9 000000 (10)

X2

Now forn = 3 in (8)

3,09 = 2230 - 3,9

_ SKX—SZ—lle(X)‘;Jo(@} ~ | 2509~ %03 | [using (10) and (9) ]

91
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- (#8200 + 1200

0134(¥) = E@—g}h()%[ on(>§ 000003 (11)

Legendre’s Equation :
The ordinary differential equation

d? dy
(1_X2)d 2X& +nn+1y=0

is calledLegendre’s equation of ordern, wheren is a real nhumber
x = 0 is an ordinary Point
Legendres equation can be rewritten as

d’y __2x dy, r(n+1)
A’ 1- xde -

Now both — 2X2 and ”(”+1) can be expressed in power series aot0 (i.e. both

1-x 1-%°
are analytic ak = 0) and hence& = 0 is an ordinary point of the Legendre&quation.

3.22 Solution of Legende’s Equation : Legende Polynomial

The solution of Legendrg’equation can be written in the fogn= 22" aboutx
n=0

= 0.
Solving we get

=3, + aXx — n(n+1)a0x2 _ (=D)(n+2) axd + (n=2)n(n+)(n+ 3) ax* +
2! 3! 4
(n=3)(n—-1(n+ 2)(n+ 4)a 54 i,

Bl

_ n(n+1) 24 (n=2)n(n+)(n+ 3) W
- g [1-103 L LN ]
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N al[x_(n—lé(!m 2)x3+ (n-3)(n- 1%(!n+ 2)(n+ 4)x5+ ...... }

= aoY1(X) + a1Y2(X)

So,y,(X) contains only even powers pfwhile y,(x) contain only odd powers of

We choose the cdfient g, of the highest powex" as
(2n) _1.35....(2- 1

a, = )2 = = (nis a positive integer) ana)) = 1. Then we have,(X)
n: '

ag tapX +...+ g X, if nis ever

- {a1X+39,)?+ ...... + g X if nis odd
This polynomialP(x) is called thd_egendre Polynomial of degeen. We can have
Po(X) = 1; Py(X) = X ; Py(X) = %(3)(2 - 1) ;

Pix) = 2(5%2 — 3) ; P,(x) = £(35¢* — 30¢ + 3) and so on,

EventuallyP (1) = 1 forn =0, 1, 2,........
Rodrigue’s Formula :

P.(X)= n!_lzng—:n[(%—l)”}

Sample Questions :

1. Write down the Bessa’equation.

2. Check whethex = 0 is an ordinary point of the Besse#quation. If no examine
whether it is a regular singular point or irregular singular point.

3. Write down the expression of Bessefunction of the first kind of order.

4. Write down the expression of Bessefunction of the first kind of order i)-

5. Write down the expression of Besselunction of the second kind of orderor
the Neumanrs functions

d
6. Prove that& [X"J.(¥)] = x"J, _,(X)
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d
7. Prove thatd—x [x"J,(¥)] = x"J, .,
d
8. Prove that& X" (¥)] =x"_,_,
9. Prove thatd; (X) = 3[J,.4(9 — J, . 1]

10. Prove thatl (x) = 5-[J, _ {0 + J,, 4]

11. Expressl,(x) in terms ofJy(x) andJ,(x)

12. Expressly(x) in terms ofJ,(x) andJ;(X)

13. Expressl, (x) in terms ofJ,(x) andJ;(X)

14. Write down the Legendrg’equation.

15. Check whethex = 0 is an ordinary point of Legendseéquation or not.
16. Write down the expression of Legendrggolynomial

17. Sate the Rodrigus’ formula regarding Legendsepolynomial.

3.23 Application of Ordinary Differential Equation to Dynamical
Systems

Dynamical System :

Definition : A dynamical system is a system which changes with time.

Mathematically if a system can be described by means of interaction of finite number
of variables all of which change with time and if further this change in each variable
with respect to time can be described by means of certain functions involving these
variables where time can be present either explicity or implicity is said tdyreaaical
system.The variables describing a dynamical system are catisg variables.

Examples :Motion of a particle under certain number of forces, financial markets etc.

3.24 Dimension of a Dynamical System

The number of state variables involved in a dynamical system is said to be the
dimensionof that dynamical system.
Categorization of dynamical system :
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If time is implicity present in the governing equation(s) of a dynamical system then
that dynamical system is said to beartonomous dynamical system.

If time is explicity present at least once in the governing equation(s) of a dynamical
system then that dynamical system is said to henaautonomous dynamical system.

If all the state variables involved in a dynamical system are discrete in nature then
that dynamical system is said to bdiscrete dynamical systermor amap or acascade.

If all the state variables involved in a dynamical system are continuous in nature then
that dynamical system is said to beantinuous dynamical systenor aflow.

Examples :

() Example of a one dimensional autonomous map :

Xiv1 %+ X

[general form x , ; = x +f (x)]

(I Example of a one dimensional non-autonomous map :
Xa1 =% T (- 1) +¢€

[general form x, ., =% + f (t, X)]

(1) Example of a two dimensional autonomous map :
X1 =X X2 =LY, =Yty -1

[general form ¢, =% + f (%, W) Yiv 1 =Y+ 9%, YOI
(IV) Example of a two dimensional non-autonomous map :
X b1 =% TOE-L Y=y Xy 1

[general form x4 =X + T (6 X ¥), Vi1 = Y + 9 X V)]
(V) Example of a one dimensional autonomous flow :

dx

EZX'F].

[general form % =f (X)]

(VI) Example of a one dimensional non-autonomous flow :

dx _
a—X—l"‘et

[general form % =1 (x 1)]
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(VII) Example of a two dimensional autonomous fl%@: X+y+2, %’: xy—1

[general form : % =f (%), (;t a(x, y)I

(VII) Example of a two dimensional non-autonomous flow :

dx
E—X+y +t, dt = Xy

[general form :%: f(x v t), % = g%, y, )]

We can extend the above ideas for three or higher dimensional maps or flows.

N.B. In discrete dynamical systexprepresents the magnitude fn timet and as
derivative does not exist in discrete domain the rate of changgtbéan be equivalently

expressed a%”#)t X 4 q—

As ordinary differential equation plays its role only in continuous dynamical systems
of flows we will confine our analysis within the domain of continuous calse. we
will restrict ourselves in autonomous systems only

3.25 Equilibrium Point of A Flow

One dimension :A pointx = X'ODOR is said to be an equilibrium point of a one
dimensional flow given by

dx _ . P

i f (xX) ; xODOR if At = f(xX)=0.

Two dimension : A point «°, y) 0D,0R?is said to be an equilibrium point of a
two dimensional flow given by

== f(x,y)
X, y)OD,0R?
dy_g( " (x, y)oD,
dx *
- .. f(x,y)=0
dtlo,y)
if dy : .
Fn =g(x,y)=0
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Physically at an equilibrium point of a flow the flow becomes stationary
Examples :

[) given one dimensional flow :

dx _ .
a— X -1 ,X[IR
For its equilibrium point we must have

dx _ . _ —
a—Ol.e.z(—l—OorX—

N[

So,x = % is its only equilibrium point.

II) Given two dimensional flow :

For its equilibrium point we must have

dx _
dt
dy _

dt

0
e.x+y—-2=0xy—-1=0o0orx=1y=1

So, (1, 1) is the only equilibrium point of this flow
There exist certain dynamical systems for which there is no equilibrium point. For

example in the one dimensional flog?: e X0 R%can never be zero &can never

be zero for ankoR. Hence this flow has no equilibrium point.

3.26 Analysis of Sability of an Equilibrium Point of a One
Dimensional Flow :

dx

Let, = f(x), xoDOR be a given one dimensional floand letx =x" oDOR be

an equilibrium point of this flowThen we must have,
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dx N
@, =f () =0 (2)

We consider a very small amount perturbatiax’*about the equilibrium point =
X'. So near the vicinity of this equilibrium point we have

X =X + AX (3)
Using (3) in (1) we have,

S+ ax) =f (X + aX)

L% =f X + ax)

=f X) + Axf'(X) + (A;?z " (X)) +.oen. [usingTaylor series expansion]
. d _ . (BX)? -
Le. g (aX) =Ax f'(X) + S f (X) +....... [using (2)] (4)

If “ ax' is sufficiently small so that we can neglea)? and other higher powers of
Ax then we can have from (4)

%(Ax) = Axf'(X)
d(A%) _ . o
or — —=1f'(X) dt

Integrating we genx = Ke' 0t (5)

where K’ is a constant of integration.

Now, att = 0 we assumex = AX|, _

So, ax| - o =K (6)

Using (6) in (5) we get

DX = DXy = o o0 (7)

Case | : f'(x") >0 :

Ast - o, AX - o Or —o according asx|, - , > 0 or < O respectively

In this case, the small perturbation created about the equilibrium point increases with
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time and thus eventually goes away from the equilibrium point. This situation represents
instability and the corresponding equilibrium polnt= X" is said to be an unstable
equilibrium point.

Case Il : f'(X') <0:

Ast o, AX- 0.

In this case, the small perturbation created about the equilibrium point decreases with
time and thus tends to return back to the equilibrium point. This situation represents
stability and the corresponding equilibrium point X" is said to be a stable equilibrium
point

Case lll : f'(x") =0 :

We have,ax = AX|, _ o Ot

So, here we fail to determine whether the equilibrium point is stable or unstable. Further
investigation is required in this case.

Examples :

1. Given one dimensional flow :

dx
dt

Find its equilibrium point (s) and discuss about the stability
Ans. Given one dimensional flow :

=x2 - X+ 2 ;xoR.

dx
dt

For its equilibrium point we must have,

=x2 - X+ 2 ;xoR

%‘:oi_e_XZ_a(+2:Oorx:1,2

So, the given flow has two equilibrium points viz= 1 andx = 2.
We considerf(x) = x2 — X + 2

Hence f'(X) = 2x — 3

Now f'(I) =2x1-3=-1<0
So,x = 1 is a stable equilibrium point.

Again, f'(2) =2x2-3=1>0
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So,x = 2 is an unstable equilibrium point.
2. Given one dimensional flow :

ax _ oo
dt—Zx : XOIR

Find its equilibrium point (s) and discuss about the stability
Ans. Given one dimensional flow :

—= 22 xgIR.

For its equilibrium point we must have,

dX_ . 2 _ _
a-Ol.e.,X =0orx=0.

So,x = 0 is its only equilibrium point.
Now, we havef(x) = 2x°
So f'(X) = 4x
and f'(0) =0
Hence no conclusion can be drawn about the stability of the equilibriumxpoift
from the above. Nowf we consider AX' as the small perturbation about the equilibrium
point x = 0 we then have near the vicinity of this equilibrium poirt 0 + Ax i.e. x
= AX
Then we get,

d
at (ax) = f(ax)
= 1(0) + ax 1 (0) + L4 (0) + B4~ (0) +....

Now, f(x) = 2¢&
f'(X) = 4

f"() =4 and f™(x) =0 [n=3

2
SQ%M@=O+M0+%%X4+O

= 2(ax)?
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d@x) _

or, >

(&)

Integrating we get,
1

LS where ' is a constant of integration,

— 1
r \A X = — —
or, A 2t+Kk'

Now, ast - o, AX- O

So, from the above analysis we get thatO is a stable equilibrium point of the given
flow.

Analysis of stability of an equilibrium point of a two dimensional flow :
Let,

dx _
a_ f(xay)

& (x, Y)oD,OR (1)
ar -9 )

be a given two dimensional flow and let,(y") oD,0R be an equilibrium point
of this flow. Then we must have.

dx *

-, , =f(x,y)=0

dtl y)

d . 2

@ .. =ady)=0 (2)
(x,y)

We consider a very small amount of perturbation givemky) about the equilibrium
point (X', y*). So, near the vicinity of the equilibrium poin€,(y*) we have

x=X +Ax} (3)
y=y +Ay
Using (3) in (1) we get,

%(x* +aX) =f (X' + Ax, Y + Ay)
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G OV +ay) =g +ax y + ay)

d * of , v » AX)? 9%,
or, E(AX)=f(X,)7)+AX-&(X,y)+(2!)67(x,y)+ _______

of . . 232
Yo (K Y) + ST (XL Y) e

d — * * ag * * (AX)Za_Zg * *
at () = g0, y) + ax 5 (4, ) + oS (G Y) e

ag . . (y?d’g .,
+Ay-a—3(x,y)+ Z!V(X’Y)"‘ ......

This gives,

d _af * * af * *

a(AX)—&(x , y)Ax+a—y(x Y )A

d _0g,x = 9g, x = (4)

Using (2) and consideringx and Ay sufficiently small so that their squares and other
higher powers can be neglected.

(4) Can be equivalently written as

of of

E(AX]_ ox ay [Ax]
dilay) 199 99 by (5)

ox ady )

of of

If we take,(gj: X and ox 0y

ox oay
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which represents the Jacobian of the system as J, we have

from (5)

dX
d_E:J(x*,)f)Z( (6)

We have a trial solution of (6) as

C t
x:{d}@ )

Then we have,_~:;\[ }em (8)
dt d
Using (7) and (8) in (6) we get

x.y)

A G et = mema

)\Ce)\t:é\t\]** c
(x.y)| d

on 4| ©

C
From (9) it is clear thap is an eigen value of(;(J ;)and {d} is its corresponding

eigen vectarThe corresponding characteristic equation is
det (3 —an1) =0

TR

X

e. P ay
% 99_,

1) ay y)
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of dg of ag
—A|| =-A||-—=—=
or, (ax )(ay l] dy dx 0

A2 (af+()g) A+(af dg of ag] 0 0
or - Iy v * * AV Ava * * = 1
ox 3y ¢y \0xdy ayax)y s, (10)

The above is a quadratic equatior\ofVe can arrive at the solution for fdifent cases
as given below

Case | : Roots ae real and unequal : (sayA, and A,)
[The corresponding equilibrium point is said to be a node]

Here we have

Ax=GCadt + Gzazézt}
Ay=Chét + G b &2

Sub case la A,> 0,A,> 0.

AS t- o, X o, AY - o, (if C, C, > 0)

Or AX - -0, AY - —oo (if C;, C, < 0)

Hence, the equilibrium point is an unstable node.
Subcase Ib :A,<0,A\,<0:

Ast o, AXx- 0,8y -0

Hence, the equilibrium point is a stable node.
Subcase Ic 1A, > 0,A\, <0 o A,<0,A,>0:

Ast_ », one component tends to infinity and the other component drags it to zero.
In this situation the corresponding equilibrium point is said to be a saddle node.

Subcase Id :A,=0,A,>00rA >0,A,=0

or AX- w0, Ay - - (if C;, C,, < 0)
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Hence the equilibrium point is said to be an unstable node.
Subcase le :A;=0,A\,<0o0rA <0,A,=0:

Ast_. o, AX- C;, Ay~ C, or ax- C,, Ay - C,.

Here, we call the equilibrium point as a pseudo-stable node.

Case Il : Roots are real end equal (sAdyandA")

[Here also the corresponding equilibrium point is said to be a node]

Here we have

Ax=(Gi+ et

By=(G+Cppd

Subcase lla :A"> 0 :

Ast - w, AX- o, Ay - (if C,/, C, >0)or
AX — —w Ay - - (if C;, C, < 0).

Here the equilibrium point is an unstable node.
Subcase IIb :A\" < 0 :

Ast oo, AX. 0, AY -0

Here the equilibrium point is a stable node.
Subcase llc :A" =0 :

Ast o, AX-w, Ay - o (if C/, C, >0)

or,

AX . —w, AY - -0 (if C;, C, <0)

Here, the equilibrium point is an unstable node.

Case lll : Roots are complex conjugate numbers (sayg)

[The corresponding equilibrium point is said to be a focug #oand centre if
a = 0]
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Here we have

Ax = [Cl cos@t)+ C) sin[&t)} &t
Ay = [Cl" cos@t)+ C)' sinﬁt)] &t

Subcase lll a :a > 0 :

Ast — 4, |ax| - 4, |ay| - 4, Hence the equilibrium point is an unstable focus.
Subcase lll b :a >0 :

Ast— 4; |ax|- 0, jay] - O

Hence the equilibrium point is a stable focus.

Subcase lll ¢ : a= 0 :

Here, ast increasesax and Ay oscillates between two finite values. Here the
equilibrium point is said to be a centre.

Example :

Given two dimensional flow :

= x(a-x-y)
q X, YOR
& - yas-sx-3y

Find the equilibrium point (s) and discuss about the stability

Ans. Given two dimensional flow :

aX _ .,
a—x(4 X=Y)
dy _
dt

X, YOR
y(@5- 5x- 3y
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For its equilibrium point we must have

dx _
a0 o X(4-x-y)=0
dy _ "7 y(15-5x- 3y)=
E_O

Option 1 : x=0,y = 0.
Hence (0O, 0) is an equilibrium point.
Option2:x=0,15-%-3 =0
e.x=0,y=5
Hence (0, 5) is an equilibrium point.
Option3:y=0,4-x-y=0
e.x=4,y=0
Hence (4, 0) is an equilibrium point.

Opton4:4 —-x-y=0,;15-%-3 =0

Solving we getx =

N w
Nl o

Y =
Hence,(%g) is an equilibrium point.

Therefore for the given flow we have four equilibrium points viz. (0, 0), (0, 5), (4,
35
0) and (E’?j
We take,
f(x, y) = x(4 —x-y)
gx y) =y (15 - X - 3)

of _ o .0 _ .99 _
SO, 5 SA-X-y, o =-X; 5 =55 =156 -&-6.
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Therefore general Jacobian of the system

ot ot
0
1= X oy
99 09
ox ay
_|4-2x-y -X
| -5y  15-5¢- 6y

3.27 Sability Analysis of The Equilibrium Points

I (0, 0) :
Characteristic equation :

i.e.

4-x 0 ‘:
0 15-A

or (4 —A\)(15 —-A) =0 i.e.A = 4, 15.

As here both the eigen values are positive (0, 0) is an unstable node.

. (0, 5) :

Characteristic equation :

det (3 -Al) g 5 = O

Y 0
€. 1 25 —15-)

i.e. (<1A) (=15 -A) or, A = -1, —=15As here both the eigen values are negative (0,
5) is a stable node.
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ll. (4, 0) :
Characteristic equation :

det (3 ~Al), o = O

~4-\ -4

|.e.‘ 0 _5_)\‘ =0

ie. (=4 —\) (<5 —A) = 0 orA = —4, 5.

As here both the eigen values are negative (4, 0) is a stable node.

IV, (%%) :

Characteristic equations :

det ©7039)= 0

-3 -3
A -
ie. |2 2 =0
-25 -15_,

2 2

-9+ f92—4><1><(—1—25j  ge

or, A= e = 2%

[
g
(=

Here one root is negative and the other is positive. He@:@ is a saddle node.
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3.28 Summary

This unit presents a very detailed discussions with certain problems on first order
but not of first degree and second order ordinary diffenential equations. Different common
methods of series solution are discussed and a brief overview of dynamical system are
also discussed with a good number examples.

3.29 Exercise

1. Find the equilibrium point(s) and discuss about the stability for the following one
dimensional flows : [In all such cases R denotes the set of all real numbers]

(i) % =x2-1;x0R

(i) 9 =3 - 3 ; xaR

(iii) & =1 - sinx ; xaR

(iv) %: 1 - cosx ; xOR

(V) %( =x3 — & + 26k — 24 ;x0OR

(vi)%( =x3-6¢ + 11x — 6 ;xoOR

dx

(vii) Lox(1-%+ =

1+ x ; XOR

(viii) % = &2 + 1’ —rx ; rgR, xgR Herer is a parameters.

(ix) % = ax(l-%) ; XoR* U {0} ; a, KOR*

Here a’ and ‘K’ are two parameters and Renotes the set of all positive real numbers.
2. Find the equilibrium points(s) and discuss about the stability for the following two
dimensional flows : [In all such Cases R denotes the set of all real numbers]
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() & =x+1

d
d—{ =Xy —X; X, yOR

(i) & =2+3

dy _ )

E_y+x—l,x,yDR
(ii)) & =x (1 -x —y)

dy

gt - Y2 = X-Y) i x yoR

dx

(iv) o = X — Ssiry
Y =x-y;xyoR
(V) % =xy—-1
% =x2 -1 ;% yoR
(vi) & = n—x
% =y ;X YoOR ; nOR and hereuis a parameter

(vii) %z X — x3

% = -y, X YOR ; vOR and hereu is a parameter
(viii) & = - ux +
dy _

gt = Y % YoOR; HOR and heren is a parameter
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Further Reading :

1. Ordinary Differential Equations : Principles afAdplications —A.K. Nandakumaran,
PS. Datti and R.K. Gege, Cambridge University Press.

2. Ordinary and Partial Differential Equations — M.D. Raisinghania, S. Chand &
Company Ltd.

3. Differential Equations and Dynamical Systems — L. Perks, Springer
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