PREFACE

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,”
the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations
for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and
Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based
credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this
entire exercise shall leverage the potential of higher education in three-fold ways — learner’s personal
enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively
therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of
an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in
upholding the qualitative parameters. It is time to acknowledge that the implementation of the National
Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of
Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities
in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among
Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas
Open University is committed to both quantity and quality in its mission to spread higher education. It
was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate
syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the
CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are
relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge
Systems.

Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open
University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s.
From our mandate of offering quality higher education in the mother tongue, and from the logistic
viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English.
All our faculty members are constantly engaged in this academic exercise that combines subject specific
academic research with educational pedagogy. We are privileged in that the expertise of academics across
institutions on a national level also comes together to augment our own faculty strength in developing
these learning materials. We look forward to proactive feedback from all stakeholders whose participatory
zeal in the teaching-learning process based on these study materials will enable us to only get better. On
the whole it has been a very challenging task, and | congratulate everyone in the preparation of these
SLM’s.

I wish the venture all success.

Professor Indrajit Lahiri
Vice Chancellor
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Unit - 1 : The Riemann Integral
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1.0 Objectives

In this chapter we shall learn about some Definitions and Properties of Riemann
Integration. Besides we shall discuss necessary and sufficient condition of a function
to be Riemann integrable, some Important Inequalities and Fundamantal theormes of
Calculus.

1.1 Introduction

A german mathematician Bernhard Riemann (1826-1866) introduced the concept of
definite integral from the notion of limit of a sum of which term tends to zero when the
numner of terms tending to oo . Literal meaning of integration is “summation”. It can be also

considered as the inverse process of differentiation. That is, if /:[a5] >R be a function and

of there exists a function ¢ is called the integral of .
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Riemann had defined the integrability of a real valued bounded function on a closed
interval [a.5 ] < R , using the limit of a sum. Further works have been done in this field.
Among these, the theory of integration by Lebesgue (1902) is most noteworthy.

1.1.1. Definition

Let [:[a,b]—> R be a bounded function on [a.b | and let M, m be the bounds
of fon [a,b].

Let P={a=1%< X <x,<.<x  <x <..<x , <x =D } be a partition of [a.b |, where
x. r=0 .., n are called the points of division of [a.b ], [xH,xr] is called the rth

subinterval of [a,b]. O = X, — X _ is the length of the r-th subinterval so that

35, =b-a
r=1

Let M_m_be the bounds of f in the rth subinterval of [x_.x].

Then Q=M —m, is called the oscillation of f in [x x]

r=1>"r ]
Then norm of the partition P, denoted by ||P||, is defined by the length of the

greatest of all subintervals [xH,xr] . That is, ||P|]| = max

R
The upper and lower sums, denoted by U (P, f) and L (P, f) respectively, are
defined by

WRﬂ=fMﬁ

L(P,f) = Zn:mr&f
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Definition 1.1.2 (Refinement of a Partition of [a.5]).

A partition P* is said to be refinement of a partition
P{azxo <X <X, <X <X <X <X =b} of [a.0] if P*DP.
X, <X <X, <..<X,_ <X <..<x_ <X,
That is, P* forms a new partition of [Cl , b ] containing the points of P as well as
some more points of division of [a, b ] .

Theorem 1.1.1.

If P* is a refinement of P {a:%<xl <H <LKy <K< <Xy <xn:b}then for a

bounded function f on [a, b] ,
() U(P*,f)<U(P,f) and (ii) L(P*, f)= L(P, f)-
Proof. Let P* contains just one point & more than P and let X <E<X . Then
Pr={a=x,<x <x,<..<x,_<x_<E&<x <..<x_<x,=b} Let M , M/
and M be the upper bounds of fin [x_, x]. [x_,&] and [€, x,] respectively.

Then U(P*, f)-U(P, f)

r—1 n-l
=Y M, (x,—x ) +M, (E-x_ )+ M, (x, &)+ > M, (x,+1-x,)
k=1 k=r
-1 n-l
—<— Mk(xk X, 1)+M (x —xr_1)+ Mk(xk+l—xk)}
k=1 k=r

=(M,-M,)(E-x,_ )+ (M, -M,)(x,-E)

<O[ M, M <M, |=U (P f)<U(P, f)
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In the same way, we can show that L(P*, f)>L(P, f) ]

Note 1.1.1. By the refinement of a partition P of [a.b], the upper

sums decreases and the lower sums increases.
Theorem : 1.1.2. Let | be bounded function on [a,b] and let M and , m be
supremum and infimum of f on [a,b]. Then
m (b—a)<L(P,f)<U(P,f)<M(b-a).

Proof. Let M_and m_be the supremum and infimum of f'in [xH, xr] .

UP.f)=3 M3,
and
L(P.f)= 2 M,

We have
m<m <M <M Vr=12.,n

=>md, <md <MD <MSHS,
= mY 8 <> ms, <> M5 <MYs,
r=1 r=1 r=1 r=1

—m(b-a) <L(P.f)<U(P,f) <M(b-a)
which shows that each of lower sum and upper sum is bounded and also for each

partition P, L(P,f) is less than or equal to U(P.f). J

Definition 1.1.3 (Riemann Integrability)

Let | - [61, b] - R, [a, b ] c R be a bounded function on [a,b]. Then we
have shown that m(b—a) SL(P,f) < U(P,f) SM(b—a) . Further we have

observed that for a refinement P* of P of [a,b],U(P*, f)SU(P, f) and
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L(P*, f)2L(P, /)

Thus for all possible partitions P of [a, b] we have

m(b-a)<..U(P* f)<U(P, f)<U(P,f)

and L(P, f)<L(P', f)<L(P", f)..<M (b-a) (1D

where P' P*, ... are the refinement of P. Hence it follows that the set

U= {U (P, f), P is any partition of [a, b]} of upper sums bounded below by m

(b —a ) has an infimum and the set L = {L (P, f), Pis any partition of [a, b]}
of lower sums bounded above by M (b — a ) has a supremum followed by 1.1.1.

The infimum of U = {U (P,f), Pis any partition of [a, b]} is known as the lower
Riemann integral of f on [a,b] and is denoted by J = Ib f(x)dx.
The supremum of L = {L (P, f), Pis any partition of [a, b]} is known as the

b
upper Riemann integral of f on [a, b] and is denoted by I = L f(x)dx .

Now f is said to be Riemann integrable on [a, b] if Ib Ff(x)dx = Ib f(x) dx and

b
is denoted by RI f(x)dx or Ie Rla, b].

Example 1.1.1.

0, when x is irrational

Given [ () ={

1, when x is rational,

proven from definition that eIR[G, b] Sfor any a<b.

Solution :

The function f (x) is bounded on , the least upper bound being 1 and the greatest
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lower bound 0. In each sub-interval &, for all partitions 7, the upper and lower bounds
will respectively be 1 and 0. Hence

UP.f)=3 M5, =315, =b-a
r=1 r=1
and

n n

L(P,f)=>m8,=>03,=0.

r=1 r=1

Thus, J =inf U(P,f):b—a and / =sup L(U,f):O

whereby 7 #J unless b=a.
Hence f (x) is not integrable on [Cl,b], where a < b.

Note : 1.1.2.
[fis bounded but not R-integrable. So every bounded function is not R-integrable.

Example : 1.1.2.
Let f:[0,al—> Ra>0be defined by f(x)=x"Vxe[0,a]. Prove that f is R-

1
interable and R.E f (x)dx = %.

Solution :

fis bounded V x €[0,a].

2 n—1
Let P:{O,%,f,...,( . ),%:a} be a partition of (o,a).
Then
UP.f)=3 M3,
r=1
:Ml(ﬂ_o) Mz(z_a_ﬂ)+,,,+Mn(a—(n_l)aj
n n n n
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a4{ 2 1}
=—{l+=+—=
4 n n

7f x)dxzinfUzlim —41+—+—2 :a_4
0“ ( c; 2,1

n—oo n n

G . | 2 1\l _ 4
..Iof(X)dx—lnfL—£1££lo{Z(l—; ;)}—Z

So jjf(x)azx = [/ (x)dx= “74

Hence f is R-integrable and
a _ a4
RIO f(X)de = T
Example : 1.1.3.

Let f: [a,b] — R, be defined by f (x) =e”*. Prove that f'is R-interable on [a,b].
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Solution :

fis bounded [a,5].
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Let P:(a,a+h,a+2h,...,a+nh)Wherenh:b_g. Then P is a Partition of

[a,b] diving [a,b]into n Subintervals of equal length.|| P||= 22,
Let
M, = sup  f(x),

: xe[aJr(r—l )h,a+rh]

m = _ mf ]f(x),

r xe[a+(r—l)h,a+rh
for r=12.n
Then M, =e™" m, = e " for r=12,...n. Then

U(Pf)=h[e e o]

:hea+h enh_l h a+h eb “ l
e"—1 e’ -1

h
!

’ x —1nfU—11mUP —hmhh e’ —e" |=e"—e”
L1 (e (P.1) =l 2o o]

h—0 e

L(P,f):h[e“+e‘”h+...+e“+("71)h]
P s N P I |
=he {eh—l}_he [ e"—1 }
h a
:eh_l[eb_e :|

Lbf(x)dx—sup L_hm L(P, f)‘lhli%e h_l[eb_eq L

As I S (x)dx = If dx, fis integrable on [a,b] and If(x)dx e’ —e
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Theorem : 1.1.3. [Darboux’s theorem]

For every , there exists a positive number § such that
U(p, f)<ff(x)dx+e and L(P, f)>j:f(x)dx—e VP with|| P <8 .
Proof. Let U={U(Pl,f),P1 is a partition of [a,b]}.

inf U = Igf(x) dx. So by property of inf U,

U(R,f)<_[ff(x)dx+% (1.1.2)

Here fis bounded. So |/ (x)|<k Vxe[a,b].

Let P{a=1x,<x,<x,<..<x,=b} be a partition of [a,5] containing (p—1)points
in (a,b)such that || P || <3§,,3,is a positive number.

Let P, is a refinement of £, so that 2,5 B, = U (P, f)<U (P, f)
by Theorem 1.1.1.

We first suppose that P, contains one more point than that of £, so one of the
subintervals, say, [x,_,,x, |of P,is divided into two subintervals [x, ,,&]and [&, . ]
respectively such that x <& <x,,r<p.

Let M,, M, M. be the sup of fin [x,_,x ], [x,_.&] and [ x,] respectively

such thats =8 +5, where §, =£—x _, and § =x, —&.

Then

U(B, f)=U(P, f)=M,(x,~x,_) =M, (&~x,_)~M,(x,~€)
=(M,-M)8, + (M, -M,)3, (113)

Also

[f(x)|<k=—k<f(x)<k
= k<M <M, <k=>0<M,-M, <2k

and—k SM'<SM, <k=0<M, -M -M, <2
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Therefore, from (1.1.3) follows that
U(B,f)-U(P,f)<2k8,[5,.5,<8,|
<2k8, [ IRl 8] (1.1.4)

Now if P, contains at most (P - l) more points that of £ then from (1.1.4) it follows
that

U(Bf)-U(B, f)<2k(p-1)§,
We choose 0, >0 such that o < m and let P be a division of [a,b] such

that || P|| <8 and let L,=PUP. The P,oP. Thus Pis a refinement of P,

containing at most ( p— l) more points than P. Therefore, from (1.1.4)
U(P,f)-2k(p-1)8<U(P, f)<U(P, )
=U(P,f)<2k(p-1)8+U(P, f)

<2k(p-1) 1)+j S (x)ee+2

4k(
_j f(x)dx+e

=U(P,f) jf )dx +¢

Thus the result (1.1.2) is true V Pwith ||P||<d. The proof of

b
L(P,f)> L f (x)dx—¢ is similar to that of the first part. ]

Theorem : 1.1.4.
If a functionf:(a,b)—)R be bounded on [a,b], then for any partition

P{a=x0<xl<x2...<xn=b}of [a,b] with norm || P|| <8,6 >0, then

@) lim U(P, f)= lim ZMES _j f(x)dx

1Pl-0 1P1I—0



NSOU e CC-MT-09 19

and

(i) lim U(P, f)= lim Zm Lbf(x)dx

P10 IPIl—0
Proof. Let S;={U(P, f),Pis a partition of [a,5]}.

Then Igf(x)dx being an infimum of S, U(P, f)z I:f(x)dx

Now from Darboux Theorem 1.1.3

U(P,f) jf Ydx+e=U(P, f) jf )dx <g

<g{.- U(P,f)—jjf(x)dxzo}

5 ‘U(P,f)—Lbf(x)dx

= lim U(P, f) jf

1P|I—0

Again, let S, = {L (P,f),P is a partition of [a,b]}

Then I:f(x)dx being the suprimum of S,, L(P, f) < I:f(x)dx.

Now, by Darboux Theorem 1.1.3
L(P, f) jf dxe:jf Ydx—L(P, f)<e

S| (x)de-1(P.1) <8[-.- JL £ (x)ee=L(P.1)z0]

=1lim L(P, ) jf

X—>0

Another definition based on the notion of the limit of a sum

Definition 1.1.4.
A function Let f Let : [a, b] — R is said to be R-integrable, if f for every partition
Pla=x,<x..<x, <x <..<x, <x =b}of [a,bland every choice of &, in

[ X, X, ] such that

||Li||r£o;f(ér)6r
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exists, then the limit is called the integral of f on [a,b]and is denoted by

RI:f(x)dx. That is

R[ £ (x)de = lim 3" £(&,)3,

1.2 Equivalence of the two Definitions of a Definite Integral

Theorem 1.2.1.

Let a function f [a,b] — R be bounded on [a,b]. Then f is R-integrable on
[a,b] if and only if, for every 8(> O), there exists a positive number § with

| P||1<8, where P{a=x,<x <x,<..<x, =b}isa partition of [a,b], and every

> 168, [ 1 (x)a

<eg,

choice of £ in [xH,xr], such that
Proof. Let f be R-integrable on [a,b]. Then

[ 7 (yee=[" 1 ()= 1 (x)e a1z

From Darboux Theorem 1.1.3

UP.f) <[ f(x)dcrs=[ f(x)dcrs with || Pl <

L(Paf)>f:f(x)dx—8=f:f(x)dx—s with || P|| <8 (122)

We have m, < f(§ )<M, VE e[x,,x ]

= Zn:mréir < Zn:f(ir)éir < Zn:MrESr
r=1 r=1

r=1

L(P,f)srznl:f(ir)ér <U(P,f)
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Therefore by (1.2.2)

= [ f(R)dr—e<L(P, f)sg 1(&)8, sUP.A)<[ f(x)dv+e
= [ 1 (x)ds- 8<Zf )8, <[ f (x)d-+e

<g[ with||P[| <35 ]

= |§f(ar)ér [ f (x)dx

H}DIHTOZf )5 _I S (x

Conversely, let

rz;f@r)ar— [ 7 (x)ex

Then

<e[ with|P||<§]

HPH»to )8, =[7(x

holds for all values of f (&)
If, in particular, f attains A/ at &, [x,,l)x,] ie., if f(ir) =M,

then

lim iMrs, = j" f(x)dx

[0 &

By Theorem 1.1.4
= [[ 1 (x)de=] 1 (x)ds

= [ f(v)de =[] 1 (x)ds (123)
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If, f attains m, at & e[x_,x |, ie if f(&,)=m, then

lim Y m5, = [ 7(x) ax

[P0 4=

By Theorem 1.1.4

- jb f(x)dx = jb £ (x)dx (12.4)

Thus from (1.2.3) and (1.2.4),
[ ()= [ ()= [ L1 ()

Hence fis R-integrable on [a,5]. O

1.3 Necessary and sufficient conditions for Integrability

Theorem 1.3.1.
The necessary and sufficient condition is that a bounded function f : [a, b] —->R
to be R-integrable on [a,b] is for every 8(> O), there exists a positive number §
with ||P|| < for every partition P of [a,b] ,

U(P,f)-L(P,f)<e

Proof. The condition is necessary. Let f be R-integrable on[a,5].

Then

[ r(x)de=[ £ (x)e= [ £(x) 13

Now from Darboux Theorem 1.1.3 and using (1.3.1) we obtain

U(PS) <[ ()ater g =[] f (x)de+ S
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and

LUaﬂ>ﬁfomf—§=ff@yh_§

=-L(P,f)< j f(x
Therefore,
UP,f)-L(P.f)<E+E=e
The condition is sufficient.

Forif U(P, f)-L(P,f)<e and since

L(P.f)<] 1 (x Yaes [ 7 (x)de<U(P,f),

we have

Iff jf (x)de <U (P, f)-L(P, f)<e

and hence the upper and lower integrals are equal i.e.

[ 7 ()= 7(x)a

Hence the Theorem.

23

1.4 Integrability Functions

Theorem 1.4.1.

Every continuous function is integrable, i.e., if f(x) be continuous on [a,b] , then

f is R-interable on [a,b] :

Proof. Since f1s continuous on [a, b] , it is bounded there and moreover it is uniformly

continuous on [a,b].
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Let £ > 0be given. Choose n >0 such that N < ﬁ.

Now fis uniformly continuous on [a, b] , then for a given n >0, 3ad >0 such that
‘f(xv)—f(x”)‘ <m for any two points x,x €[a,b]
with |x' —x"‘<6 (1.4.1)

where § depends on 1M alone.
Let Pla=x,<x..<x,_ <x <..<x, <x, =b}be a partition of [a,b], where
§,=x,—x,_,or=[x—x_] forr=12...n with”P” <0, then taking

M, =sup f(x)in &, m =inf f(x)ind
since fis continuous on §,, 3 points £ ,m € &, , such that

f(&)=M, and f(n)=m,

and we have from (1.4.1), the oscillatory sum for the partition P,

U(P.S)~L(P.S) =3 M5 -3 m3 =3 (M, ~m)3,

n

- g
<>, .0, <-— .0,
; r:lb_a

€ s _ & N
b_g;ér— b_ax(b a)=g
whereby f(x) is integrable in the closed interval [a,b]. O

Theorem 1.4.2.

Iff (x) be monotone on the closed interval [a,b] , it is integrable there, i.e if f be

monotone on [a,b], then f is R-integrable on [a,b].
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Proof. The function f () being monotone on closed interval [a,b]is bounded there.
Suppose now, for definiteness, that f (x) is nondecreasing on [a, b] . Then for any

partition /° (a =Xy, X, XX, X X, X = b) whose norm is § , we have with usual

n

notations U(P.f)~L(P.f) =M, ~m)8, (0, ~m)5=53 (M, ~m)

=1 =1 =1

Since f (x) is non decreasing, we have in each sub-interval §, = [xH,xr], least

upper bound M, = f(x,) and greatest lower bound m, = f(x,_,). Thus

n n

2 (M, =m,) =3 {f (%)= 1 (x.)} =F (8)= 1 (a)

r=1 r=1

and hence
U(P.f)=L(P.f)<8{f(b)=f(a)}.
If f(a)=f(b),then f(x) is constant and the integrability is clear. If however,

f(a)= f(b), then given g >0 we can choose &< 8/{f (%) —f(a)} so that the
oscillatory sum,

U(P,f)-L(P,f)<e
for every ¢ > (0 and the integrability follows. Similarly in the case when f (x) is

decreasing on [a,b] . Hence the theorem. O

Theorem 1.4.3.

Any bounded function which is continuous except for a finite number of
discontinuties is integrable.

Proof. Let f (x) be a real valued function bounded on the closed interval [a, b] and

with a finite number of discontinuties whose number is p. The function is continuous

on all the remaining parts of the closed intervals [a,5]. Let M, m be the bounds of

7 (x) on [a,b] and & be any positive number, however small.
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For the p number of discontinuities alone.

Let us enclose all the points of discontinuity of f (x) on p nonoverlapping number

number of subintervals the sum of which taken to be <g/2 (M - m) The part of the

oscillatory sum coming from this subintervals is.

<;><(M—m):

2(M —m) %

Since the oscillation of f (x) in each of the intervals is < (M-m) For the continuous
parts.

Now f (x) is continuous on the remaining portion of [a,b], i.e. on at most (p+1)
subintervals of (a,b) excluding those p non-overlapping number of intervals.

Then by Theorem 1.1.7, each of this (p+1) sub-intervals can be further subdivided so
that the part of the oscillatory sum arising from these subintervals of each of them
seperately is <e/2 (p+1) Thus the part of the oscillatory sum coming from all these
(pt1) continuous part is

<e/2(pt1) (p+1) = 3
For the whole [a, b] .

Thus the combined mode of division P, say, for whole of the closed interval [a, b] is

such that for it the oscillatory sum
U(P. f)— €E_ & _
( 7f) L(jaf)<_2+_2 €

whereby f (x) is integrable on [a, b] . There remain the possibility that a discountinuous

point might coincide with either a or b. The slight modification required in the theorem

is obvious. Hence the theore. J

Example 1.4.1.
A function f - [0,3] — R is defined by f(x) = x[x]Vx € [0,3]. Is f R— integrable

on [0,3] an if so, evaluate ij(x)dx
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0, 0<x<I

x, 1<x<2
Solution : Here f(x)=x[x]= f(x)= e < r o3 Then

9 x=3

2

/ has finite number of points discontinuities 1, 2 and 3.

Hence fis R— integrable by Theorem 1.1.1. Now
3 1 2 3
IO f(x)dx = IO f(x)dx+ L f(x)dx+ L f(x)dx

=0+ LZ xdx + E 2xdx

(5] 1T

1

:(2—%)+[9—4]:%.

Example : 1.4.2.
A function f [O,l] — R is difined by f(x) =2rx,

when L<xSl, r=1273,..
r+1 r

Show that f is R—integrable on [O,l] and Ll f (x)dx S

Solution :
2x, %<x£l,for r=1
4x, l<x£lforr:2
Here f(x)= 3 2
ox, l<x£lfor r=3
4 3
9, x=3
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and so on. Also f(0)=0

1
,3;~~~} and also

D=

So fhas infinite number of points of discontinuities given by S = {0,

S has a only one limit point O.
Therefore, fis R integrable.

Now

(17 (x)ete= [ £ () [ £ (x dx+If e +In1f

:EZxdx+Jf4xdx+Jf6xdx+...+j{’112(n—l)xdx
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Example : 1.4.3.
A function f:[O,l]—)R is defined by f(x):%’ for

L<x£l, n=123, ..
n+l n

2
Show that f R-integrable on [0,1] and I;f(x)dx = %—1.

1
I, =<x<Lf =
, 5 <x<Lfor n
. _J1 1 1 _
Solution : Here f(x) =173 <x£5,forn =2
l, 1 <x£l, forn=3
374 3
and so on.
) ) D 111
The points of discontinuities of f are 37

} and also

s . . C e 1 11
So fhas infinite number of points of discontinuities given by S = {5’ 37

S has a only one limit point O.

Therefore, fis R-integrable on [O,l].

Now
Jo ()= [ f () [ 7 ()bt [ £ ()

:LllderE %dx+ﬁ %dx-ﬁ-...-ﬁ-..:ll ﬁdx

:(1_1)+l(l_l)+1(l_1)+m+L(L_1)
2/ 2\2 3/ 3\3 4 n-1\n-1 n
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% (n 1)}

f_/%
f—

+
)|~
+
wl,_
+

/-\
3
;—a
~,
H_/
f_H
2=
+
l\)l»—*
L»J|»—a
L»J|»—a

.‘.llmj f —11m{1+21 +3L+ to oo}—l

X—>0 X—>0

:jol f(x)dxz%z—l

1.5 Properties of Integrable Functions

Theorem 1.5.1.
If f(x) is integrable on g < x <p, then it is integrable on g < x <p then it is

integrable on ¢<x<d where g<c<d<b. That is, f (x) is integrable in every

subinterval.

Proof. Let us choose a partition P of [a,b] with ¢ and d as ends of certain partial

intervals in such a manner that to an arbitrary positive numberg , there corresponds a

positive number 8, for which U (P, f)—L(P, f) <&, the norm of the division being <3,
Let P, be the corresponding partition of f (x) in [¢,d]. Then, since U (P, f)—L(P, f)
contains all terms of U(Pl,f) —L(Pl,f) plus other non-negative terms, we

have 0<U(P, f)-L(B,f)<SU(P,f)-L(P,f)<e whereby f(x) is integrable

on [¢,d] ]

Theorem 1.5.2.

If f(x) be integrable on g<x<cand ¢<x<p, then it is integrable on
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a<x<b, ie., f (x) is integrable on the sum of two consecutive intervals.

Proof. Let €be a positive number. Then there exist partitions of [a,¢] and [c,5] for

L2

which the corresponding oscillatory sums are each < 5

. Now the two modes of partitions

of [a,¢] and [c,b] give rise to a partition of [a,b], for which the oscillatory sum will then

be < %Jr%: &. Hence f(x) is integrable on [a,b] ]

Theorem 1.5.3.

If f (x) be integrable on a<x<b, so also is \f (x) where ), is any real number.

Proof. 1f ), = 0 the result is obvious. Taking oscillatory sum for f (x) tobe <g/ )\, the

result follows for positive 3, . Similar for negative j, J

Lemma 1.5.1.
Let P be any partition of [a,b] for f(x), g(x), f(x)+g(x),f(x). g(x) and let
the corresponding supremum and infimum be (M,m,), (M,,m,), (M,,m),(M,m),
in the sub-interval §,, then in 5,

M, —m, < (Mr—mr)+ (M, -m,)

M, <MM._. m >mm, .

Theorem 1.5.4.

If f(x) and g(x) be both integrable on g<x<p, then f(x)ig(x) are also

integrable on the same interval

Proof. Let P{a =Xy, Xy Xy ey X, 1, Xy oy X, 1, X, = b} be any partition of [a,b] applied

r=1> Ty

to all the functions f (x)+g(x), f(x)and g(x).
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We take
8, =[x_.x]or,x—x_ (1,2, ,n)
and let
M, =sup{f (x)+g(x)}, M =sup f(x), M =supg(x)

mr:inf{f(x)Jrg(x)}, m :inff(x), m :infg(x)
Then from lemma 1.5.1

e LT
We have

e,
U(P,f+g)-L(P,f+g)
<{U(P, f)-L(P, f)}+{U(P,g)+ L(P,g)} (1.5.1)
Let ¢ >0 be given, then since f (x) and g (x) are integrable on [a,b] , there exist

two partitions /, and P, such that

U(B.f)-L(B.f)<%5 and U(P.g)-L(P,g)<

g
2 2

Let P be the common refinement of # and £ . Then

U(P,f)-L(P, f) <% and U(P,g)-L(P,g) <%
Hence from (1.5.1),

_ E . E_
U(P,f+g) L(P,f+g)<2+2 €
whereby f(x)+g(x) is integrable on [a,b]

For f(x) - g(x), put — g(x) = q)(x) and proceed as before. ]
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Theorem 1.5.5.
The product f(x) g(x) of two integrable functions f(x) and g(x) ona <x<h

is also integrable on the closed interval [a,b].

Proof. suppose that f (x) and g(x) are both positive on the whole interval
[a,b].

X,..x, X, = b}be any partition of [a,6] for f(x) g(x),

r=1o "y

Let P{a =Xy, X}, Xy X
f (x) and g(x) and let the corresponding least upper and greatest lower bounds be
(M,,m,), (Mm) and (Mm) in the sub-interval §, =x, —x,_, for r=12,.. n.
Thenin §,_, (see Lemma 1.5.1)
M, SMM and m, 2 mm

Thus
M, —m, SMM —mm :M (M —m)+m (M —m)

<SM'(M'=m )+M (M -m')
If M',M_ be the upper bounds of f(x), g(x) in [a,5]. Thus

UM, =m)8, <MY (M —m' )5, +M"S (M —m )3,

r=1 r=1 r=1

U(P, fg)~L(P, fg)
<M {U(P,g)-L(P,g)}+M {U(P, f)+L(P, f)}

<k{U(P,g)-L(P,g)}+k{U(P, f)+L(P,f)} (1.5.2)

where s and psvare each less than 4.
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Let g > 0be given, then since f(x) and g(x)are both integrable on [a,b], there

exists two partitions £, and P, such that
U(B,f)-L(2.f) <% and U (P,,g)-L(P,g) <%
Let P be the common refinement of # and £,. Then

U(P,f)—L(P,f)<% and U(P,g)_L(pjg)<§

Hence from (1.5.2),

_ L it =
U(P, fg) L(P,fg)<k2k+k2k €

whereby f(x)g(x) is integrable on [a,b] ]

Theorem 1.5.6.

If f(x) be integrable on [a,b], so is ‘f(x)‘ on [a,b].

Proof. Sience f (x) is integrable on g<x<p for a given ¢ > (, there exist a
positive number § such that for a partition P{a =X X XX, X, XX, =b} of [a,b]

n—1"n

with ||P|| <0, we have

U(P,f)-L(P,f)<e,
where 0, = [xH,xr]; M ,m_ being the least upper and greatest lower bounds of
f(x)in3,.

With the same partition P let A, m. be the upper and lower bounds of f(x) be §, .

Then since

|18l < fa 21
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We have
M. —m <M, —m,
whereby
UP|A)= LB ) <U(P.S)=L(P.])
which gives
U(P|f))-L(P.|f]) <e
and |/ (x)| becomes integrable on [a,5]. H

Note 1.5.1.

But the converse of above theorem is not true, which can be seen from the

illustration that follows.

Example : 1.5.1.

1, when x is rational. }
-1 ~

Lot f<x>={

when x is irrational

Then in the closed interval [a,b] for b>q, we have
1 :—(b—a) and j:(b—a)

so that f (x) is not integrable on [a,b].

But since\ f(x)| = 1 for all values of x, I and J for \f(x)| are each equal to (b-a) whence
\fx)| becomes integrable on [a,b]

1.6. Properties of the Definite Integral

Theorem 1.6.1.

If f (x) be integrable on [a,b] and ¢ be an intermediate point then

[ 7 (x)de = f (x)ete+ [ f (x)etv.
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Proof. Since f(x) is integrable both on [a,5], it is integrable both on [a,¢] and on

[c,b]. Let P’ be a partition on [a,b] into sub-intervals.
Let P=P U{c}. Then P is also partition of [a,b].

Let B, and P, be two partitions of [a,c] and [c¢,b] respectively such that
PUP, =P . Then

U(P.f)2U (P f)=U (B f)+U (P 1)

zjjf(x)dx+ff(x)dx (1.6.1)

Now for any ¢ >0, there are partitions p, and p, of [a,c| and [c,b] for which

U (B 1)< [ 1 () + Samtv) (B 1) <[ pooae+ &

since the integrals are the greatest lower bounds of such sums. Now these two partitions

together form a partition p of [a, b], so that for this divisions, we have

U(P,.f)=U(P.f)+U(P> f)< j f(x dx+j f(x)dx+e
But the sum on the left is an upper bound for the upper integrals on [a, b] , SO that

jff(x)dngf dx+jf )dx +e

Since this hold for every ¢ > (0, we have
[[7()de<[ 7 (x)de+ [ f(x)ex (1.62)
Thus from (1.6.1) and (1.6.2)
5 o 5
L f(x)dx :L f(x)dx+L f(x)dx
Since f(x) is integrable on [a,b], i.e. on [a,c] and [c,b], the result follows

immediately. O
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Theorem 1.6.2

If f (x) be integrable on [a,b], and ), be any real number, then

b b
[ A f(x)de=n] f(x)ex.
Proof. Since f(x) is integrable on [a,5], 3 f (x)is also integrable there.
If 3 =0, the result is obvious. Suppose ) > 0. Then for any partition P of [a,b],
U(PASf)=ANU(P, f).
Take infimum of both sides. Then for all P,
b b
[nf(R)ee=A[ f(x)ds
and the property is established for ), > 0. If, however, ), <0, take #=-1>0and

SO D

Theorem 1.6.3.
If f(x) and g(x)be integrable on [a,b]then
[{r()rg@}dr =] f(x)dr+[ g(x)er.
Proof. See that the integrability of f(x) and g (x) on [a,b] implies the integrability
of f(x)+g(x) by Theorem 1.5.4
For any partition P of [a,b], we have

L(P,f)+L(P,g)<L(P,f+g)<SU(P,f+g)<U(P,f)+U(P,g)

and

ﬁ{f(x)Jrg(x)}CbCSU(Paerg)SU(Paf)+U(P,g) (16.3)

Let ¢ > 0 be given. Then there exists two partitions # and £, such that

U(R.f)<L(Rf)+Z<[ f(x)de+2
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b
U(P.f)<L(Pf)+3 < [ g(x)dc+Z
Let P be the common refinement of £, and £,. Then
b b
U(P,f) <L f(x)dx+%; U(P,g)<L g(x)dx+%
Thus from (1.6.3)

[+ g} de< [ r(x)dx+ [ g(x)dsre

Since ¢ is arbitary

[{r )+ g} des| 7(x)de+ | g(x)d (1.6.4)
Replacing f(x)and g(x) in (1.6.4) by — f(x) and —g(x),

[ {7 ()-g(x)} dx< [ —1(x)de+ j:-g(x)dx

= [1r )+ g (@)} dez [ f(x)de+ [ g (x)dr (16.5)

Hence the Theorem is established form (1.6.4) and (1.6.5) J

1.7 Some Important Inequalities

Theorem 1.7.1.

If M, m be the least upper and greatest lower bounds of an integrable function

f(x) on g<x<p, then

m(b-a)< [ f(x)dv<M(b-a).

a

Proof . Let P{a Xgo Xy X s X 10X 00X, X, = b}be a partition of [a.,b ]
into sub-intervals 6 [ X _.X ], (I’ ZLZ...,n)Mth norm of division || P || =& . Denating

M., m, to be the supremum and infimum of f (x )in §,, we have

m<m <M <M
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ile.

or,
m(b—a)<L(P,f)<U(P,f)<M(b-a).
Let now 6 —>0
m(b—a)SISJSM(b—a)
or, m(b-a)< [ f(x)dxs| f(x)dx<M (b-a)
Since f (x) is integrable, f (x) is integrable, / = J and hence
[ £ (x)ax =jb f(x)dxzjj f(x)jfdx
So, m(b-a)=| f(x)dx<M(b-a)

Hence the Theorem. J
Corollary 1.7.1.

Iff (x) be integrable on g < x < p, then there exists a number n lying between

the bounds of f (x) on [a,b] , such that
[ £ (x)ds=p(b-a).

Proof. This is obvious since m<p <M . J

Corollary 1.7.2.

Iff (x) be continuous on [a, b] , there exists a number & between a and b such that
b
[ f(x)de=(b-a)f(e), a<g<b.
Proof. Since f (x) is continuous on a<x<bh, it takes the value pn where

m < <M at some point & on [a,b],ie, f(£)=n |
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Theorem 1.7.2.

If f(x) be integrable on [a,b] and f(x) >0,Vxe [a,b], then

If dx>0 when p>q

<0, when p<qg.

Proof. Let p>qg. Now f(x)ZOVxe[a,b]:mZO.

Therefore by Theorem 1.7.1
I f(x)dc=m(b—a)=0[b—a>0]
Again, p<a=a>b
:>I f(x)dx=m(b-a)=0 [ a-b>0]

=" f(x)dx20= [ f(x)dr<0

The results are trivial when a = b.

Theorem 1.7.3.

Iff (x) and g (x) are both bounded and integrable on a < x <b, and f (x) > g(x),
then

I:f(x)zdxzjj g(x)dx

Proof . Since f(x) and g(x) are both bounded and integrable on

a<x<b, f(x)-g(x) isalso such and hence by Theorem 1.7.2 f(x)—g(x) being >0;

[ {7 (x)-g(x)}ax=0

whereby the result follows. ]
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Theorem 1.7.4.

If f (x) be interagble on[a,b], then

Ib f (x )d x| < Ib
Proof. We have seen in Theorem 1.5.6 that if f(x) be integrable on [a,5], so is
£ ()] i |7 ().
Next we have Vxe[a,b],

)= f () =|f ()

and by Theorem 1.7.3, since g<x<b,

—j:|f(x)|dx gj:f(x)dx gf’
- <[

Hence the Theorem. J

f (x)|dx

1 (x)]dx

f(x)|dx

f(x)‘dx.

1.8 Illustrative Examples

Example 1.8.1.

x*, when 0< x<1

Given f(x) defined by f(x){\/; for1<x<2

evaluate IOZ f (x) dx .

Solution

x? and \/x are integrable on their respective given renges, since they are both contiinuous
on [0,2],

hence [ f(x) dc=[ f(x)dv+] f(x)
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:j;xzdxqf&dx:@_l.

3

Example 1.8.2.

1 1 1 _ .

Show that f(x)= ?for m<x3?,n =0,1,2,... and f(0)=0 is integrable
1 2

over [0, 1] and Iof(x) dng

Solution :

1, 2<x£1, for n=0
l, Lz<x£l, for n=
Here f (x)=|2 2 2
%, %<x£%, forn=2
and so on.
. . . 11 1
The points of discontinuities of f are PRU AT

So f has infinite number of points of discontinuities given by

1 1 1 . .
S= {57_27_37""} and also § has a only one limit point O.

Therefore, fis R — integrable on [0,1].
Now

Enf(x)dx - Ef(x) a5c+I;12f(x) cbc+...+jjlf(x)cbc
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Example 1.8.3.

n
4

Evaluate Fs'i%dx from m(b—a)< I:f(x)dx <M (b-a).
Solution :

sin x . T .. .
Let f (x): . It decreases in | 7,5 | since it is continuous there and
X 473

f'(x): xcosxz—sinx <0
x

Hence the minimum value of the function is

n -
3
and the maximum value is
T
M= f(ﬂ) _ s _4. 1
4 b T 2
4

whereby

m(b-a)< [ f(x)dx <M (b-a)

< gsinxde 4 (E_E)
J.Z X 27 3 4

ie. ﬂ(E—E)SI Sinxdxgi(ﬂ_ﬂ)

’ 2r \3 4 X 27

s

o \3 4

Y

o~
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1.€. ¥

Do 3 sin

4

V2
Example 1.8.4.

l<fL<£
Show that 5 = ], m 6
Solution :
We have in 0<x <1,
4—x2+x3:4—(x2—x3)<4
also,
4-x+x =(4-2) +2 >4-x"
Therefore on 0<x <1, 4>4-x"+x’ >4-x> or,

1 1

1
—=< <
/4 \/4_X2+x3 \/4_X2 (1.8.1)

Andat x=04=4-x"+x’ =4-x" Alsoat x=14=4-x"+x.

Again 1 are all continuous on (< x<1 and hence

1 1
1 and ———
2" J4-x+x° " Va-x*

intergable there and satisfy (1.8.1) on 0 < x <1. Thus

] %d’“ﬁﬁmﬁ Nt

1
< —_—dx< S
2 J. "V4-x+x [Sm }0 6

1.9. Fundamental Theorem.

Definition 1.9.1.

Let a function f : [a,b] — R be integrable on [a,b]. Then for each x € [a,b], f
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is integrable on [a,x]. " f(t)dt exists and it depends on x. Therefore we can define
a function F on [a,b] by F(x)=[ @) dr
Theorem 1.9.1.

If f:[a.b]—>Rbe integrable on [a,b]then the function F defined by
F(x)= [ f(1)dt,xe[a,b] is continuous on [a,b].

Proof. Let x,,x,be any two points in [a,b].

F ()= F ()= [ f (=[] (e = f (r)dir

Therefore ‘F (xz)—F(xl)‘ =

J:sz (Z )df ’ Since fis integrable on [a,b] , [ is bounded

on [a,b]. Therefore there exists a real number [ > such that ‘ f (x)‘ <k for all

xXe [a,b].
If x, > x,,
J, 7 @)= [71F (0 e = (v, =)k
If x, >x,,
[ @ai|=|[" £ @) < [ () = ()

Consequently | (x,) = F (x,)| < |x, — x|k

Let us take g>0. Then |[F(x,)—F(x)|<e for all x,x, in [a,b] satisfying
£
2
Let & Z%. Then |F(x,)—F(x)|<e forall x,x, in [a,5] satisfying |x, - x|<8.

This proves that /”is uniformly cotinuous on [a,5] and therefore Fis continuous on [a,5].

‘xz—xl‘<

This completes the proof. ]
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Example 1.9.1.

f( ) 0, for—-1<x<0
Xl=
Let 1, for 0<x<1

Prove that f is integrable on [-1, 1]. Show that the function I defined by

F(x) = ij(l)dt is continuous on [—l,l].

Solution :

Here fis bounded on [-1,1] and is continuous on [-1,1] except at only one point,
0. Therefore fis integrable on [—l, 1].

For —-1<x <0, F(x):Lf(l)dl:O

For 0<x<1,
F(x)=[ £ty di=[ f(t)dr+[ f(c)e
=0+ [ f(1)di =x

0, for—-1<x<0

x, for 0<x<1.

We have /(%) ={

Clearly, F'is continuous on [-1,1].

Note 1.9.1. Here f is not continuous on [—l, 1], but I is continuous on [—l, 1].

We observe that the function /' is continuous on [a, b] when f is integrable on
[a, b ] )

If however, fbe continuous on [a, b | then F will be differentiable on [a, 5] as we

shall see in the next theorem.
Theorem 1.9.2.

If a function f: [a,b] — R be integrable on [a, b] then the function F defined
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by F(x)=[ f(t)dr, xe[a,b]is diferentiable at any point ¢<[a,b] at which f is
contimious and F'(c)= f(c).

Proof. Let c€[a,b] and ¢ > 0. Since fis continuous at ¢ there exists a positive §
such that |/ (x)— /()| <z forall xe[c,c+8).

Let us choose / satisfying 0<h<§. Then f(c)-e< f(x)<f(c)+e for all

xe[c,c+h].

Therefore
[ ) -elae< [T p(x)av < [T £ () + el

or |f(c)—c|-hSF(c+h)—F(c)£|f(c)+s|-h

|F(c+h)—F(c)

or | . - f(c)|<e.
This holds for all 4 satistying 0<h<§.
This implies
. Fl(c+h)-F(c
fip S
That is, RF'(c)= f(c) (1.9.1)

Let ce[a,b] and ¢ >0. Since fis continuous at ¢ there exists a positive n such
that|f (x)- f(c)| <& for all xe(c—m,c].

Let us choose / satisfying 0 </ <n.

Then f(c)-e< f(x)< f(c)+e forall xe[c—h,c]. Therefore

j:h f(c)—gldr < jh f(x)dx < jh| 7 (¢)+|ax
or |f(c)—c|-hSF(C)—F(c—h)S‘f(c)+s|-h

IF(C‘@I‘F(C)_f(C) <e.

or
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This holds for all h satisfying 0<h<n.
This implies

Iim
h—0—

F(c+h)-F(c)
T—f(c).

That is,
LF'(¢)=f(c)- (1.9.2)
From (1.9.1) and (1.9.2) it follows that fis differentialble at any point ¢ [a,b] at

which fis continuous and F'(c)= f(c). ]

Theorem 1.9.3.

If afunction f:[a,b]—> R be continuous on [a,b) then the function F defined
by F(x)=[ f(t)dr, xe[a,b] is differentiable on [a,b] and F'(x)= £ (x) for all
xe[ab].

Proof. Case 1. Let c€(a,b)

Let us choose / such that ¢+he[a,b]. Then
Fe+h)-F(c)=["" f(t)dr
Let 4 >0. Since f is continuous on [c,c+h], f is bounded on [c,c+h]. Let

M = Supze[c,c+h] f(l)’ m=in ZE[C>C+h]f (Z) )

Then m Sf(l) <Mforall e [c,c+h].
c+h
Therefore mh < I f(t)dt <Mh
c+h
of, L f(t)dlz wh, where m<u <M .

Since fis continuous at [¢,c+h], = f (c +6h)for sume @ satisfying 0 <@ <1. Then

F(c+h21—F(c) :f(c+6h).
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Since fis continuous at ¢, lim, ., f(c+6h)= f(c).

Therefore we have

F(c+h)—F(c)

49

lim =f(c) (1.9.3)

h—0+ h

Let <0 . Considering the interval [¢ +A,c],

we have
-mh< [ S (r)di <=Mp,
where M = Sung[wrh,c] f(l)ﬂ m=in ze[c+h,c]f(l)'

o f(c+h)—F(c)
’ h

=W where m<u<M.

Since f'is continuous on [c +h, c], W= f(c + Gh) for some @ satisfying 0 <9 <1.

F(e+h)-F(c)

Taking limit as /4 —» 0 —and noting that Y = f(c+6h).
Since fis continuous at ¢,lim, , f(c+06h)= f(c).
Therefore we have
. F(c+h)-F(c
;}Lr& ( 2 ( ):f(c) (1.9.4)

From (1.9.3) and (1.9.4) we have F'(c)=f(c).
Case 2. Let ¢ = a.
Let us choose 4 such that a+/A <b . Then

Favh)-F(a)=[" f(t)dr
Considering the interval [a,a + /], we have
mhgjﬁh f(r)dt < M,

where

M= sup f(1), m= inf ]f(t)

te[a.a+h] te[a,a+h
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or F(a+h)—F(a)
’ h

=u, where m<u<M .

Since f'is continuous on [a,a+h]u = f(a +6h) for some @ satisfying <@ <1.

Taking limit as /4 —» 0+ and nothing that lim, . f(a+0h)= f(a), we have

11mh~>0+

Fla+h)-F

(a 2 (a):f(a) or, F'(a)=f(a).
Case 3. Let ¢c=p
Proof is similar to case 2.

This completes the proof. ]

Definition 1.9.2.

A function ¢ is called an antiderivative or a primitive of a function f on an

interval I, if (I)'(x) = f(x) for all xe].

If ¢ be an antiderivative of fon 7, then ¢ +c, where ¢ ¢ R, is obviously an antiderivative
of /. This shows that if f admits of an antiderivative on /, then there exist many antiderivatives
of fon /.

It follows from the previous theorem that if f be continuous on a closed interval [a, b] ,
then f possesses an antiderivatrive on [a, b] given by F. Therefore continuity of f ensures
the existence of an antiderivative of f.

Note 1.9.2. It is worthwhile to note that continuity of f is not a necessary
condition for the existence of an antiderivative of f.

Jfor example, let f [—l,l] — R be defined by

2x sinl— cosl

f(x)= X x’
0

xz0

x=0.

2

Here f is not continuous on [—l,l], 0 being the point of discontinuity.

xzsinl x#0

Let ¢:[-11] > R be defined by ¢(x)= x’

0 x=0

2

Then q)'(x) :f(x)for all xe[—l, 1].
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Then ¢ is an antiderivative of f on [—l, 1] although f is not continuous on [—l, l].

Theorem 1.9.4.
If f:[a,b]> R be continuous on [a,b], and ¢:[a,b]— R be antiderivative of
fon [a,b], then
J£(0) de=6(5)-0(a).
Proof. Since f is continuous on [a,b], f is integrable on [a,b].
Let F(x)=[ f(1)dt,xe[a,b].
Since fis continuous on [, 5], Fis differentiable on [a,5] and F'(x) = £ (x)for all

x €[a,b], So F is antiderivative of f on [a,b] on [a,b]

Since ¢is an antiderivative of f on [a,b], for all x € [a,b], for all xe [a,b], q)(x) =

F’(x) where ¢ is a constant.

So ¢(a)=F(a)+c=c since F(a)=0.

Therefore ¢(x) = F'(x)+¢(a), for all xe[a,b].

Consequently, [ 7 (x)dsx = F*(b) = §(b) - 6(a).

Note 1.9.3. The theorem states that if f(x) be continuous on [a,b] then the
integral [ f(x)dx can be evaluated in terms of an antiderivative of f(x) on
[a.5].

O

Theorem 1.9.5.

If f: [a,b] — R be integrable on [a,b], and (ii) f possesses an antiderivative
don [a,b], then
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[ 7(x) de=0(b)-0(a).

Proof . Let P ={x,,x,,...,x,} where a=x, <x, <..<x, =b be a partition of [a,b].
Let

M, = sup f(x), M, = inf f() for r=12,..,n

xe[x,—1,%,] xe[x,_-1x, |
Since (I)'(x) =f (x) forall xe [a, b], ¢ satisfies all conditions of Langrange’s Mean

value theorem on [x,_,x |, for r—1,2,..

=12 r

Therefore for r—1,2,...,n,
d)(xr)_d)(xrfl) = (I)'(E.W)(xr_xrfl) for some &, in (xr—lﬂxr)
FE) (55,

The summation gives

But m, Sf(ir)SMr for r=12...n

Therefore

rznl:mr(xr—x”) <4(b)-0(a) <M, (x,—x, ).

Therefore L(P,f) < (I)(b) —(I)(a) < U(P,f) .
This holds for all partitions P of [a, b] . So (I)(b) - (I)(a) is an upper bound of the set

{L(P, f):Pis any partition of [a,b]}}.
As the supremum of the set is || f ()i, it follows that
[ £ (x)x <0(b)-0(a) (1.9.5)
Also ¢(b)~d(a)is a lower bound of the set {U(P, f): P is any partition of [, 5]}}.

As the infimum of the set is I f dx < (I)( ) (I)(a) (1.9.6)
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From (1.9.5) and (1.9.6) We have
[[f()dx<o(b)-o(a)< [ f(x)dx.
Since f is intrergable on [a,5],
[[r(yae=[ 1 (x)e= [ (x)ex.

Consequently I:f(x)dx =0(b)—d(a). O

1.10. Mean Value Theorem for Integrals.

Theorem 1.10.1. [First Mean Value Theorem]

Let f (x) and §(x) be two bounded functions integrable on g<x<p and let
O(x) keep the same sign on [a,b], then

[[7()o()dr=u [ o(x)ar

where m<u<M , m and M being the greatest lower and least upper bounds of
f(x) on [a,b].

Proof. Frist we suppose that ¢(x) is non-negative, i.e., $(x)=0 in [a,b].

Now in g<x<b,

m< f(x) <M or, mh(x)< f(x)o(x) <M(x).

Since m(x), f(x)d(x)and M¢(x) are each integrable on [a,b], we have

[[mo(x)ds < [ £ (x)o(x)dv < [ M (x)dx
e m o(x)dx < [ f(x)o(x)dtv<M[ o(x)d

Therefore, I: F(x)o(x)dx = qu o (x)dx

where m <pu <M .

The case when ¢(x) is negative is similar. Hence the theorem. ]
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Corollary 1.10.1.

If , in particular, (I)(x) =1 for all xe [a,b], then

I:f(x) dx:ujjdx:u(b—a),
where m<u<M .

If, moreover, f is continuous on [a,b], there exists a point & in [a,b] such that

[ 7 (x)dc=7(£)(b-a).

Since ie[a,b],izcﬂr@(b—a)for some Q satisfying 0<0<1.
Therefore

[[7(x)dx=(b-a)f(a+6(b-a),
where 0<0<]1.

Example 1.10.1. Use first mean value theorem to prove that

Egjié 1 dxgﬂ.;
N (S BT

k<1

1

. _ 1 B 1 1
Solution : Let f(x) = m,xE[OJZJ and (x) —W,XE[O,E} Then

} and ¢(x)>0 for all xe|:07%:|.

N | —

f and ¢ are integrable on [0,

} , by the first Mean value theorem there exists a point

N | —

Since fis continuous on [0,

£ in [0, %} such that

[F £(x)6(x)de = £ (6) [} ()

2 1 dx 1 ;1
o, Io \/(l_kzxz)(l_xz) = \/l—kziz .[o \/l— 2 dx
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_x__1
- 6 1_k2<2;2
1 1 1
L 0<E<T 1< <
Since 2 \/1_kz§z Ji-k*/4
Therefore
Egjé 1 o< 1
6 6 V1-k*/4

° \/(l—xz)(l—kzxz)

Lemma 1.10.1. Abel’s Intequality
If (i) a,a,,..,a, is a non-decreasing sequence of n positive numbers.
(ii) v, v,,...,v, is a set of any n numbers and
(iii) h, H are two numbers such that
h<vi+v,+.v,<H for 1<p<n
then ah<ayv, +a,y,+.+ay, <aH.

Proof. Writing S,=v,+v,+..+v,, we have
dav,=a,8 +a,(S,-8)+..+a,(S,-S.)
r=1

+.+a,(S,-S,)
=(a,-a,)S, +(a,-a,)S,+..+(a,,—-a,)S,  +a,s,.
Nowby (i) a,—a,, a,—a,..., a, , —a, are all non-negative. Also by (iii) h <, < H for

all p<n.
Therefore

Zn:arvr <(a,-a,)H +(a,-a,)H +..+(a,,—a,)H +a,H =aH
r=1

and

Zn:arvr >(a—a,)h+(a,—a,)h+..+(a, , —a,)h+ah=ah

r=1

Hence the theorem.
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Theorem 1.10.2. Second Mean Value Theorem (Bonnet’s form)

Let f (x) be bounded nonotonic non-increasing and never negative on [a,b] ;
and let (I)(x) be bounded and integrable on [a,b]. Then there exists a value & of x

on [a,b], such that

j:f(x)q)( j¢ )i, a<&<b.
ProofLet P={a=x,,x,..,X, ,X,,..,X, ,x, = b} be any partition of [a,b] and let

M., m, be the supremum and infimum of ¢(x) on §, =[x, ,,x,|. Suppose also that

g =aand &, (r % l) be any arbitrary point of 6, . Then

mB, <[ §(x)de<M3,

Xp1

and m3, <¢(&)8, <MJS, .

Putting r =1,2,3,..., p where p <n and adding we have

8, <[ ¢(x Ydr < M5,

r=1

ad XM, §¢(ér)ér SN

-J, o(e)ds

Thus

gzpl:(Mr—mr)Sr gznl:(Mr—mr)Sr

Vi

or, [70(x)de - D (M, -m )5, <3 0(2,)3,

r=1 r=1

I¢ Mm)6

=1
Now ¢(x) being integrable, I * ¢(x)dx is a continuous function of x and as such
must have its supremum and infimum on [a,5] and must attain them.

Let M, m be the respective supremum and infimum of _[:d)(x) dx on [a,b].
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Hence

m-> (M, -m)5, <36 (£,)5, <M +Y (M, -m,)3,

r=1

Next we apply Abel’s Inequality by writing
ar:.f(EJr)j Vr:d)(ir)Sr?

—m)s,. H=M+Y (M, -m)3,

r=1 r=1
and obtain

n

P im0, -m)5, <3/ )0(E ),

sf(a){M +§(Mr—mr)6r}

Let now norm of P —» 0 so that > (M, —m,)8, =0

r=1

whereby mf(a)SI:f(x)¢(x)dx SMf(a)
ie. [ 7(0)o(x)dv=ps(a), msp<m

But m, M are the infimum and supremum of the continuous function I o (x)dx

2

hence it must assume every value intermediate to m and M. Therefore, there must exist at
least one value & on g < x < p for which I:f(x)d)(x)dx = f(a)fd)(x)dx

This proves Bonnet’s form of second mean-value theorem ]
Theorem 1.10.3. Second Mean Value Theorem (Weierstrass’form)

Let f (x) be bounded and nonotonic on [a,b]. and let ¢ (x) be bounded and

integrable on [a,b]. Then there exists at least one value of x, say & on [a,b], such

that

£ ()b(x)de= £ (@) [Lo(x) e £ (5) [ o(x)be; <t <b

a
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Proof. Case 1. Let f be monotonic decreasing on [a,b] and let
y(x)=f(x)-f(b),x€[a,b]. Then yis monotonic decreasing on [a,b]and
\y(x) >0on [a,b] .

By Bonnet’s theorem there exists a point £ in [a,5] such that
[ w()8(x)de = (a) [ o(x) v
o, 11/ (¥)-7 (0)Jo(x)de = [ £ (a)- £ (8)] [ ()
or, [ £ (x)(x)dx = 1 (a) ()
O[] o()ete— [ o(x)ak|
- f(a) [ o(x) e+ (8) [ 9(x) .
Case 2. Let fbe monotonic increasing on [a, 5] and let w(x)=f(b)- f(x),x€[ab].

Then v is monotonic decreasing on [a,5] and y(x)>0 on [a,5].

By Bonnet’s theorem there exists a point & in [a,b] such that
[ w(@)o(x)dx=w(a)[ o(x)ax
or, [/ (B)=f(x)Jo(x)ete =[ £ ()= £ (x) ][ o(x)ax
or, [ £(x)e(x)dx= f (@) [ o(x)ax
+f (8) [ o(x)atv—[ o (x)ax |
= f(@) [ o(x)de+ 1 (5) [ o (x)de

This completes the proof ]
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Example 1.10.2.
Show that the second Mean value theorem (Bonnet’s form) is applicable to

J‘bsinxdx<g
a X Ta’

a

. .
L f(x) sn;x dx where 0 <q<b<w. Also prove that

Solution :

Let f(x)=—.xe[ab]. and ¢ (x) Sin x, xe [a,b] Then f(x) and ¢(x)are both

1
X
integrable on [a,b] and f(x) is monotonic decreasing on [a,5] and f(x)>0 for all

xe[a,b].

By the Mean value theorem (Bonnet’s form) there exists a point & in [a, b] such that

T T P

a X

<

Therefore

5
sin x

j dx

a X

2
-

Example 1.10.3.

Show that the second Mean value theorem (Weierstrass’ form) is applicable to

b Q1 4
ISII;xdx

<X
a a’

L su;x dx where O<qg<b <. Also prove that

Solution :
Let f(x)= %,x €[a.b] and ¢(x)=sinx,xe[a,b]. Then f(x) and ¢(x)are both
integrable on [a,b] and f(x) is monotonic decreasing on [a,5].

By the Mean value theorem (Weierstress” form) there exists a point & in [a, b] such
b £ b
that [ f (x)(x)dx = f (a) [ 6 (x)dc+ £ (b) [ (x)dkr.

of, I: Sil; X iy = (%) f sin xdx + (%) Lb sin xdx

= (%)[— cos& +cosa+ (%)[—cosb +cosk]
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Therefore

Ibs»iﬂdx

S S(%)[—cos@rcosa]+(%)[—cosb+cos§]

< (%) {|— cos §| + |cos a|} + (%) {|— cos b| + |cos§|}

< (1+1)+%(1+1)

Q| Q=

<—,a<b.

1.11. Change of Variable in an Integrals

Theorem 1.11.1.

1) [ f(x)dsexists
(ii) x=4(1)is a derivable function on [a,B] and §' (1) # 0 for any value of t and
d(a)=a,0(B)=b, and
(iii) f{0(t)}and §(t) are bounded and integrable on [o.B] then
J, 7 (e)ate= [ {o o)} (1)t
1, =P)be any partition of [c,B] and let

Proof. Let P(oc=to,tl,tz,...,tr_l,tr...,tn_l, ;

P(a=x,x,%,..,X,_,X,..x,_,x, =b) be the corresponding partition of [a,b], where

x, =6(1,).

By Mean value theorem of differential calculus

v = =0()=00.) = (-1, (e, 1, <8 <1,
Let d)(ir) =1, . Then

o(€,)=n,
ifmJ@f%J=ifw@MW@J@—M)
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Let norm of P 5 Q, then the norm of p' also —» (0 and by conditions (i) and (7i7)
b
B 14
2 (x)de = | f{o()}o (1)

Hence the theorem. J

Example 1.11.1.

1
Evaluate I 1

1t dx by the substitution x =tant.

Solution:

- _nr
Let (I)(Z)—tanl,le[ 4,4}

Then ¢ is differentiable and strictly increasing on [—g,g} (I)'(Z) is integrable on

T T T\ _ T _
RAr A Wy R vy B
1
Let /(¥)=1—=x<[-L1].

Then |/ (x)ke= [ £ (6(1))& (1)
- Ji ﬁ sec’ tdt

an’ x

(i g T
_I4gdl_2~

1.12. Integration by Parts

Theorem 1.12.1.

If f(x) and g(x) be derivable on g<yx<band if f'(x) and g'(x) are
integrable there, then

[ (g (¥ ae=[7(x)g(x)] - [ g(x)f (x)dx.
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Proof. Clearly [ 7 (x) g(x)}' is integrable since

[f(®)e(x)] =/(x)e(x)+f(x)g'(x)

is a sum of products of integrable functions.
Then by Fundamental Theorem of integral calculus

[Tr()g()]dy=[7(x)g(x)]
e, [ {f/(x)g(x)+ £ () (x)}dr=[f (x)g(x)]
e, [[7(x)g (¥ =[ 1 (x)g(x) ] - [ g(x) 1 (x) et

This completes the proof. ]

1.13 Summary

1. In Section 1.1 Introduction, Definition of Partition, Refinement and darboux’s
Theorem has been discussed.

2. In Section 1.2 and 1.3 we study about the equivalence of two definition of
Definite Integral, Necessary and sufficient condition for a function to be Riemann Integrable
and Integrability of piecewise continuous and monotone functions.

3. In Section 1.4, 1.5, 1.6 and 1.7 we have focussed on Properties of Integrable
function, Properties of definite Integration and some important inequalities.

4. In Section 1.9 Fundamental Theorem and in section 1.10 Abel’s Inequality,
First Mean Value Theorem, Second Mean Value Theorem (Bonnet’s Form and Weierstrass’s
Form) has been taken for discussion.

5. In Section 1.11, and 1.12 we have studied about Change of Variable in an Integral
and Integration by Parts.

1.14 Exercise

1. Let f:[a,b] >R be bounded and monotone increasing on [a,b]. If P, be the

partition of [a,5] dividing into n subintervals of equal length prove that

J F(x)ae<U(B )= [ 1 (x)ate + 229 1 (b)- 1 (a)].
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Consider the sequence of partitions {P,} and deduce that lim, , U(P, f)= Jj f(x)d

Utilise this result to evaluate
(i) | xdx, (ii) | x*dx, (iii) [ e"dx
x®. xis rational

2. A function f(x) is defined on [0,1] by f(x) :{xg

2

X 1s rational -

(i) Evaluate Ll f(x)dx, I; S (x)dx
(i) Show that f(x) is not integrable on [0,1].

3. Prove that lim_ e’xzf: e"dr =0
4. Show that

() 5 IJ—

(i) 27‘ < <A
I sin x 9

=, Vn>1,

(ii1) 0573 < [ ——% 0,595,

P J4=-3x" +x°

2 3
i

j T : X dx <
@) 24\/5 <I0 sin x4+ cos x 24

TCS

KL T dx
(V)96<I§5+3sinx 24

_1
5. Let f be continuous and let F I xX— f df . Show that

:xjoxf(z)dz—joxzf(z)dz

6. State and prove the Fundalental theorem of integral calculus. Deduce that

f:f(x)dxZ(b—a)f{a+6(b—a)},ose31
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under suitable conditions on f (x) to be stated by you.

7. If cvand ¢ are positive acute angles, then show that

¢ dx (o)
¢<'L J1—si )

n’osin’ x \/l— sin®ousin® ¢ -

If o =¢ == then prove that the integral lies between 0.523 and 0.541.
8. Prove that

1 l
Imdx lies between —= and =
0 24x 2

9. Show with the help of the function f defined by

1 1 1
—for <x<—_ n=012 ..
f( ) 2n 2+1 2n’ 9 Ly &

and f(0)=0 that fis integrable over the interval [0,1], although it has an infinite

1
number of points of discontinuity. Also show that IO S (x) dx = % .

10. Prove that the following function f defined on [-11] by

f(x) =2xsin (%) —(g)cos(%), x#0

X

cannot be integrated on [—l, 1] , but has a primitive there.
11.If f(x)=2x for 0<x<?2 and f(x)=x" for 2<x<3, show that
Jof () =3
12. if f(x) be continuous on [a,6] and f(x)=0 for all xin[a,b] and if
Ibf(x)dx =0, prove that f(x)=0 for all X€ [a,5].
13. Prove that

i i
0< Iz sin™! xdbx < Iz sin”x dx
0 0

and

0< IOZ tan™"! xdbx < IOZ tan”x dx
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1, when 0<x<1.
14. Let f(x)=

x, when 1 <x <2.

Show that /* defined by #(x)=["/(f)dt,0<x <2 is given by

X, 0<x<l1
F(x)=
() Laew) 1<xs2
2

and hence verify that F”(x)= f(x) on [0,2]
15. Evaluate the limits

. 1 1 1
| + +..+
@) lm””‘”[nJrl n+2 }

n+3n
A i inZToisin2®y ysinim
(i) hm,_,, s1nn sin PR sin n

. n n
(iii) lim,,_,,,

n
+ +...+
L +17 427 n2+4n2J

ot [[1-2){12). (12

n

o i (1242 ) (]

3 [~

n

16. Use Bonnet’s form of second Mean value theorem to prove that
b,
I sin x~ dx

<Lito<a<bew
a a

Sk

f

17. Discuss tha applicability of the second Mean value theorem to the integral
x*cosxdx

[SIE]

18. Verify second Mean value theorem (Weierstrass form) for the function f on the
indicated intervals.

(i) f(x): xsinx,xe[—%,g]

65
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(if) f(x) =xe*,x e [—1,1] ,
(iii) f(x)=xsinx,xe[n 2n].

Answer :

Lot L ane

15. (i) 2log?2, (if) % (iif) tan"'2, (iv) g, () g.
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Unit - 2 : Improper Integrals

Structure

2.0 Objective
2.1 Introduction
2.2 Exercise 1

2.3 Necessary and Sufficient Condition for the Convergence of the First Type
Improper Integral R10 _[: f(x)dx
2.4 Tests for Convergence (First Type)

2.5 Necessary and Sufficient Condition for the Convergence of the Second
Type Improper Integral Rba Lb f(x)dx
2.6 Tests for Convergence (Second Type)

2.7 Convergence of the Integral of a Product
2.8 Convergence of Gamma and Beta Functions
2.9 Summary

2.10 Exercise 2

2.11 References

2.0 Objectives

In this chapter we have discussed about the types of Improper Integrals and their
Convergence, different methods for test of Convergence, Convergence of the integral
of Product and Convergence of Beta and Gamma Functions.

2.1 Introduction

b
The two important limitations in the definition of definite integral I f(x)dxare

(1) the limits a and b are finite and (i1) the integrand is bounded and integrable in
a < x <b . If either (or both) of these limitations is not fulfilled, that is, when a limit

b
is infinite or the integrand becomes infinite in g < x < p then the symbol I f (x) dx

is called an improper integral.

69
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If either one or both the limits of integration become infinite, and the integrand

bounded, then Ib f (x) dx is called an improper integral of first kind. If f (x) becomes

b
unbounded on [a,5] and the limits of integration are finite, then we say that I f(x)dx

is an improper integral of second kind.

A. Improper integrals on an unbounded interval (First Kind).

There are three kinds of unbounded ranges over which integrals may be taken are
symbnolised and defened as follows :

(1) Let f (x) be bounded and integrable in g < x < Bfor every B> . Then the
symbol r f (x)dx called the improper integral, is said to coverage or to exists if

lim _[j f(x)dx finitly and we write

B—eo

[ 7 (x)ac=t1im [" £ (x)ds.

B—w
The improper integral diverges if the limit tends to infinity with a fixed sign.
Finaly when none of these alternatives occurs, we say it is oscilatory.

b
(2) If f (x)be bounded and integrable in 4 <x <4 and lim,__, L F(x)dx exists
b
finitely then we say that the improper integral Jl f (x)dx exists or is convergent and

we write _Eof(x)dx = Ali_}rzlmjjf(x)dx,

If the limit tends to plus infinity or to minus infinity, then the improper integral
is said to diverge. And if there is no limit, the integral is said to be oscillatory.

3) If f (x) be bounded and integrable in 4<x<g for every 4<g and in
. a . B
a<x<B for every B>qg and lim, Lf(x)dx and 11mBHwJ‘ f(x)dx for

A<a<B exist finitely then we say that the improper integral [w f(x)dxis

convergent and we write

[ (ae=[" 7 (x)de+[] f(x)ds

= tim [*f (x)dc+lim [ £ (x)dx.

A—>—0 B—w
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Example 2.1.1.

1
1+ x?

Does the improper integral IO dx exist?

Solution : To determine whether this integral is convegent or not, we see that

1+1x2 is bounded and integrable in Q< x < R for every B>(0 and

lim 1 ~dx = lim [tan’1 x]B =1lim (tan’1 B—tan' O)

Bowd0 |+ x Bow 0 B—w

=limtan'B="2
B—w 2

1
1+ x?

. “ . . . T
Hence the integral L dx does exist and its value is equal to =5

5
Example 2.1.2.

Evaluate IO sinxdx, if it exists.

Solution : Here

lim | sin xdx = lim [~cosx]” = lim (cosa—cos B),
B—w® ¢ B

Bowda —>00

oscillates finitely. Therefore, Iw sin xdx is oscillatory.

Example 2.1.3.

Evaluate IO e dx, if it converges.

Solution : Here
. B . B
lim exdx:hm(e —l),
B—wda B—w

Since (eB—l) increases beyond all bounds as B —s oo, this integral does not
converge.
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Example 2.1.4.

0 2
Evaluate I xe ™ dx, if it converges.

Solution : For convenience, we break this infinite range into two parts as
0 2 w2
]:LOxe dx+I0 xe " dx.
Now

. 0 2 . B 2
lim | xe* dx+1lim | xe*dx
A—>—0d4 B—w 0

1 2 0 1 2 B
= lim [——ex } +1lim [——ex }
A——0 2 4 Bow 2 0

= lim (leA2 —l)+lim (l—leBz).
2 2

A——0 2 Bw\ 2

Thus r; xe “dx=0.

B. Improper integrals on a finite interval where the integrand is
unbounded (Second Kind).

Here also we have three kinds of integrals may be taken are symbolised and
defined as follows :

(1) Let f (x) has an infinite discontinuity only at the left hand endpoint «a, then
by

I:f(x)dx we shall mean lim | 1 (x)dx, O<e<b-a.

>0+ Jat+e

(2) Let f (x) has an infinite discontinuity only at the right hand end-point b, they
by

Ibf(x)dx we shall mean Sliﬁr&jjigf(x)dx, O<e<b-a.
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(3) Let f(x) has an infinite discontinuity at the point x=cwhere a<c<b,

g0+ 8—0+

then by ij(x)dx we shall mean lim Lcigf(x)der lim Jisf(x)dx.

If either of these limits fail to exist, we say that the integrand does not exist.

If however we make ¢—=§ and say that

I:f(x)dx means lim “:Sf(x)derJ.:Sf(x)dx}

g0+

b
We heve what is called the Cauchy Principal value of I F(x)dx and write it as

Pchf(x)dx:lirg[":_gf(x)dx+f+gf(x)dx]

It may sometimes happen that the Cauchy Principla value of the integral exists
when according to the general definition the integral does not exist.

Whenever the appropriate limits exist finitely, an improper integral is said to be
convergent. When the appropriate limits fail to exist or tend to infinity with a fixed
sign, an improper integral is said to be non-convergent. In the third case both limits
must exist and be finite in order that the integral is to converge.

Ilustrative Examples

Example 2.1.5.

1]
Evaluate IO;dx, if it converges.
. 1 . . . ..
Solution : Here < has an infinite discontinuity at y =(0. So, we evaluate

J‘I%dleogl—logsz—loge
As ¢ >0+, loge —>—x

. 1] . .
Hence hmHWL;dx does not exist and the integral does not converge.
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Example 2.1.6.
_dx =sin”"' (1—8) .
Evaluate IO m , 1f it converges.

Solution : Since the integrand becomes infinite as x —>1, we evaluate

1-¢ dx L
IO — =sin 1(1—8)

As g 50+, sin'(1-g)—>sin™'(1) :%
Hence ld—x =T
o J1-x* 2
Example 2.1.7.
Prove that J‘jlé exists in Cauchy Principal value sense but not in general sense

Solution : The integrand is unbounded as x —» 0. Therefore, we evaluate

"1

3

—€ 1
dx + lim 13dx:1im[—%} +1im[—L2J
550+ 98 x g0+ 2x° |, 80+ 2x° s

1

lim
e—>0+¢-1 x

~ lim {l—%}+ lim {—h%},
=0+ {2 2g 50+ 2 28

) . 1 . 1 ) .. )
Since llmgﬁmz—gzand llmgﬁmz—sz do not exist, the original integral does not

exist. If however, we consider Cauchy Principal value, we are to find.

N S I T R R
3551[1_1 ;mL;dﬂ—g&{(z zgz)+( 2+282)}‘O

Since the term involving ¢ cancel before the limit is taken.
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A useful Theorem in Evaluating Improper Integrals

Theorem 2.1.1.

Ifi f (x) be bounded and integrable in 0< x/ < a leqa and tends to « only

when x - 0+or f (x) is bounded and integrable in 0<x <aand tends to «only

when x —a— and (ii) J: f (x)dx converges, then

j“f(x)dx:j:f(a—x)dx

0

Proof. Let f(x)—>oasx—>0+. And since Ioa f(x)dx we have from definition

lim [* £ (x)dx

g0+

exists and finite. Putting x=a-z,
[ F(x)ae=[""f(a=z)dz=["" f(a—x)d
and the result follows. Similar in the case where f (x) —>omas x —>a—. Hence

the theorem. ]

Remark 2.1.1.
[ £ (x)de= [ ()etx [ £ (x)ax when

f(x)—)ooasx—>0+ or f(x)—)oo as x—)a—,f(x) being bounded and

integrable in O < x <q un the first case and in O < x < in the second case provided

Ioa f (x)dx converges.
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Ilustrative Examples

Example 2.1.8.

Assuming the integrals to be convergent show that

2loosinxdx = _ el
JO log sin xdx JO log cos xdx > 10g2.

Solution : The only singularity is at x =(. The integrand has been assumed to be
convergent, hence by

jo"f(x)dx:j:f(a—x)dx

we have

I = J? logsinxdx = J? logsin (g - x) dx = J? log cos xdx

a2 . (3 1 .
20 = JOZ (logsinx +logcosx)dx = .[)2 log (E sin 2x) dx
[addition is valid, since both integrals are convergent]

(21 3 . n, 1. .
= IO logzdx + IO log sin 2xdx = Elog 0 + IO log sin 2xdkx .
Next to find the convergent integral (1og %being convergent)

Elog sin 2xdx .

s

We are to calculate J‘ffslog sin2xdx when &, >0+

Thus,

z . 1¢" .
2 = —
JO log sin 2xdx = > JO logsin xdx

. n —
. 21= log > + > ZJ log sin xdx

=T oo~ + 2
21 g2+ 2_[ log sin xdx
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T 1
=_log—+1
)

1
J=Tloclt
Thus, 5 082.

Example 2.1.9.

Assuming the integrals to be convergent show that

J‘” xtanxdx _ m
osecx+cosx 4°

Solution : The only singularity is at X 23. The integrand X = ghas been assumed

to be convergent, hence we have

_hmj f(x)dx+lim In+5f(x)dx

g0+ 8—0+

. 3% xtanx I xtanx
~ fim [ XA0Y gy (¢ _Xtanx g
£50+90  SECX +COSX 550+ 9243 SEC X + COS X

4 .

. f27° _xsinx T xsinx

= lim Iz S—a’x+ lim I S—dx
e->0+90  1+4cos’ x 550+ 9%:5 ] + cos” x

Putting x =n—z in the first integral and x =t~ in the second integral we get

I=lim [ o(n— zdz+11mj o(n—1)d

g0+ 5+s 80+

zlimj o(m—x)dx+lim (I)(Tc—x)dx

80+ g0+ Trs

xsinx
1+cos’ x

:I0n¢(n—x)dx Where ¢(x)=
ie.

J‘” xtanxdx _ (" xsinxdx _ (* (m—x)sinxdx
0secX+cosx 0 l+cos’x  I+cos’x

Hence

L
21=n| X gy
0l4+cos” x
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And

j-T _sinx g, ,
IO 1+ cos® x proper integral

TCJ‘ sin x sin(n—x) dx
1+cos’x l+cos2(n—x)

E .
:£><2I2 s1nx2
2 o 1+cos’ x

B U dz
=TX > where z=cosx
0l+z

:nx[tan’ 21 :nx%:%.

2.2. Exercise 1.

1. Show that
W [Terde=1. [ ede=3
3 dx e o 2
(i) LWZE (iv) | xede=o0
Y r; xxdj—cl
2. Prove that Lw(xz +a§;c(§z v07) z(an+ b)’ %b>0
3. Show that IoweﬂsinbdeZﬁ; a>0,
4. Show that 0na+bcosx: \/az—bz; a>b.
5. Show that e =% . O<a<n

o x> +2xcosoL+1 sina
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dx _ T .

3
6. Show that IO a’cos’x+b’sin’x  2ab’

a,b>0.

J'z dx _ ! .
7. Prove that Jo (az cos? x + b2 sin? x)2 4ab’® (a+b) ’

ab>0

8. Assuming the following integrals are convergent prove that

() J: log(l +cos x) dx=—rlog?2

.o n _ 1
(1) JO 10g(1+cos6)d6 ——nlogz
! logx w1
10 —
o [ e o)
N fr__xdx  _m
W) Io sec X +cosecx 2(1+10g\/§+1)

(v) flog(tan x+cotx)dx = mlog2

M)Ebymxﬁzo

9. (i) If InZJ.SSlin%dx, show that (n-1)(,—1,_,)=2sin(n-1)x. Hence or
sin nx . .
otherwise prove that I —xdx =7 or 0 according as n is odd or even.

(i) If 1, IO de when » is a positive integer, show that

1

n+l n n-1

Hence deduce that /, =nm.

(iii) 1f 1, = [ sin2nxcot xdx, n>1, show that /,, =/, and that /,=7

8|

10. Verify each of the following :

. 1 1 1 _
(1) llmn*)w —+ +...+ =

NI \/nz—(n—l)z 2.
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Giy tim, 3L (L) T

=Ilp\N\n-r

1

n!)n 1

Comn

i) fim,

2.3. Necessary and Sufficient Condition for the Convergence

of the First Type Improper Integral j: f(x)dx

Let f (x) be bounded and integrable in g < x < B for every B>q so that the
proper integral

[/ (x)as

exists and is a function of B, say, /(B). Suppose now that F(B) tends to a finite
limit / as B —s oo. Then according to the definition of limit we get the following.

Definition 2.3.1.
Let f (x) be bounded and integrable in gq< x< B for every B>a. The integral

Jmo f (x)dx is convergent and has the value I if for any preassigend positive numbers,

however small, there corresponds a positive number X such that.

<ge B>x

‘]—ij(x)dx

Also the Cauchy Criterion for existence of the limit of the function f (B), we may
come to the following theorem.

Theorem 2.3.1. (Cauchy Criterion)

A necessary and sufficient condition for the convergence of the integral IB f (x) dx

is that for any preassigned positive number g, however small, there corresponds a
positive number X such that
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<&

‘]—ij(x)dx

for all values x,, x, for which x,>x>X.

Clearly, a similar criterion holds for the existence of an improper integral when
the singularity is at the lower limit.

Absolute and Conditional Convergence

Definition 2.3.2.

The integral Jmo f (x)dx is said to converge absolutely when Iw| f (x)|dx

converges and when f (x) is bounded and integrable in the arbitrary interval

a < x< Bforevery B> q. Butif the first integral converges and the second diverges,
then we say that Jmo f (x)dx is conditionally convergent.
Theorem 2.3.2.

An absolutely convergent improper integral carries it ordinary convergence.
That is, if Jmo f (x)dx is an absolutely convergent improper integral, it is convergent.

Proof. Since

[ ()

o)
<]
X

it follows with a two-way use of the Cauchy Criterion that if Iw’ f (x)’dx

f(x)‘dx, for x,>x>X

converges, so also does Jmo f (x)dx Hence the theorem. ]

Observation :

The converse of the theorem is not necessarily thue. That is, an improper integral
of this type may converge and yet not necessarily converge absolutely.

. © sin X
For example let us consider L dx |

. ©sinx 4 .
In the first step we will show that L de is convergent. We note that
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lim__, sn;x =1. Hence the integrand is not singular at x=0. The singularity is only

at upper limit. Next since % and sinx are bounded and integrable in [x,,x,], by the

second mean value theorem of integral calculus, we have

%2 81N X L e L (=
j Zs—dx:—j smxdx+—j “sinxdx, x,<e<ux,
X X xl X x2 e )

<2

J‘S sin xdx‘ =|cos x, — cos&| <[cos x| +]|cosE| < 2 and similarly “-:2 sin xdx
X

Now

Consequently

szsinxdx‘sz{i+i}<i<e, X, >x > X
5 X, X, x

Provided X Zg. Thus the integral is convergent.

SlIl x

Next we show that I dx diverges. First of all let us consider

Jmo |sin x|
=] =

the integral J‘OW@

where n 1s any positive integer.
We have

nn|sinx| & |sinx|
IO X dx_rzl:-..(rl)n X e

Putting x=(r—1)7+7, we obtain

J-rn de:jn Sin{(l’ 1 TC+Z ‘ _J. |s1nl|
(X 0 (r ln+t r ln+t

since ‘sin{(r—l)n+t}‘:‘(—l)r_l sint‘ :|sint| =sinf since 7 varies from 0 to x.

Again since pris the maximum value of (r—l)n+l in 0<r<m,
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we have

I |smx|dx> Isinzdzzi
(- X I

_prm sinx| 23]
) vz

r=1

But the series on the right diverges to «cas n — oo, whereby

J' |Sll’1X|
0

X

dx —>0 n—w.

Let now X be any real number. Then without loss of generality we may assume

nm< X <(n+1)7 for n to be a positive integer.
Thus

J«X |Sinx|0lx2_rm |sinx|dx
0 X 0 X
Let now X —» o so that 7 also —> oo . Thus we see that

IXde—>w X >,
o x

|Sll’1 X|

Hence L dx diverges.

2.4. Tests for Convergence (First Type)

(A) Comparison Test
Theorem 2.4.1.

If f (x) be a non-negative integrable function when x>g and I f dxls

bounded above for every B> g, then Jmo f (x)dx will converge, otherwise it will
diverge 1o «.
Theorem 2.4.2.

If f(x) and g(x) is integrable functions when x > g such that0 < f(x) < g(x),
then
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(i) I f dx converges if I dx converges
(ii) I dx diverges if I f dx diverges.

(B) Limit Tests

Theorem 2.4.3.
Let f (x) and g(x) be integrable function when x> aand g(x) be positive.
Then if

f(x)—k;to

;
=g (v) ’

the integrals I = I f dx and G = I dx both converges absolutely or

both diverges.
If f/g—0 and G converges, then I converge absolytely. If f/g — twand G
diverges, then F diverges.

Comparison Integral 1.
Show that the inproper integral IO e dx, where p is a constant, converges for

p=0 and diverges when p<0.
Proof. We have

Perge— _A[ewP _ 1)1
Ioe dx = p[e ]O—p{l e”B}’ p#0
B
and L dx=FB when p=0.
© g1 :
Let B o, then _L ¢ dx—;, when p >0 and diverges when p<O0. J

Comparison Integral 2.
Show that the inproper integral _L %dx (M > 0) exists if u>1 and does not exist,

if u<l.
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Proof. We have
de _ 1 1-n 1-p
IO gdx—H{B —a"™} when pz L
and
Bdx
L 7:logB—loga when p=1

1
d when p>1

p-1
w?

J 5

Let B >0, then J, 3@ — ;
when pn <1

whereby the result follows.

Theorem 2.4.4. (The Ll test for convergence)

Let f (x) be an integrable function when x> q. Then I’ = Jmo f (x)dx converges

abslutely if
limx"f(x)=2, p>1

X—>0

and F diverges if
limx“f(x): k(;t O) ortow, pn<l

X—>0

IMustrative Examples :

o _Lly
From Comparison Integrals 1 and 2 it has been clear that IO e ? dx,

L D gy R R 1y
IO e “dkx, IO e dx,.. and ] 5. ) ) ¥ converge; whereas IO erdx,
X

Iowexdx, ... and Lw%aﬁw%, - diverge.

Examples 2.4.1.

© dx . . 1 | I -
IO v converges by comparison test, since 0 < R < o e and IO e “dx.
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Examples 2.4.2.

1

© dx 1
L @ diverges by comparison test, since for X=2, logx < x:@ > cand

cdx .
L ~ diverges.
Examples 2.4.3.

- 2
“sin” x .
L S—de(a >0) converges by comparison test,

c 2
since 0< sz X <
X

1
2

o0

1

when x>qg>0 and I =5 dx converges.
X 0 x

Examples 2.4.4.

L e “x"dx converges by w—test for all values of n, since as x — o

n+2
xzf(x):xe—x—>0,for u=2>1.

2.5. Necessary and Sufficient Condition for the Convergence

of the Second Type Improper Integral j:’ f (x)dx

Let f (x) be bounded and integrable in g < x <p and a be the only point of
infinite discontinuity of f(x) in a finite interval [a,b]. Then the proper integral
Ib f(x)dx, O<e<b-a

exists and is a function of g, say, (I)(S) . Suppose now that (I)(S) tends to a finite
limit 7 as ¢ —» 0+. Then according to the difinition of limit we get the following.
Definition 2.5.1.

Let f (x) be bounded and integrable in a g < x <b and a be the only point of
infinite discontinuity of f(x)in a finite interval [a,b]. The integral Ib F(x)dx is

convergent and has the value 1 if for any preassigned positive number ¢', however

small, there corresponds a positive number § such that.
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<g 0<g<d

1=]). 7 (W)

Also the Cauchy Criterion may be restated as:

Theorem 2.5.1. (Cauchy Criterion)

b
A necessary and sufficient condition for the convergence of the integral I f (x) dx

is that for any preassigned positive numberg', however small, there corresponds a

positive number & such that

Jr £ (x)el

<g' for 0<g <g,<d,

for all values x,,x, for which x,>x >X.

Clearly, a similar criterion holds for the existence of an improper integral when
the singularity is at the lower limit.
Absolute and Conditional Convergence

Definition 2.5.2.

Let a be the only point of infinite discontinuity of a function f (x) ina finite

b
interval [a,b]. The integral I f (x)dx is said to converge absolutely if f (x) is
bounded and integrable in the arbitrary interval [a+8,b] where 0 <e <b—a and

b
I ’ f (x)’dx converges. But if the first integral converges and the second diverges,
b
then we say that I f (x) dx is conditionally convergent.

Theorem 2.5.2.

b
An absolutely convergent improper integral I f (x)dx, where f (x) has an

infinite discintinuity at x =a only, carries with it ordinary convergence, but the
converse is not necessarily true.
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2.6. Tests for Convergence (Second Type)

(A) Comparison Test
Theorem 2.6.1.

If f (x) be a non-negative integrable function in a<x<band a be the only

point of discontinuity of f (x) in a finite interval [a,b] and Ib f (x)dx is bounded

b
above for 0 <e <b—a; the integral I f (x) dx will converge, otherwise it will diverge 10 o .

Proof . Since f (x) is non-negative in 0<x<b, the integral.

b
O
monotonically increase as ¢ decreases and will approach a finite limit if bounded

above, but if unbounded, it will tend to oo. J
Theorem 2.6.2.

Let a be the only point of infinite discontinuity. If f (x) and g(x) is integrable

functions in a < x < bsuch that 0 < f(x) < g(x), then
(i) Ib f (x)dx converges if Ibg(x)dx converges

(ii) I:g(x)dx diverges if I: f (x)dx diverges.

(B) Limit Tests
Theorem 2.6.3.

Let f (x) and g (x) be integrable function when a<x<band g (x) be positive.

. f(x
Then if xlggggxg

:x;to,

the integrals I zjb f(x)de and G = Ib g (x)dx both converges absolutely or both

diverges.
If f/g—0 and G converges, then I’ converge absolutely. If /g — twand G
diverges, then F diverges.
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Comparison Integral 3.

de
(x—a)

b
Show that the improper integral I exists, if u<1land does not exist, if

m

w>1.
Proof. When p#1, we have

[t rhfe-a o)

and when p=1,

J’b dx

ey —a zlog(b—a)—loge.

On letting ¢ — 0+, we obtain
-
(b-a)
= l _ u ?
0 when p>1

2

when O <p <1

J‘bdx

“(x—a)

when however, 1 <1, the integral is proper.
Comparison Integral 4.

. b dx . . .

The integral I W converges if (u<1) and diverges if p>1.
“\x—a

Theorem 2.6.4. (The |l-test for convergence)

Let f (x) be an integrable function in the arbitrary interval (a+8,b), where

O<g<b—q. Then F = Ibf(x)dx converges absolutely if

lim(x—a)“f(x)ZK, for O<pnu<l,

X—>a+

and F diverges if

lim(x—a)“f(x)zk(¢0) or Too for pnx>1.

X—>a+
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IMustrative Examples :
Example 2.6.1.

Il logx .
0(1 N x) Jx converges, since

(S

lim (x=0)% = lim ——=1 for p<I.

x—0+ x—0+ 1+ x

Example 2.6.2.

1 log x
_L —\/— dix converges, since
X

3 1
lim (x—0): 192 _ 1jpy 108X _ yipy (—4x4j:0 for <l

x—0+ \ ’X x—0+ - x—0+
X

N

Example 2.6.3.

1 dx
Jé /x(l—x) converges, since

lim(l—x)%-f(x):l for u<l.

x—l-

2.7. Convergence of the Integral of a Product

Theorem 2.7.1. (Test for absolute convergence. Type A.)

Let f (x) be a bounded and integrable function when x>q and Iwcl)(x)dx

converge absolutely, then Jmo f (x)(l)(x)dx is absolutely convergent.
Proff. Since f (x) is bounded when x>g4

[f(x)| <M for every x>a (2.7.1)

2

Where M is some definite positive constant. Again since I ’d) (x)|0lx converges

there exists a positive number js’ such that

IX 0(x)|dx <M’ forevery  X>a (2.7.2)
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Thus from (2.7.1) and (2.7.2), for every X >qg

Ij‘f(x)d)(x)‘dx<MIj

¢ (x)|dx <M M’

so that J:O | f (x)(l)(x)|dx converges or, in other words J:O F(x)d(x)dx converge

absolutely. Hence the theorem.

O

Theorem 2.7.2. (Test for absolute convergence. Type B.)
Suppose a to be the only point of infinite discontinuity. Let f (x) be a bounded

b
and integrable function when gy > p and I ¢(x)dx converge absolutely, then

b
L 7 (x)0(x)dx is absolutely converges.

Theorem 2.7.3. (Abel’s Test. Type A.)
Let f (x) be bounded and monotonic whenx>qg and (I)(x) be bounded and

integrable on the arbitrary interval g < x < B for every B> g and also let L (I)(x)dx

be convergent then Jmo F(x)o(x)dx converges.

Proof. We have from second mean value theorem

X2

[77)0(x)ae =7 (x) [ o) +7 () [ d(x) 273)
for a<x <&<x,.

Since f (x) is bounded, we can find a positive number M such that |f (x)|<M

for every x>¢g. Thus in particular.

|f(xl)| <M and |f(x2)| <M . (2.74)

Also since I ¢(x)0lx is convergent, we can choose a positive number X (8)

a

such that
L?¢(x)dx

We now suppose that in (2.7.3), x,,x, are numbers greater than X so that

€
<7 for x,>x>X
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€
<37 (2.7.5)

g
[Fo(e)a
It follows from (2.7.3), (2.7.4), (2.7.5) that

[ 7 () 0(x) e

< ﬁ and U; (I)(x)dx

<M'ﬁ+M‘ﬁ:8 for x,>x, > X(€) and the theorem

follows. L]
Theorem 2.7.4. (Dirichlet’s Test. Type A.)

Let (x) be bounded and nonotonic when x>a and let f (x) —>0as x—> o,

Also let (I)(x) be bounded and integrable on the arbitrary interval g<x < B for

B 0
every B>q and L (I)(x)dx be bounded when B > . Then L f (x)(l)(x)dx converges.

Proof. We have from second mean value theorem
J2F ()0 (x)ee =1 () S () + 1 () [ () e 2.7.6)
for a<x <&<x,.

Since IB¢(x)dxis bounded for B> g, there exists a positive number M such

[ o(x)ar
X 3 1

J; o) =|[" o (x)ete—[ o)

de)(x)dx‘+“jd)(x)dx

e (2.7.7)

that <M for every B>a. Therefore,

< <M+M

Similarly

[ o(x)ax

Next since f (x) — 0 as x - o, we can find a positive number X (8) such that

<2M . (2.7.8)

|f(x)|<ﬁ when x> X .

Next taking x, >x, > X, we have
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()| < gp7 and f (w)|< 57
Thus from (2.7.6)-(2.7.9) we have

[ () ()

follows. ]

7 (2.7.9)

<_2M+W2M:8 for x,>x, >X(8), and the theorem

2.8. Convergence of Gamma and Beta Functions

(1) Gamma Function :

Let us discuss the convergence of

jow e x"dx . (2.8.1)

We write, f(x)=e™x"",] = I “x"ldx 1, = J;we’xxnfldx.
The part /, is proper when n=1, improper but absolutely convergent when

O<n<1; foras x—>0+[e"x" o0 as x—>0+] by p— test

1-n_—x_.n-1

X (x):x ex" =e o1
for O<pu=1-n<1, ie, for 0<n<l.
The part 7, also converges absolutely for all values of n by pu—test, for asx — oo,
f(x)=xte™ X" =X =0
Thus (2.8.1) converges for »>(0. This is called Gamma function denoted by
I'(n).
Hence
I'(n)= Iow e*x"'dx, n>0
(2) Beta Function :
Next let us discuss the convergence of
1 -
L X" (1-x) ‘dx (2.8.2)

This is a proper integral when m, n>1 but is improper at the lower limit when
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m<1, and at the upper limit when 7 <1. We, therefore, split it into two parts 7, +1/,

where

and

I, = Ll x" (1= x)ni1 dx

Now I, converges for 0 < m <1, diverges when ;< 0, foras x — 0+, by n—test
¥ (x) = x(1=m)x" " (1-x)"" =(n-1)" =1
for = =1-m and for convergence O<p=1-m <1 that is 0O<m<1 also.

1 whenm=0

f — m-1 1- n-1: m 1- n-1
xf (x) = xx™"(1-x)"" = x"(1-x) %{a when m <0

where f(x)=x"" 1(1—x)’h1(,/par) par Next if we change the variable x=1-y, the

second integral reduces to the first with m and » interchanged. Hence we may draw
the same calculation as before with » in place of m. Thus (2.8.2) converges for

m,n>0. This is called the Beta function denoted byB(m, n) or

B(m, n) = Ll

IMustrative Examples :

x"! (l—x)nildx for mn>0.

Example 2.8.1.

J“” CoSX o
Show that ), m converges absolutely.

Solution :

since W= % >1we have

5
T X ~ X
lim x* . 28X — |jm €98 =0

o J1+x? e x%\/l +x7

J‘°° COSX_ s
Hence J, m converges absolutely.
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Example 2.8.2.

Show that I l_cﬁdx converges.
L
Solution :

By p—test, since at the lower limit x =0,

- l-cosx _ 1
ll—>n(} x> T
and at the upper limit, by [ —test
3
.53 1l=cosx _;. 1-cosx 3
lim x2. =lim =0 S
o ) e Jx for u Sk

©]— X
Hence I #dx converges.
0 X

Example 2.8.3.

m—1
x
dx converges for m> Q0.

1
Prove that IO o x

Solution :

The integral is proper when m >1but is improper at the lower limit when m <1,

Now the integral converges for 0 <m <1by p—test, since as x — 0+,

1-m x"H l

'l+x: 1+x

and for convergence O<pu<1, that is O<l—-m<1, or O<m<1. Hence the

integral is convergent for m>0.

Example 2.8.4.

m—1
© X
Prove that L xdx converges for m<1.

1+
Solution :

By p—test as x —

2—m‘an1 _ X — 1
I+x 1+x l+l
X

—1

and for convergencep =2-m>1, or m<1.
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Hence the integral is convergent for m<1.
Example 2.8.5.

Discuss the convergence of J‘Zlog sin xdx.
Solution :

Note that the only singularity is at x=0. Also

sin x

logsinleog(x- jzlogx+logsmx.
x
By n—test,
. " o u Wy sinx)
xliroriox logsmx—xlirorio(x logx+x log—x J—O
(sincelimHO+0 x*logx=0if u >0 and lim __, SILY lj forp >0

See also that pu cannot be taken to be >1. Thus 0<p<1. Hence the integral

converges.
Example 2.8.6.

Show that J: sin xlogsin xdx converges and find its value.

Solution :

The only singularity is at x=0. Now

b
2

f (log sin x) (sin x) dx = [— cosxlogsin x]

4

= coselogsine + [cosx+ log tan %}

. g
= coselogsine —cose —log tanz

—>log2-1 as ¢ >0+0

Since lim (cos elogsine—cose—logtan g)
e—0" 2

[Writing sing = 2sin % cos%, tan % =sin %/ cos %J



NSOU ¢ CC-MT-09 97

=i —1)logsin £ +coselog2cos & +1 £_ }
1m{(cose )ogsm2 coselog cos2 ogcos2 cose

g0+

and by L’ Hospital’s rule

e logsin £ -
lim < (cose —1)logsin = lim - 2 (_)
e—0+ e+ 1 cosec® X
2 2
= lim Lsin? € = 0 ,

g0+
and also, lim_ . {cos elog2cos % +logcos % —Cos 8} =log2-1,

Thus the integral converges and its value =log2—1.
Example 2.8.7.

sin x
xp

Show that Lw dx converges for p>0.

Solution :
o . 1 . e
Apply Dirichlet’s test, taking f (x)= x—p,d)(x) =sinx, f(x)= 7 is bounded and

B B
monotone for y>1land (0 as x > for p>0. Also .[1 Q)(x)xa’x:j1 sindx is

bounded for B > 1, since

LB sin xdx‘ = |cosl—cosB| < |cos1|+|cosB| <2for B>1.

Therefore, by Dirichlet’s test

J"*’ sin x
1

7 dx converges for p>0.

Example 2.8.8.

Show that L ;:: ;;Cdx for a>1converges by Dirichlet’s test.
Solution :
Let /(x)= L and ¢(x)=cosx

log x
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Then f (x) is monotonic decreasing —»( as x — oo and (I)(x) is bounded in
[a.B], B>a.
Hence by Dirichlet’s test, the integral converges for g >1.

Example 2.8.9.

. . © _a? sin 2bx
Examine the converges of the integral L e de.

Solution :
See that

© _g% sin 2bx _ o sin 2hx
J.O e de = 2bJ.0 de (283)

sin 2bx -1

First part is a proper integral as lim_, Yo

For the second part, let /(x)= % and ¢(x)= o

Then wa —I sin bedx is congergent by Dirichlet’s test. Also (I)( )

bounded and monotonically decreasing in [l,oo).

Therefore , by Abel’s test wa (x)(x)dx = I o si 2bxdx is convergent.

Hence from (2.8.3) it follows that the given integral; is convergent.

2.9 Summary

1. In Section 2.1 and 2.2 we have studied the types of Improper Integrals
and a useful theorem in evaluating Improper Integrals with some examples.

2. In Section 2.3, 2.4, 2.5, and 2.6 we have discussed about necessary and
sufficient condition for convergence of Improper integrals, Cauchy Criterion, Limit

Test, Comparision Test, |1 — test for convergence and two comparision Integrals.

3. In Section 2.7 and 2.8 we have discussed Abel’s Test and Dirichlet’s Test for
absolute convergent and Convergence of Beta and Gamma function.

2.10. Exercise 2.

1. Show that the following integrals converge:

N P dx 1logx
O Lagw® O
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1 logx

(1-x)

@) [

@ I o

2. Show that the following integrals are non-convergent :

[ dx . T dx
W) [, Togr iy [

r’ dx
(iii) o xlogx

1 m—1
3. Show that IO lx+ .

m—1

and hence Jmo X

. lera'x converges for 0 <m<1.

4. Show that Iowsin x’dx and Iowcosxzdx converge.

5. Verify that I mcon\/erges and I mdwerges
6. Show that | ﬁcon\/erges but I ﬁdoes not.

a1l . {1 dx
7. Prove that _L ﬁsm | & converges for 0<g<w.

8. Discuss the convergence of F cos2nxlogsin xdx and evaluate it.
0

S

COs X
9. Show that the improper integral I log x T——dX i3 convergent but not absolutely

convergent but not absolutely convergent.

= Wx
10. Show that J.I (1+x)2 dx converges to %Jr%



100 NSOU e CC-MT-09

References

1. W. Rudin, Principles of Mathematical Analysis, 3rd edition, Megraw Hill.
2. TM. Apostol, Mathematical Analysis, 2nd edition, Narosa.
3. S. K. Berberian, A first course in Real Analysis, Springer, 1994.

4. GH. Hardy, A course in Pure Mathematics, 10th edition, Cambridge University
Press.

5. S. M. Nilolskii, A course in Mathematical Analysis, Vol-1, Mir Publisher,
Moscow.



Unit-3
SEQUENCE AND SERIES OF FUNCTIONS

101



102



Unit - 3 : Sequence And Series Of Functions

Structure

3.0 Objective

3.1 Sequence of Functions
3.2 Illustrative Examples
3.3 Exercise 1

3.4 Series of Functions
3.5 Illustrative Examples
3.6 Exercise 2

3.7 Limit Superior and Limit Inferior
3.8 Power Series

3.9 Illustrative Examples
3.10 Summary

3.11 Exercise 3

3.12 References

3.0 Objectives

In this third unit we have focussed on Pointwise Convergent and Uniformly
Convergent of Sequence and Series of functions, different tests for Uniformly
Convergent and some theorems regarding Uniform Convergent and Continutity,
Uniform Convergent and Integrability and Uniform Convergent and Differentiability.
Also we have discussed on Limit superior and Limit inferior and eventually different
tests for Convergent of Power Series.

3.1 Sequence of Functions

Let £ be a subset of real number and for each n e N, let f, : £ — R be a function.

Then {f,} is a sequence of functions on £ toR. £ is said to be the domain of
sequence of functions { fn}.

To each x,€ L the sequence { fn}gives rise to a sequence of real numbers
{ A (xo)}, which is obtained by evaluating each f, at x,.

103
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For sonme x ¢ [, the sequence { A (x)} may converge to a limit and for some

other xeE, the sequence {f (x)}not converge.

Pointwise Convergence
Let £ c Rand for each ne N, let /,: D — R be a function. The sequence {f,}is
said to be pointwise convergent on F if for each x< FE, the sequence { A (x)} is

convergent. And then it is natural to say that { fn}, n e N converges to the function

f on £ ie.
limf, (x)=f(x), xek (3.1.1)

If (3.1.1) holds we say that £ is the limit or the limit function of { fn}, neN . For
if (3.1.1) holds, then for every point x on £, the sequence { A (x)}, neN of real

numbers converges to f (x)

Definition 3.1.1.

The sequence of function { fn}, n € N defined on a set E converges (pointwise)

to fonkE, if for each x € Eand for a given > 0,3 a positive number N such that

fn(x)—f(x)|<8 for n>N (3.12)
In general the number N depends on both ¢ and x.
Example 3.1.1.

Let f,(x)=x",0<x<1. We know that {x"},neNis

limx"=0 for 0<x<l

n—>0

=1 for x=1.
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Hence {fn},ne N converges pointwise fo f on [O,l] ie., limefn(x):f(x)

on [O,l] where
f(x) =0 for 0<x<lI
=1 for x=1.
Example 3.1.2.
For each neN, let f,:R — R be defined by fn(x):%, x€R. Then {fn}isa
sequence of function on R. For each xcR, the sequence { A (x)} converges to 0.
Therefore the sequence { A (x)} is pointwise convergent on R and the limit

function f is defined by f (x) =0, xeR.

Example 3.1.3.

Let fn(x)Zlernx,OSx<OO. When x>0, 0<fn(x)S%=%, whereby
lim, , f,(x)=0, x>0.

Also, since fn(O):O Jor each neN, it is clear that { fn},neN converges

pointwise to fon Q< x <o, wheref(x) =0.
Example 3.1.4.

nx .
Let fn(x)=m wherex e R ie., —0<x<o.

For x>0, f,(x)= 17}x+l and hence lim,_, f,(x)=0.

Also f,(0)=0. Again lim,_ f,(x)=0 for x<o0.
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Thus lim,_, f,(x)=0 for each x€R and for each neN.
Therefore, {fn},n e N converges to f =0in (—00,00) , Whereby f(x) =0.

Uniform Convergence

We have seen that { fn},n e N converges pointwise to f on F, if for each ye [

and for a given £>0,3 a positive number N such that

£,(5)=f (x)| <& for n> N

We have also onserved in the previous example 3.1.4 that it is not always possible
to find an N such that (3.1.2) holds for all x e F simultaneously, if for each € >0
it becomes possible to find a unique N such that (3.1.1) holds for all xe £ then we

say that { A (x)},n e N converges uniformly to f on £.

Definition 3.1.2.
Let { A (x)}, n e N be a swquence of real-valued functions on a set . We say that

{ A (x),} neN converges uniformly to the function f on E if for any given € > 0,3

a positive integer N such that.

fn(x)—f(X)‘<8 for n>Nand for all xc E. (3.1.3)

Here N depends on € alone but not on x. It automatically follows that the uniform
convergence implies its pointwisre convergence.

But that the converse is not true is discussed in the following example.
Example 3.1.5.
In example 3.1.1 the sequence { fn} converges on (—l,l] to the function f where.
f(x):O for 0<x<1

=1 for x=1
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Let us examine if the convergence of the sequence { fn} is uniform on (O,l).

Let ce(0,1). J.(e)=f (e )‘

)~
)~

c)-f(c )‘<8whenever ¢’ <g,

7
ie., whenevernlog(l/c) > log(l/e),
ie., whenevernlog(1)>1og(1/c)

pars = o ()] -

for all n>k.

n(C)—f(C)‘<8

Therefore for all x<(0,1),

n(c)—f(c)| <g foralln>k,
where k = [log (1/8)/log (l/c)} +1.
This k depends on gas well as x. As x — 11—k — . It follows that there does

not exist a natural number k such that for all x < (O, l),

n(x)—f(x)| <e holds for

all n>k. Consequently, { fn} is not uniformly convergent on (O,l).

Example 3.1.6.

Let f, (x) =

,0<x <0,
1+ nx

We have seen in Example 3.1.3 that 0< f,(x)< lcmdf( X)=00n 0<x<w.

E

Hence for any given ¢ >0, and for all x in 0<x <.

£,(x)= 1 (x)|=

1
fn(x)—O‘£;<8 Jor n>N

if we accept N = integral part of (é) Thus N depends only on ¢ but not on x.

Hence it is uniformly convergent in 0<x <.
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Remark 3.1.1.

We have seen in Example 3.1.1 that { fn} ne N where fn(x) =x",0<x<1converges
pointwise but not uniformly convergent in the interval, whereas in Example 3.1.6

{ fn} neN where [, (x) = l+xnx ,0<x <1 converges uniformly and automatically

converges pointwise.
(A) The Cauchy condition for uniform convergence.

Theorem 3.1.1.
Let { A (x)} ne N be a sequence of real-valued functions on a set E. A necessary

and sufficient condition for a sequence { A (x)} ne N of functions defined on a set

E to be uniformly convergent is that for each given € > 0,3 a positive integer N such
that for mn>N

Putting p=m-—n,
‘fm(x)—fn(x)‘<e forn> N, P=123...
and for all (3.1.4)

Proof. The condition is necessary

Let the sequence {f },n € N be uniformly convergent sequence of functions over
E, convergens to f on E. Then for a given € (>0) 3 a positive integer N such that.

fn(x)—f(x)|<8 for all xe I and for all n >N

Thus if mn>N, we have for all v € E,
0= 1,0 =] {£.00- r @)+ {re0- 1,0}

<|f =S+ £, 3]

The condition is sufficient.
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Let {f }, neN be a sequence of real-valued functions on I such that, given a

positive ¢ > (03 a positive integer N such that.
|/, )= f, )| < eholds form,n> N andV xe E. (3.1.5)

We are to show that there is function f on I such that {f }, ne N and converges
uniformly to f on L.

From (3.1.5), it is clear that for each fixed x € F, the sequence of real numbers
if,(x)}, neN is a Cauchy sequence.

Hence lim f (x) exists for each x¢E and Call lim for all f (x) = f(x) for all xe E.

Keep m fixed and let »n — -, then from (3.1.5)

|1£,() = £, (x)| =] (e form)N and for all x e E
This show that { fm} me N converges uniformly to f on E the froof is complete.

Hence the theorem. J

(B) Test for Uniform Convergence.

Theorem 3.1.2. (M Test)

£,(x)-7(x)].

Then f, — f uniformly on £ if and only if M, —0 as n— .
Proof. The condition is necessary.

Let lim, , f,(x)= f(x), for all xc Eand M,=sup

xel

Given that { A (x)}, neN converges uniformly to f (x) on E.

Then for a given £ >0,3 a positive integer N such that

fn(x)—f(x)‘<8 for >N and for all xec [.

S M, =sup .

fn(x)—f(x)|<s for >N whereby M, >0 as n— .
The condition is sufficient.

Given M, — 0 as n—> o, then for any given € > 0,3 a positive integer N such

that M <e for p> N and for all yc E.



110 NSOU e CC-MT-09

Then, sup,__,

fn(x)—f(x)|<8 for >~ N and for all yc E.
Thus for all ye £,

£, (x)= f (x)] < sup

fn(x)—f(x)‘<e forall >N .
That means { A (x)} converges uniformly to f (x) on F.

This completes the proof . J

Example 3.1.7.

Prove that { A (x)} = {nxx+1} converges uniformly to 0 on 0<x<]1.

Solution.

lim,_,_ f,(x)=lim,__—*—=0=f(x), for all xE [O,l]. Or, in other words,

“nx+1

{ f, (x)},ne N converges pointwise to 0 on [0,1]. Next,

M, = xsél[l(Jl,?] /(%)= f(x)|xs€1[1£] nx+1
Now to find the supremum of nxx+l for all x€[0,1] . Let us call it g, (x), then
& (x) - nxx+l ’
‘ y(x):nerl—nx: 1

(nx+l)2 (nx+l)2 >0 for all xe[O,l] .
Thus g, (x) is strictly increasing on [O,l]. Moreover g, (x) is continuous on

[0,1] Hence g,(x) assumes its maximum (supremum) value at ¥ =1. Thus

M, = sup x __1 1 —0

xe[o,l]nx+l_n-l+l:n+l as n—»o00.

Hence { A (x)} converges uniformly to O for all x e [O,l] :
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Example 3.1.8.

Show that {fn (x)}:{#} is not uniformly convergent in any interval

containing zero.

Solution.

Here
Y T nx__ _ X
/()= lim (9 =lim s = lim g =0

for any x€[a,b] containing zero.

Now,
Moz sl O s e
To find maximum of ——5— =g (x) sa
1+n’x’ A\, 53y

, n(l—nzxz) ‘ 1 1
Hence gn(x)zm is O at X= Also,

1+m'x’ ’ —2wx)-2n(1-n’x* 1+ n’x*) 2n’x
N R i e i e,

4

(l+n2x2)

. . _1 . T |
is negative when X = P and is positive if X = P

. 1 1
Hence the maximum has been reached at x= s and max &, (x) =5

1 .
Therefore M, = B which does not —»(Q as n—> .

Hence the result.

(C) Uniform Convergence and Continuity

Let us begin with an illustration to discuss the problem of interchange of the
order of the limiting operations.
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Example 3.1.9.
We start with the sequence of functions { A (x)} where

f,(x)=x"on 0<x<1 for neN.
Then f,(x) is continuous on [0,1].
However {f,} converges pointwise to f on [0,1], where at x =1, f,(x)=1 for
all n but for all x in 0<x<1. f,(x)=x"—>0; whereby

f(x):O, when 0<x<l1
=1, when x=1

Clearly f (x) is discontinuous on )< x <1 since lim_, , f (x) =0, but f (1) =1.

This shows that a sequence of continuous functions may converge pointwise to a
discontinuous function.

Remark 3.1.2.
This example shows that
fim fim,/, (x) =1

whereas,

lim lim f, (x)=1

n—1-0 x—o0

That is the two limits are not interchangeable as they would be if fn(x) were

continuous at x =1.

We should then like to know what conditions on f, (x) will ensure that f (x) will

be continuous, if the approximating functions are themselves continuious. Uniform
converges provides a sufficient condition to guarantee this result, We therefore, come
to the following theorem.

Theorem 3.1.3. (Interchange of the order of the limiting operations.)
A sequence { A (x)} neN of real-valued functions is defined on |- g<x<b.

Suppose { A (x)} converges uniformly to f (x) on I

Let x, €[a,b] and suppose that lim, f(x)=a,n=123,..
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Then show that

(i) the sequence {an}of real constants converges, and
(@) lim_, f (x) =lim, _a,.

In other words,

limlim f,(x)=limlim f,(x) |

X—>Xp X—>0 X500 XX,

Proof. Let ¢ >0 be given. By uniform convergence of { A (x)} on /- g<x<b,

for this €, there exists a positive integer N such that for all y <e Jand Vmn> N,

£ (x) =1, (%) <e (3.1.6)

Keep m,n fixed and let x — x, then

an—am|<8, for Vmn>N .

Therefore, by Cauchy’s general principle of convergence {an} of real constants
becomes a Cauch sequence and {an} converges, say to A, i.e.,
lima, = A4

X—>0

Which proves (7).

Next since {an} converges to A as n — o and { fn(x)} converges uniformly to
f (x) on /, then for any € >0, 3 a suitable positive integer N such that
|an—A|<% for n> N

and

S (x)- f(x)|<% for n>N
and for all x€[a,b].
Again by the given condition, lim,, £, (x)=a, for all n, and hence for the

same € >0, 36 >0 such that for all xe|x—x0|<6,

f(x)-a,

e
< 3 for all n.

Thus for all > N and for xe|x—x0|<6, we have
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<|f (%)= 1, (x)|+|/, (x)-a,|+|a, — 4|
<EiEiEo

whereby

i /()= A= lm,
N o

fim lim 7, () = lim lim £, (x)

which proves (if). 0 0
Hence the theorem. J

Theorem 3.1.4. (Continuity of the limit function.)

If { fn} neN be a sequence of continuous functions on an interval I, and if
f, — f uniformly on I, then f is continuous on L.

Proof. Let x, be any arbitrary point on /. Then we are required to show that for
each ¢ >, there corresponds a 6(8) such that

|f(x)—f(xl)‘<8 for |x—x1|<6

Now for any n,
£ ()= F ()] =1 () = £, (x)+ 1, ()= £ () + £, () =/ (x,)
<|f ()= 1, )|+, ()= £, )|+ () = £ (%) (.1.7)

Since the given sequence is uniformly convergent, there exists an N (8)

independent of x, for which

fx(x)—f(x)|<§ if n>N and for all x in /.

Therefore

5, (x)-f (%)< if n>N

Again fn(x) being a continuous function, there exists a 6(8) for a fixed n> N,
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for which

Sy (x)—fn (x1)| < % whenever |x—xl| <8

Thus (3.1.7) gives

|f(x)—f(x1)‘<%+%+%=8 for |x—xl|<6.

Hence the theorem. J

(D) Uniform Convergence and Integration

Let us begin with the illustration
Example 3.1.10.

Let fn(x):nxe’””z, nelN and 0<x<].

Determine whether

tim {1 £, (v) v = [ {1im 7, (x)} v

n—>0

Now
ol e x=1 .
Ay =f o] =g | <31-e7),

im [ £, () v =tim L (1-¢ ) = 1.

f(x) =lim, _ f, (x) =lim, nxe ™ =0, whether x—0 or, 0<x<1.

Then I;f(x)dx: 0.
It follows that

tim [[ 7, (x) e = [ {lim £, ()]

n—>0

i.3., limit cannot be taken under the integral sign. The reason is that although

the sequence { A (x)} converges to 0, it does not converge uniformly to 0.

So we come to the theorem.
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Theorem 3.1.5.

Suppose the sequence of the functions { fn}, n € N be R—integrable on an interval

I :a<x<b and suppose [, — f uniformly on I which is also R— integrable on I,
then

tim [, (x) e = [ flim 7, (x) e = [ £ (x)ax.

Proof. Let ¢ >0 be given. Science { fn}converges uniformly to f on /, we can

find a positive integer N (8) such that

ﬁz(x)_f(x)’<ﬁ, for all ne N and for all xe /.

Thus for > N, we have

1) [ £ ()l =

{5 (0)-r ()}

<[ 1 ()7 (e

b
Sjabiadx:bia(b—a)zs

Thus
fim [17, (o= [ {1im £, (x) e = [ £ (x) .
Hence the theorem J

(E) Uniform Convergence and Differentiation

Theorem 3.1.6.

Let { fn},n e N be a sequence of functions, differentiable on I : [a,b] and such
that { A (x)} converges for each x e [a, b]. If each f, has a continuous derivative f|
on [a,b] and if { fn’} converges uniformly on [a,b], then if {f } conveges unifomly

fo a function f, on [a,b] then.
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el 2.} =tim {1, 9)]
or f'(x):}ziigﬂ(x), a<x<bh
Proof. Since each f)(x)is continuous and {f;}converges uniformly to F(x),
say on [a,b], F(x) is continuous on [a,b], by Theorem 3.1.4
That is lim, , f/(x)=F(x), since they are continuous.

Also f!(x) and F(x) are R-integrable on [a,b], then by the fundamental theorem

on integrals and by Theorem 3.1.3, for g<x<bh

[ {tim 7o)} e =tim [ () et

or, [ F(r)dr =lim [ f;(r)dr = lim {/,(x) - /,(a)}
=lim £, (x) lim £, (a) = f (x) -/ (a),
Since f,(x) coverges uniformly to f(x) on I.
Hence [ F()di= 57 (x) - f (a)}=1'()
And since F(x) is continuous, we have F(x)=f"(x)

And the theorem is established . J

3.2 Illustrative Examples

Examples 3.2.1.

Show that the limit function of the sequence of functions { A (x)} where

fn(x) = l—‘l—xzr, in the domain (x : ’l—x2’ < l) is not continuous at x =0.

Solution.

When [1-x°|<Llim,_, f,(x)=1-0=1
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When [I-¥|=1, ie, x=0 or, x=+/2
slimy, fn(x) =1-1=0, when x=0,v2,-2
Therefore limit function f (x) of the given sequence of functions is
f(x)=1 if I-¥*| <1 ie, —V2<x<0and g<x<2
=0, if x=0,-v2,v2

Now lim_, f(x)=1 but f(0)=0
So the limit function of the given sequence of functions is not continuous at

Example 3.2.2.

Show that the sequence of functions { fn} , where f, (x) Z% does not converge
uniformly on [0,00).
Solution.

Here fn(x)Z%V neN and xe[0,)

Now lim,. f, (x)=lime X = xlim, (%) =0

n— oo

Therefore limit function f(x) on 0<x<oo, 18 f(x) =0VO0<x<w,

Let ¢ >0 be given. Now

£,(x)-f(x)|=

X X . x
=—0|==<g if n>=
n n €

X .
But as 0 < x <o, then o can have sufficiently large value (however large), so

that is not possible to choose any number m such that V n>m and x e [O,oo), such
that
fn(x)—f(x)‘<8,

That means { A (x)} dies not converge uniformly on [0,00).
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Remark 3.2.1.

But the sequence of functions converges uniformly on [O, k] , Whatever k may be.

Example 3.2.3.

ny
Test Uniform convergence of trhe sequence of functions {nx +1} on [Oa 1].

Solution.

_nx?
Here f,(x)= 7 on [0,1]. Now

nmﬁ()_hm’mz—nm i

n—»c0 ns>o X +1 x> Y+ l

n

lim f, (x)=x, if 0<x<1
=0, if x=0.
Therefore the limit function f (x) on [O,l] is

f(x) =x for 0<x<1

Let
M = xX)— -X

” @m]”() Se)=s [%’m+1

= x>0

[Fl)]nerl [01]7’1)(7 1[ ]
Now <i:l[if 0 <x <1, in particular if x =0, then X :OJ
nmx+l nx n ’ ’ nx+1 '

S M = sup 1

xe[0] nx+l n

S imM ), = O[ lim <=0 and M, >O}

n—>0 n—o 17

2

nx
Hence the sequence of functions { } is uniformly convergent on [0,1].

nx+1
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3.3 Exercise 1

1. (a) Show that uniform convergence of a sequence of functions on a set
E implies its pointwise convergence on £.

(b) Hence show that {fn (x)} neN where f,= 1+xnx

uniformly to 0 and necessarily converges pointwise on (< x < oo .

,0<x <o converges

2. (a) State and prove the Cauchy condition (necessary and sufficient) uniform
convergence of a sequence of functions over a set F.

(b) State and prove M -test for the uniform convergence of a sequence of

functions on a set .

3. Test the sequence {fn(x)} for uniform convergence, where

fn(x):l—x?n,xeN[O,l].

_sinnx
4. For each peN, defineg,:[0,1]] >R by g,(x)= Jn Show that

{g,} converges pointwise on [0,1] to a differentiable function g, but {g/(0)} does
not converge to g'(0).

5. Let f,:[0,]] >R be defined by f,(x)=tan"'(nx)Vxe[0,1] and for
every positive integer 7. Find the limit function f (x) of the sequence of the functions

{ £ (x)} in [0,1]. Is { f (x)} uniformly convergent on [0,1]? Justify your answer.

) n+cosx
X)=—-""—
6. Show that the sequence of functions { A (x)} , Where fn( ) ntsin’x’
xeR, neN, is uniformly convergent on R .
k2
7. h hat th. i =
Show that the sequence of functions { A (x)}, where fn(x) R

is uniformly convergent on [a, b] , where 0 < ¢ < b, but the convergence in not uniform

on [-11].
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3.4 Series of Functions

Let p,—Rr. Let {fn(x)}be a sequence of functions on E to R . Then

w, (x)+a, (x)+uy(x)+..a,(x)+... is said to be a series of functions on g . The
infinite series is denoted by an(OF byz:zlﬂ(x)). The sequence S, (x) where

S (x)=u, (x)+u, (x) +u; (x)+...+u,(x)

is said to be the partial suns of the infinite series Z I

Pointwise convergence

Let u,(x),u,(x),u;(x), ..., u,(x),... be real-valued functions of x, each defined

on a set £. Then the series (infinite series)

nwl = u, (x)+u, (x) +oy (x)+ 4w, (x)+ ..

Coverges pointwise to the functions .5 (x) on £, if the sequence {Sn (x)} converges

to S(x) on £ where S, (x)=u,(x)+u, (x)+u,(x)+..+u,(x).
Definition 3.4.1.

The series of functions Z; u, converges pointwise to S (x) on E, if for each
xe E, given €>0,3 a positive integer N such that

S, (x)-S(x)| <e for n>N (3.4.1)

As usual, N, in general depends on both ¢ and x.

Uniform Convergence

Let u,(x),u,(x),u;(x),...,u,(x), ... be real-valued functions of x, each difined

on a set £. Then the series (infinite series)
> iy (x) +, (x) +uy (x)+ 4, (x)+

n=1



122 NSOU e CC-MT-09

Converges uniformly to the function S (x) on F, if the sequence of functions

{Sn (x)} converges uniformly to § (x) on £ where
S (x)=u, (x)+u, (x)+u, (x)+...+u, (x).
Definition 3.4.2.

The series of functions Z::l u, converges uniformly to S (x) on E, if for any

given >0, 3 a positive integer N such that

S (x)—S(x)‘ <t for n>N and for all xc [ . (3.4.2)

(A) The Cauchy Condition for Uniform Convergence of Series.

Theorem 3.4.1. [Necessary and sufficient condition for uniform convergence.)

The series of functions Z; u, converges uniformly on a set E, if the sequence
of functions {Sn (x)}where where S, (x)=u,(x)+u,(x)+u,(x)+...+u,(x)

defined on E converges uniformly on E. Thus Z; u, converges uniformly on £
if and only if for every given >0, 3 a positive integer N such that for m,n> N,

|Sm (x)-S, (x)| <e foral xc[k. (3.4.3)
Putting p=m-—n,

Sn+p(x)—Sn(x)‘<8 Jor n>N,p=1273,... and for all xc [ .

Proof. The condition is necessary.
Let > u,(x) converge uniformly, that is, the sequence of functions {Sn (x)}

converge uniformly to § (x) on F. Then for any given 8(> O),EI a positive integer

N such that
|Sm (x)—S(x)|<e for all xc F and for all > N .

Thus if m,n> N, we have for all xc £,

‘Sm(x)—Sn(x)‘S|Sm(x)—S(x)|+ Sn(x)—S(x)‘< ErE—e,

2
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The condition is sufficient.

Let {Sn (x)}, neN be any sequence of real-valued functions on £ such that,
given 8(> O),EI a positive integer N such that
|Sm (x)-S, (x)‘ <e holds for mn>N an for all xc F.

Now it is clear that for each fixed x ¢ [, the sequence of real numbers {Sn (x)},

ne k£ is a Cauchy sequence. Hence

lim S, (x) exists for each xe £ .

n—>0

Call }g{.}Sn (X)ZS(X) for all xe E.

Kep m fixed and let n — o0, then

Sn(x)—(x)‘<8 for >N and for all xc E.
This shows that {Sm (x)}, meN converges uniformly to § (x) on E and the

theorem 1is established. J
(B) Test for Uniform Convergence of Series.

Theorem 3.4.2. |Weierstrass’s M-test)

The series Z; un(x) of real-valued functions defined on a set E converges
uniformly and absolutly on a set E, if each term satisfies ‘un (x)’ <M, forall xc E
and Z;M . 1s a convergent series of positive terms.

Proof. Let S, (x)=3 " u,(x). Since

o0
n=1

u, (x)‘ <M, , we have

o0

u, (x)| <> M,

n=1

And hence Z; un(x) is absolutely convergent.
Second part :
Since Z;M is a convergent series of positive terms, then for a given € >0, 3

n
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a positive integer N such that for all 5 >m >N (Cauchy criterion)
M, . +M, +M, .+ . +M <c. (3.4.4)
Therefore, for p>m> N,

S, (x) -8 (x)| = |um+1 (x) +u,. , (x) +..tu, (x)‘

<M, +M, ,+M

m+3

+..+M, <e.

m+2 m+3

Hence by Cauchy criterion Z; un(x) converges uniformly on a set / and the

theorem is established. J

Example 3.4.1.

© sinmx © COSHX .
Show that anl oy and Zn:17 are uniformly convergent for all x.

Solution :

See that

sin ux
2
n

< nl—z for all x and lhatzz;# converges being a p-series with p> 1.

s
2
n

Hence by Weierstrass s M-test, the series Y., converges uniformly for all x.

- © COS X .
Similarly we can show that anl o converges uniformly for all x.

(B) Some Useful Theorems on Uniformly Convergent of Series of Functions :

Theorem 3.4.3. [Continuity in the Sum]

If the series Z; un(x) converges uniformly to S (x) on an interval I and if
each term u, (x) of the series be continuous on the interval, then the sum functions

S (x) is continuous on 1.

o0

Proof. Take . u,(x)=3S,(x). Since Y. u,(x) converge uniformly to §(x)

n=1 7

on /, then for any given £ >0, 3 a positive integers S (8) such that for all xye7,
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$,(x)=S(x)| <%, for all n>N. (3.4.5)

Let now x, be a point in /, then from (3.4.5)

Sn(xo)—S(xo)‘Sg, for all n >N (3.4.6)

Again since each u_(x) is continuous at evey point of I, it is necessaily continuous
at x= x, and therefore S_(x) which is the sum of a finite number of continuous
functions must be continuous at x = x .

Hence of the same positive number €, 3 a positive number & such that for all n,

[$n(0) =S (5| <5 for all x-x,  (3.4.7)
Thus for all #>N and for all xe |x—x0| <d, we have
|S(x)—S(x0)|:|S(x)—Sn (x)+S, (x)—Sn(x0)+Sn(x0)—S(x0)|

< |S(x)— S, (x)|+ |Sn (x)— A (x0)|+ S, (xo)— S(x0)|

Hence § (x) is continuous at x,. But x, is arbitrary, whereby § (x) is continuous

on /. Hence the theorem. J
Remark 3.4.1.

If for each n € N, §, (x) is continuous on I and the sum function S (x) of the
series Z; un(x) is not continuous on I, then it follows from the theorem that the
series Z; un(x) is not uniformly continuous on 1.

Remark 3.4.2.
If each u, (x) be continuous on I, then the condition of uniform convergence of

the series Z::l u, (x) is sufficient but not necessary for continuity of the sum function

S(x) on 1.
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Example 3.4.2.
We consider the series of functions Z; un(x),

nx _ (n_l)x
L+m'x” 1+(n-1) x

where un(x) = X E [0.1]

Then S (x) u, (x)+u2(x)+ Au (x)— ‘v’xe[O l]

l+n x*

The sequence {Sn (x)} converges to the S(x), where S(x) =0 for all x € [O,l]

n»ool_i_ 2.2

[Since lim M _0vxe [O,I]J
nx

Here each u, (x) is continuous on [O,l] and § (x) is also continuous on [O,l],

— 2} is not

but in, examnple 3.1.8 we see that the sequence {um (x)} ie., {l Jrnx

uniformly convergent on [O,l].

This proves that, for a convergent series of continuous function, The uniform
convergence of the series is not necessary for continuity of the sum function.

Theorem 3.4.4. [Term by Term Integration)
If a series Z::l un(x) of Riemann integrable functions converges uniformly to
S (x) on [ -q<x<b which itself is R -integrable on I, then
[S(x)ete= [ (x)ete+ [ ()bt [, ()l
Proof. Since the given series is uniformly convergent on [a,b], then to an arbitrary

¢ >0, there corresponds a positive integer N independent of x in [a,b] such that for

n>N,

Sn(x)—S(x)‘< € a<x<b,

Thus for » > N, we have since S (x) is integrable on / as also S, (x) being the

sum of a finite number of R -integrable functions is also integrable on /,
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:Sn(x)dx—I:S(x)dx’:

b
<
a

£8.() =5 (x) )

S, (x) = ()|

)=,

«b-a b-a
and the theorem is established. J
Remark 3.4.3.
The result I dx I dx+I dx+ +I dx+... implies that

the series of functions can be integrated term by term on [a,b] if the series of
functions Z; un(x) is uniformly convergent.
Remark 3.4.4.

Ifeach u, (x) be integrable on [a, b], then the uniform convergence of the series
Z::l u, (x) is only a sufficient but not a necessary condition for the integrability of
the sum function S (x) on [a,b].

Example 3.4.3.

Let us cosider the series of function Z; un(x),

n’x (n—l)2
where un(x):l+n4x2_l+(n 1)4 > XE[O,I]‘

Let S, (x)=u (x)+u,(x)+..+u,(x), x€[0]1]
_on’x
Now S"(x)_—l+n4x2’ xe[O,l],

x

— wx  _ n___
Clearly }g}oS (x) }g?o 1+n'x’ }ggier -0
n'
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Therefore the sequence {Sm (x)} converges pointwise to the function § (x) where
S (x) =0 Similarly as example 3.1.8 we can show that the sequence {Sm (x)} does

not converge uniformly on [O,l].
Now it is clear that the series of functions Z; un(x) is such that each u, (x)

is integrable on [O,l] and it converges to the sum functions S (x) which is also

integrable on [O,l], but the convergence of the series is not uniform on [O,l].

This result proves that for a series of integrabl;e functions the uniform convergence
of the series is not necessary for integrability of the sum function.

Remark 3.4.5.

If the series of functions Z::l un(x) converges to a function S (x) on [a,b]

which is integrable on [a,b] and each u, (x) is also integrable on [a,b], then the

uniform convergence of the series is only a sufficient but not necessary condition for

term by term integration of the series on [a,b].
Example 3.4.4.
We take same example 3.4.2

) _ nzx _ (n—l)x
ie., u"(x)_l+n2x2 (-1

X e [O,l]‘

We have already seen in example 3.4.2 that the series of functions Z; un(x)
converges to S (x) on [O, l], where S (x) =0,x e [O, 1] but the series is not uniformly

convergent on [O, 1] .

Now I;S(x)dx:O['.'S(x):O, 0<x< 1}.

And _Llul(x)dx: 011+xx2dx+%O[log(l+x2)1 :%10g2'

For n>2,
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1 0o 1 (n=1)x
JOuﬂ(x)afx N 01+n2x2¢C—J01+(n_1)2x2
_ 1 2y 1 1)\
_%log(lJrn) 2(n_1)log{l+(n 1) }
Let
1 1 1
tn:Lul(x)dx+Iouz(x)dx+...+joun(x)dx
_1 Lioes5- L
—210g2+[410g5 2logZ}r...
l 2 l 2
J{Zlog(lJrn )—mlog{lJr(n—l) }}
_log(l+n2)
- 2n '
log(1+n*
lims, = lim #[ﬁ}
—lim —21_ .
>0 (l+n2)2 [L’ Hospital’s rule]
Therefore

[ $(x)de=0=lims,

1 1 1 1
or, IOS(x)dx = Ioul (x)a’erjou2 (x)dx+...+j0un(x)dx+...
Thus the series can be integrated term by term on [O,l], although the series is
not uniformly convergent on [O,l].
So for term by term integration of a series of functions Z; u, (x) on an interval

[a, b] , the condition of uniform convergence of the series is sufficient but not necessary.
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Theorem 3.4.5. [Term by Term Differentiation)]

If the series Z; u, (x) converges to S (x) on g<x<b and if the derivative of
each u, (x) be continuous on [a, b] and the series derivatives Z::l u (x) be uniformly
convergent on a g<x<p, then the series of derivatives converges to S ’(x).

Proof. Let us denote »,~_ u,(x) by f(x). Then since the series of derivatives

is assumed to be uniformly convergent on g < x <. By theorem 3.4.4 this series to

be integrated term by term, so that for g<x<p

A7 (x)de =3 (x) =S (@)} = ' (x)
and since f (x) is a continuous function, we obtain
f(x)=5"(x)

Hence the theorem. J

Remark 3.4.6.

Only the uniform convergence of the series of functions Z; u, (x) on [a,b] is

not sufficient to ensure validity of term by term differentiation of the series on [a, b] .

Example 3.4.5.

Let us consider the series of functions Z; un(x) on [O,l],

where un(x):l_"_);lxz _1+(nx—l)x2 Ynz=2 .4 u,(x) = l+xx2‘

Now

n
X

S (x) = u, (x)=u,(x)+u,(x)+..+u,(x), x[0,1] = T
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Now lim, S (x)=lim, l+)161x2 =0Vxe[0,1]

Therefore the sequence {Sn (x)} converges pointwise to the function

S(x), where S(x)=0,0<x<l.
Let

Mn - xsel[’})e]|Sn (x) - S (x)‘ - xself}),l] 1 +nx2

[ S(x): 0, and x>0,1+ nx’ >O]

Now for x>0,

the equality occurs when nx== ie, x=—=[.x>0]

=< | —

From (3.4.8)

and

X

=0
1+ nx?

For x=0,

X 1
Su =——
Therefore e[ 0{1)] 1+ nx? 2\/;

1
M= sup S (x)=S(x) =
i‘[ﬁ]‘ (x)—S(x)| o

Now lim M =lim_ ——=0.

n—»e0 2\/;

Which implies that the sequence {Sn (x)} is uniformly convergent on [O,l].
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Hence the series of functions Z; un(x) converges uniformly to the function
S(x) on [O,l]. Now
(l+nx2)-l—x(2nx) _ 1-nx’

d S (x)¢= > = >
dx{ ()} (l+nx2) (l+nx2)

~AimS) (x) =0, if 0<x<l

X—>0

=1, if x=0.

2

Therefore the series Z; u;(x) converges to the function g(x),
where
g(x) =0, if0<x<1
=1, if x=0.

Now %[UI(X)-FUZ(X)‘F..] =0=u(x)+ul(x)+.. when 0<x<1,

But %[UI(X)+UZ(X)+...:| #u; (x)+uy(x)+... when x=0.

Hence only the uniform convergence of the series of functions is not sufficient to
ensure validity of term by term differentiation of the series.

Remark 3.4.7.
If the series of functions Z::l un(x) be convergent on [a,b], then the uniform

convergence of the series ul'(x)+u; (x)+... on [a,b] is only a sufficient but not

necessary condition for the validity of term by term differentiation of the series

2, 1(%).

3.5 Illustrative Examples

Example 3.5.1.

o0

X . .
——— is uniformly convergent for all real x.

Prove that the series Z —1
—n+nx



NSOU ¢ CC-MT-09 133

Solution :

by
n+nxt

Here f,(x)

When x=0,u,(x)=0

n

When x =0, we take two numbers | x| and n’ |x| and get

£+n2|x|
|l S
2 M
n _ 2 _ 1
the equality occurs when M_ n*[x] or || I
or, %| =n’lx| > Zn%
L

oL, n4n'y? = Zn%
Then u, (x)|= n+|)161|2x2 SZI?, then equality occurs when | ~In
i.e., we can say |u,(x) <= L vxeR and VneN.

2n?

If we take M, = 1 then for all real x,

3 2
2n?

un(n)‘ <M, VneN

. ® © 1 . . "
The series anlM "= Zn:1 5 1s a convergent series of positive real numbers.

2n?

X
2 is uniformly convergent for all real x.

Then by Weierstrass’s M-test, Zn:1 1+ et

Example 3.5.2.

+1)2
5

e (n
Show that the series Z »
= n

(%) is uniformly convergent on [—3,3].
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Solution :

Here u, (x) = (n +1)2 (%)n

(n + l)2

5
n

X
3

Now for [5{<1lie, 3<x<3.

u,(x) =

<

5
n

e

Now ‘un(x)lg(%—i-%—i-%) VneN and x € [—3,3].

1 2
We take M, = (? s therefore

un(x)|£Mn V,eN and xe[-3,3].

o ]

1 e 18 convergent when p>1.

We know Z

© .
.'.anan is a sum of three convergent sequence.

Therefore "'Z;Mn is convergent.

: , © (n + l)2 ..
Therefore by Weierstrass’s M-test, we conclude that Z e EY uniformly
= n

convergent on [-3,3].

Example 3.5.3.

Prove that the series x° + X >+ x° > +... is not uniformly convergent on [O,l].
I+x (l+x2)
Solution :
2
Let u,(x)=—>— and
(l+x2)
S (x)=u, (x)+u, (x)+..u,(x)
| W N S
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When x=0,S,(x)=0.
When 0<x<1,

<>{ - )

1+ x?

M(mﬂ[l ]

Now
limS,(x) =0, if x=0

X—>0

:(l+x2), if 0<x<1,

Hence the sequence {Sn (x)} converges pointwise to the limit function S(x),

where
S(x) =0, for x=0,

= 12 for 0<x<1,
1+x

Now S(x) is not continuous at x=0. So S(x) is not continuous on [0,1]. Now

each §, (x) is continuous on [O,l]. Therefore the sequence {Sn (x)} is not uniformly

x* x*

convergent on [0,1]. Consequently, the series x2+1+ 2-‘1-( 2)2+... is not
o (1+x

uniformly convergent on [0,1].

3.6 Exercise 2

1. Find the pointwise limit of the following series of functions Z:le”(l—x”)
on [0,1].
2. Find the sum function of the series Z::o(l_ x)x", 0 <x<1. Hence state with

reason weather the series is uniformly convergent on [O,l] or not.

3. State Cauchy’s principle of convergence of a series of functions defined on an
interval.
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) © coskx . .

Prove that the series Z N converges uniformly in —R < x <R, where R
is a real number.

© cosX’ .
n=l 5p°

4. State Weierstrass’s M-test and apply this to prove the series Z

uniformly convergent for all xe[-3,2].

4 4 4
X X X L

5. Find the sum function of the series * ' I4+x° (1+x4)2 (1+x4)3 ’

0<x<1l

Hence examine weather the series is uniformly convergent on [0,1].

o

6. Show that the series of functions Y, L B is uniformly convergent on[R .

"1 p® +sin

& x
7. Using Weierstrass’s M-test show that the series anl n(l N an) is uniformly

convergent on any interval [a,5].

Answer :

1. f(x)=0,0<x<1

2. S(x)=1 0<x<1 and f(x)=0,x=1,Not uniformly convergent on [0,1].
5. S(x)=0, x=0 and S(x)=1+x* 0<x<1. It is not uniformly convergent
on [0,1].

3.7 Limit Superior and Limit Inferior

We know that every convergent sequence is bounded but not every bounded
sequence is convergent. With every bounded sequence, however, we associate two

real numbers upper limit or limit superior (p) and lower limit or limit inferior ().

A bounded sequence converges only when A =.
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(A) For a Bounded sequence {xn} of Real Numbers:

Definition 3.7.1. [First Definition of |l and )]
1. A real number W is said to be the limit superior of the bounded sequence {xn}
if W satisfies the following two conditions :
(i) For every € >0, 3 only a finite number of members of {xn} which are > +¢,
i.e., for every € >0, 3 a positive integer N such that
n>N=x <u+e.
(ii) Given € >0 and given positive number m, 3 a positive integer n>m such

that x,>u1—¢g. We write

pu=1lim supx, or limx,.
2. A real number ), is said to be the limit inferior of the bounded sequence
{xn} if )\ satisfies the following tow conditions :
(i) For every € >0, 3 only a finite number of members of {xn} less than ) —¢,
i.e., for every € >0, 3 a positive integer n, such that
n>n,=x,2A—¢.
(ii) Given € >0 and given positive number m, 3 a positive integer n>m such
that x, <h+e. We write

A =liminf x, or limx,

Definition 3.7.2. [Second Definition of |\ and ) |

Let {xn} be a bounded sequence of real numbers. We collect all the subsequential

limits of {xn}. This collection is denoted by E, i.e., each member of E is the limit of

a convergent sub-sequence. The set E is clearly non-empty and bounded,; hence E
has a glb and lub. We now define

(i) The lub or supremum of E as the limit superior |\ of the sequence {xn} ; we

write n=lim supx, or limx .
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(ii) The glb or infimum of E is called the limit inferior ), of the sequence {xn}.

Then we write A =lim inf x, or limx,.

B. For unbounded Sequence {xn} of Real Numbers :

(i) If {xn} is unbounded above, then lim supx, =+o0.
(ii) If {x,} is unbounded below, then lim inf x, =—o.

(iii) If {xn} is unbounded below, and there is no other sub-sequential limit then

so that

limx, =limx, —o

its limit inferior is also —o©

2

(iv) If {xn} is unbounded above, and there is no other sub-sequential limit then

so that

limx =limx +0.

its limit inferior is also +oo

2

Example 3.7.1.

The bounded sequence {(—1)n} ={-L+L-L+L..} has limit inferior 3, =—1 and

limit superior \w=+1. There are only two sub-sequence limits {—l, l} for the sequence
{(—1)n} Here A+, the sequence oscillates finitely between —1 and +1.

Example 3.7.2.

W |

3 4
727 737"'} //ICIS 7\12—1 and le

Y

The sequence {—2, 2-

Remark 3.7.1.

Observe that none of the terms of the sequence lies between —1 and +1, i.e., —1
is not a lower bounded and +1 is not an upper bound.

Remark 3.7.2.

The lower limit of a sequence is not necessarily the glb of the sequence, nor is
the upper limit the lub. In fact, the lower limit may not even be alower bound, as we
can be seen from example 3.7.2 above.



139

NSOU e CC-MT-09
Example 3.7.3.
Let us consider the sequence {xn} where X, = sin%(n =123, 4)

The sequence {xn} is

{ﬁ oo B g5, A _}

)
DS
DS

2 2 2 2 2 2 2 2 2 2 2

The sub-sequential limits are % 0 and —73 as those terms occur infinitely

many times in the sequence.

limx, :—g and mxn :+§

Important Inequalities:

Theorem 3.7.1.

If {xn} and { yn} are bounded sequence of real numbers, then
(i) lim(x, +y,) <limx, +limy,.

(il) li_m(xn +yn) Z li_mxn +—-)hm n'

Proof. Let limx u, limy =, lim (xn +y,)=1

To prove
R U (B

Let ¢ be any arbitrary bpositive number ; 3 positive integers m, and m, such
that

X, <M1+%8, Vn=m,

Y, <u2+%e, Vn>m,

Hence, xn+yn<(ul+u2)+8, Vn>=m, where m:max(ml,mz).

This proves that lim(x,+y,) cannot exceed 1, +,(gbeing arbitrary)
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or,
lim(x, +y,) < +1,
e,
lim(x, +y,)<limx, +limy,
Proof of (i) is similar to (7). J

3.8 Power Series

We have studied sequence and series of functions in the previous sections. Here
we will study a special type of series of functions, which are called Power Series. We
will first define power series and then discuss about its convergency and some
important properties.

Definition 3.8.1.

A series of the form >a,(x—x) =a,+a(x—x,)+. . +a,(x—x) +.
n=0

whose terms are powers of x—x, multiplied by constants is called a power

series. 10 study power series, it is sufficient to assume that x, =0, since the substitution

o0
x—x,=xtransforms the series into the form ano a x". Hence let us take

© n 2 n
ax"=a,tax+ax +. . +ax"+..

n=0 1

as the general type of power series in Xx.

Example 3.8.1.

1+2x +3x>+ oo IS a power series which can be written as Z ax", where

n=0 7

a,=n+l.
Convergence of Power Series

. 0 . .
A power series E a x” is said to be convergent (non-cnvergent) at x=c,
n=0 7
. . . . © no.
according as the infinite series E a,c” is convergent (non-cnvergent) . Clearly any
n=0

o0
. P
power series ano a x” 1is always convergent atx =0.
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There are three types of power series:
(7)) If a power series is convergent for all xR, then it is called everywhere
convergent power series.

x2 3 xn

. X :
The power series l+x+j+a+...+m+... is an example of everywhere

convergent power series.
(ii) If a power series does not converge for any real x(:t O), then it is called

nowhere convergent power series.
The power series 1+ x+2!1x>+31x + 1S an example of nowhere convergent

power series.
(iii) There are another type of power series, which are convergent for some
values at x and non-convergent for other values of x.

. 0 . .
The power series anox" e, 1+x+x>+  1s convergent when |x|21.

Theorem 3.8.1.

If Zj:o a,x" is convergent for x =a, it is absolutely convergent for every value
of x such that |x| < |a| f it diverges for x =p, it is devergent for all values of x such
that |x| < |b| .

Proof. since the series is convergent for x =q, the sequence {anx"} converges

to zero and hence there exists a positive number M such that

anx”‘ <M for every value of n>0.

Now, if |x|<[a|, ie., if |x/a]=x<I,

n
ax

= ‘anx"‘x|x/a|n <MFE".

Hence the series converges by comparison with the convergent geometrical series
with k <1.

For the proof of the second part of the theorem let if possible the power series
be convergent for x =c¢, where |c|>] 5] Since the series is convergent fo x = ¢, then
by first part of this theorem the series would be convergent for x—=p, which is a
contradiction.

Hence the series is divergent for all real x stisfying |x| > |b| ]
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Theorem 3.8.2. [Fundamental Theorem]

o0
n . .
If ano a x” be any power series which does not merely converge everywhere

or nowhere, then a definite positive integer R (called the radius of convergence of
the power series) Exists such that Zio a x" converges for every |x| <R (in fact

absolutely), but diverges for |x| > R. In the two extreme cases, we write R = if the

series converges only at x = ( (nowhere convergent) and R — o, When the series

converges for all x (everywhere convergent).

Proof. Suppose that the series Zj: ,a,x" is not merely everywhere convergent or
no where convergent, so that there exist at least one point of convergence, a positive
x, and one point of divergence, a positive y, . Hence clearly x, <y,. We call [xo, yo]
by I,. Divide /, into two equal parts and denote by /,, the left or right half of /;
according as the series diverges or converges at the middle of /.

By a continuation of the process, the intervals of the nest (7, ) all have the

property that Z:: ,a,x" converges at their left end point, say, x, and diverges at their

right enc point, say, y,. The number R (necessarily positive) which the nest determines

is the required number of the theorem.

In fact, if £ be the set of x’s for which the series ijo a x” converges then
R=sup ‘x’
E

Now let any x in |x| < Rbe given. Then there exists an x, such that
|x| <|x0| <R

for which the series converges (this is by the difinition of supremum). By the
previous theorem, It converges absolutely at x. Hence it converges for all such x that

is all x for which |x| <R.
Suppose now that the series does not diverge for some x,where |x0| >R . This

means that it converges for x,. But then we have found a member of the set £ larger
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than the supremum. This is a contradiction. When R =0 or R =+, we have nothing
to prove. Hence the theorem.

Definition 3.8.2.
Let for a given power series Zj:o a x", I be the set of these real x's for which

the series converges. Then the number R, defined below, will be called the radius of

convergence of Zj:o a x" if
@) R=0, if Z::o a x" converges only for x=0,ie, £ = {O}

@ity R=o, if Z::o ax" converges only for real x ie., E=R = set of all real

numbers.

(#ii) R=sup . |x

, If Z::o a x" converges for some x's and diverges for others.
The interval —R < x < R is called the interval of convergence of the power series

> oax".

Determination of the Radius of Convergence :

Theorem 3.8.3. [First Method: Use of Ratio Test|
If R be the radius of convergence of the power series ijoanx" and if

a +1

n

:CI(CI;tO) then R:é.

lim

n

Proof. By D’Alembert’s ratio-test, since

a + xn+1

n+l an+1

an

= lim

n—so0

Uprt _ im

n—>oo
un

lim

n—so0

.+ Jef=al].

n

o0
. , ) )
the series anoanx converges if q|x|<1 ie.,

x|<1/ q and diverges when

qlx|>1, ie,

x| >1/q. Thus R=1/q. Hence the theorem. J
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Theorem 3.8.4. [Second Method: Cauchy-Hadamard Formula]

o0
: noo
For the power series anoanx , if
g =limsup{/|a,|,

n—0

then the radius of convergence R of the series Zj:o ax" is given by R=0 if

g=o, R=w if g=0 and R=1/q if 0<qg <.

Also Zj:o a x" converges absolutely if |x| <R, and diverges if |x| >R.

Proof. As a consequence of Cauchy’s root test,
anx”| = £i£130supﬁ-|x| =qlx].

Now for convergence q|x|<1, which is true for all values of x if ¢g=0. If

limsup
1
q=+o0, it holds only for x=0; if 0<g <, it holds only if |x|<5. Hence the

theorem. ]

Example 3.8.2.
Find the radiul of convegence of

1.1 S
x—§x2+§x3—.... :;(—l)

and discuss its convergence at each end of the interval.

1
X
n

Solution :

By ratio-test,

<

n+l

- = —>1=9 as n>w.

Hence R=1/g=1. Thus the series is absolutely convergent for |x| <1.

Also at y =1, the series becomes 1—%+%—... which is seen to convergent and
. 1 1 C .
at x =—1, the series takes the form — 1+5+§+ -] which is clearly divergent. Thus

the series convergens in —]<x<1].



NSOU ¢ CC-MT-09 145

Example 3.8.3.

Find the interval of convergence of

_x3 x5_ ~ © (_l)nflxznfl
TR TR Ty ey
Solution
Here
un+l _ _(27/1_1)' 2l x2
", _‘ @) | 2u(anen) 0 as no o,

So the series is absolutely convergent for all values of x.

Example 3.8.4.

Find the radius of convergence of the power series
2 3
1+5+(5) +(5) +...
3 \3 3

Solution :

n
) . o X
Here the given power series is anoanx”, where a, 2(3) :

If R be the radius of convergence, then by Cauchy-Hadamard formula we have

1 _lim sup ¢ (l)n =1
R oo 3 3°

Hence R =3 is the radius of convergence of the given power series.

Some Properties of Power Series :

Theorem 3.8.5.

Let Zj:o a x" | be a power series with radius of convergence R(> O) . Then the

series is uniformly convergent on [—s,s], where 0<s<R.
Proof. Let u,(x)=ax", n=0
Since R is the radius of convergence of the power series, the series is absolutely

convergent for all real x satisfying |x|<R.
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Sience () < s < R, the series ijo a x" is absolutely convergent for all x satisfying
|ﬂ£s<R.

Therefore the series Zio

ans”’ is convergent.

s" for all real x satisfying |x| <s.

u, (x)‘ = ‘anx”‘ <

Now a,

Let M =l|a|s" for all neN .

an
Then Z::oM , 1s a convergent series of positive real numbers and for all ne N,
|un (x)‘ <M, for all xe[-s,s].
By Weierstrass’s M-test, the series > u,(x) is uniformly convergent on [—s, s].
Consequently, the series Z; u, (x), i.e., the power series Z; a x" is uniformly

convergent on [-s,s]. O

Theorem 3.8.6. [Continuity in the Sum.|

A power series represents a continuous sum-function within its interval of
convergence. That is, suppose the power series

Zanxn converges for |x|<R (3.8.1)

n=0
and define

S(x)=2ax" for |x|<R.

n=0
Then the functions S(x) is continuous on [a,b] where _R<ag<bhb<R.
Proof. Let x, be any point on [a,b]. For continuity of S(x) at x,, we are to
show that for any given ¢ > (, there must correspond a 6(8) such that
|S(x)—S(x1)|<8 for x—x|<8.

Now for any n, (taking S, (x) =a,+ax+ax’ +..+ anx”)
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|S(x)—S(xl)‘ = ‘S(x)—Sn (x)+Sn (x)—Sn (x1)+Sn (xl)—S(xl)‘
<[§(x) =8, (x)|+]S, (x) =8, (x)|+]S, (%) -S(x)].  (3.8.2)

Again (3.8.2) being uniformly convergent to S(x) on [a,5], for any given ¢ >0

there exists a positive integer NV (independent of x) such that
|Sn (x)—S(x)| <% for > N and for all x on [a,b].

Since x, is any point on [a,5],

€
Sn(xl)_S(xl)| <3.for n>N.
Next, S,(x)=a,+ax+a,x’+..+a,x" is a continuous function and hence there

must exist a 6(8) for any given ¢ >0 and for a fixed >N such that

Sn(xl)_S(xl)|<%, whenever |x—x|<3§.
Thus (3.8.2) gives,

|S(x)—S(x1)|<%+%+%=8 for |x—x|<3§.

Since x, is an arbitrary point on [a,b], the theorem extablished. |

Theorem 3.8.7. [Integration of Power Series.]

A power series may be integrated term by term in any closed interval which lies
entirely within its interval of convergence. That is, suppose the power series

2.ax" convrges for |x| <R (3.83)
n=0
and define
S(x)=2ax for |x|<R.
n=0
Then for —R<a<b<R
IbS(x)dx = Ibaodx+Ibalxdzx+...+jbanx”dx+...

Proof. Let S, (x)=a,+ax+ax’+.. . +ax". Now (3.8.3) converges uniformly to
n 0 1 2 n
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S (x) on [a,b] and, therefore, for a given ¢ > (, there exists a positive integer N

(independent of x) such that
|Sn (x)—S(x)‘ <ﬁ for > N and for all x on [a,b] (3.84)

Again since (3.8.3) represents a continuous sum-function S(x) on [a,5], and

hence integrable on [a,b], we have for > N and with the help of (3.8.4),
[0, (x)dx [ (x)dx|= [ {8, (x)~ 5 (x)}ex

SJ:Sn(x)—S(x)’dx<J: E _dv=—2—x(b—a)=¢

b—a b—a
and the theorem follows.

O

Theorem 3.8.8. [Differentiation of Power Series)

A power series may be differentiated term by term in any closed interval which
lies entirely within its interval of convergence. That is, suppose the power series

2.ax" converges for |x| <R (3.8.5)
n=0
and define
§(x)=2ax" for |x|<R. (3.8.6)
n=0

Then the function S (x) is differentiable on [a,b] where _R<qg<b< R, and

S'(x)=2nax"" in g<x<b. (3.8.7)
n=1

. 1
Proof. Let S,(x)=a,+ax+ax’+..+a,x". Since ,» _, 1 as n— oo,

lim sup %/|na |: limsup /|a |
n—>0 n n—»o0 n

so that the series (3.8.6) and (3.8.7) have the same interval of convergence

(—R,R) . Since (3.8.7) is a power series, it converges uniformly to a function (I)(x),
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say, on [a,b], where —R <qg<b < R. Integrating term by term for any x on [a,5],
Ix¢(x)dx = Zw:jxnanx"’l dx = i{anx" —ana"}
a n=1 ¢ n=1

= i{anx" —ana"} =8(x)-S(a).

n=0

Hence,
d > d '
[ g(x)ate= {5 ()5 (@)} = 5'(x)
Since (I)(x) is continuous on [a,b], we have (I)(x) =S '(x). Hence the theorem.

O

Theorem 3.8.9. [Abel’s Theorem (Limit Form).]

If Zio a x" be a power series with finite radius of convergence R, and let
f(x)=Dlax", —R<x<R

o0
. n
If the series ano a x" converges, then

x—>R-0

lim f(x)= ianR".

Proof. Let us first show that there is no loss of generality in taking R —1.
Put x =Ry, so that

Yax"=>aRry" :anyn, where b =a R".
n=0 n=0 n=0

1
. . . . R=——~- .
It 1s a power series with radius of convergence g’, where Tl ] Thus it

is sufficient to prove the following:

0 . . . .
Let ano ax" be a power series with unit radius of convergence and let

f(x)=Xax", -l<x<I
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If the series ijo a, converges, then

o0

lim f(x)=>a,

x—>—0 =0

Let S =a,+a,+a,+..+a,.S =0, and let Zioan =S, then

m m m—1 m
dYax” = (S, -8 )x" =D 8x"+8x"=> 8 x"
n=0 n=0

m—1

= (l—x)iSnx”JrSmx'”
n=0

For |x|<1, when m — o0, since S —§, and y” 5, we get

o0

f(x):(l—x)ZSnx"j for 0<x<1. (3.8.8)

n=0

Again, since S, = §, for g >0, there exists N such that

Sn—S|<%; for all n>N (3.8.9)
Also
(1-x) 3 Sa" =1, |x|<I (3.8.10)
n=0

Hence for 5 > N, and using (3.8.8) and (3.8.10), we have for 0 <x <1,

1/ (x)-5| = (l—x)gSnx"—S‘

- (l—x)ni;(Sn—S)x"

Sx"-8

S(l—x)nZN;) x”+%(l—x) i x"

n=N+1

g
X'+ =
2

S(l—x)nﬁ;

Sx"-S
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But for a fixed N, (I—X)Z:]:O

Sx" -8 ‘x” is a positive continuous function of

x, having zero value at x—=1. Therefore there exists §>(, such that for

N n
1=8<x<l (1-x)3 [5,~S]x" <%
.'.|f(x)—S‘<%+%=87 when 1-§ <x<1

Hence

Theorem 3.8.10. [Weierstrass Approximation Theorem.|
If fis a real continuous function defined on a closed interval [a,b] then there
exixts a sequence of real polynomials {Pn}which converges uniformly to f (x) on

[a,b], ie, lim P (x:f(x), uniformly on [a,b].

n—>0 " n

Proof. If g=p, the conclusion follows by taking P (x) to be a constant

polynomial, defined by F,(x)= f(a), for all n,
We may thus assume that a<b.
, (x—a)
We next observe that a linear transformation ¥ = W is a continuous mapping
of [a,b] onto [0,1]. Accordingly, we assume without loss of generality that

a=0, b=1.
Consider

F(x)=f(x)-f(0)-x[f(1)-f(0)], for 0<x<I.

Here F (O):O:F (l) and if /7 can be expressed as a limit of a uniformly

2

convergent sequence of polynomials, then the same is true for f, since f—F'is a

polynomial. So we may assume that f(1)= f(0)=0.
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Let us further define f(x) to be zero for x outside [0,1]. Thus fis now uniformly

continuous on the whole real line.

Let us consider the polynomial (non-negative for |x| <1).
B,(x)=C,(1-x"), n=123. (3.8.11)
Where C, independent of x, is so chosen that

[ B,(x)dc=1 for n=123,.. (38.12)

lj lxdeCledx

>2(C jﬁ l—xz)ndx

>2CJ.I l nx )dx—

N f
=C, <n (3.8.13)
Which gives some information about the order of magnitude of C, .

Therefore, for any § >0, (3.8.13) gives

Bn(x)S\/;(l—Sz)n, when 6£|x|£l (3.8.14)
So that B, — 0 uniformly, for 6 < |x| <I.
Again, let
P(x)=[ f(x+1)B, ()L, 0<x<l

—x 1-x 1
:L f(x+z)Bn(z)dz+LC f(x+z)Bn(z)dz+fo(x+z)Bn(z)dz
For |x|£l, l+x<x+£<0, for -1<7<—x, so that x+¢ lies outside [0,1] and

therefore f (x+t) =0, and hence the first integral on the right vanishes. Similarly

the third integral is also equal to zero. Hence
1-x
= [ f(x+1)B,(1)dr
1
:Lf(z)Bn(z—x)dz
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which clearly is real [polynomial.

We now proceed to show that the sequence {Pn (x)} converges uniformly to f on
[0.1].
Continuity of f on the closed interval [0,1] implies that fis bounded and uniformly

continuous on [0,1].

Therefore there exists M such that
M = suplx| (3.8.15)

and for any g >0, we can choose §>( such that for any two points x,x, in

[0.1].

|f(x1)—f(x2)‘<%j when |x, —x,|<8<1 (3.8.16)

For 0< x <1, we have

P(x)-f () = |[ £ (x+0)B, ()t~ £ (x)

- Ull{f (x+1)-1 (x)}B, (f)df] [using (3.8.13)]
< [ |f(x+0)-f (B, () (-.B,(1)=0)
<[ (xr) = £ (x)B, (1) el
o) = £ @B, () + [[| £ (x+0) - £ (x)}B, (¢)
<om[ B, (z)dz+%[:Bn (t)et-+20M [ B (1)

[Using (3.8.15) and (3.8.16)]
SZM\/;(I—ESZ)n{LSdHI;dt}Jr%

[using (3.8.13) and (3.8.15)]

34Mﬁ(1—62)"+%

<E, for larg values of n.
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Thus for ¢ >0, there exists NV (independent of x) such that

Pn(x)—f(x)|<8, V=N

=lim, , P,(x)= f(x), uniformly on [0,1]. ]

3.9 Illustrrative Examples

Example 3.9.1.

Find the radius of convergence of the power series
1piy 3,2, 1355,
2 2.4 2.4.6

Solution:

o0 . .
Let Z a x" be the given power series.
n=0

1-3-5-..(2n-1)

Then a,=1 and a, = A6 on for all >1.

Now

an+l‘ _ lim1-3-5-...-(2n—1)(2n+1) 2.4.6. .2n

e | T a2 2) T35 (2 ])

n—>0

1

24—
= lim2"*L _fim 3:3:1
n—seo 200+ 2 n—>°°2+% 2

Hence the radius of convergence of the given power series is 1.

Example 3.9.2.

Let R be the radius of convergence of the power series Zj:o a x" . Show that the

n+l

. . o X .
radius of convergence of the power series ano a4 will also be R.

Solution :

Since the radius of convergence of the power series ijoanx” is R, so by
Cauchy-Hadamard formula,
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1

gl ie, ST

The series is nowhere or everywhere convergent according as lim, ¢

n—>0

or zero.
Now for the second series

= fim gfla,| | lim —L =1

" (n+ 1)
[using L’Hospital rule]
_1
R

Therefore it is proved that the radii of convergence of the power series Zj:o ax’

. xn+l
and anoan'nJrl are same.

Example 3.9.3.

Starting form the power series expansion for log, (l+x) , show that the power

¥ X X

series representing (1 + x)loge (1 + x) =x+ 13 33 + 3.4 Find its radius of
convergence. Deduce that % - % + ﬁ —.o=2log,2-1,
Solution:

We know that the power series expansion of log, (1+x) is

—-1<x<1

ceey

RS S S o) A
2 3 4 n
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This series is uniformly convergent and term by term integrable within its interval

of convergence, i.e., (—l,l]. So

. ~ B © o B (_l)nfl ntl
Jylog(1+x)dr =~ 55+ 52 n(n+1)
X X X (—1)’171 "
or, (1+x)log, (1+x)—x=" 73 3.2 % (D) +
_ox X xt (—1)’171 x"
or, (l—i—x)loge(l-i-x)—x—i-? ﬁ—i_ﬂ +W

Let ijoanx” be the form of the above power series, where
n-2

(_l)l =22, a =1 Now

T Rt G2 | IS
n»oo| i n—>00 (_l)n n—o 1+ 1
(n—l)n
So the radius of convergence is 1.
When x =1, the series becomes
R S N o)
1+1.2 73 + 32 ot (n+1)" +...

which is an althernating series and it is convergent by Leibnitz’s test.
Hence by Abel’s theorem
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3.10 Summary

1.

In Section 3.1 we have focussed on pointwise convergence and uniform
convergence of sequence of functions, Cauchy Condition for Uniform
Convergence, Test for uniform convergence and different theorems on
uniform convergence and continuity, uniform convergence and integrability
and uniform convergence and differentialbility.

In Section 3.4 we have focussed on pointwise convergence and uniform
convergence of series of functions, Cauchy Condition for Uniform
Convergence, Test for uniform convergence and different theorems on
uniform convergence and continuity, uniform convergence and integrability
and uniform convergence and differentiability.

In Section 3.7 we have discussed difinition some theorems on Limit superior
and Limit Inferior.

In Section 3.8 we have studied convergence and absolute convergence of
power series and discussed some tests (Abel’s Test) for convergence of
power series and different theorems regarding term by term integration and
term by term differentiation of power series. Also we focussed on
Weierstrass’s Approximation Theorem.

3.11 Exercise 3

1. Verify the interval of convergence of the following series :

) 1+x+x*+x +.. for—1<x<1

2 3
(i) l+§+x—+x—+... for -1<x<1

5 7

(@) 1+2x+3x+4x+.. for —1<x <1

x2

3
(i) 1+12+—+%+... for —d<x<4

(v) x+

24

2 3 n
X X +—X _—+  for —10<x <10

+—...
2.-10 3-10° n-10

2

2. Calculate the radii of convergence of the following series:

P (i) T

(i) Zfl(”%“)nx" w x, L

nn
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3. Give example to show that a power series ijo a x” may be convergent

for all values of x, for a certain region of values of x or for no value of x
exceptx=0.

4. Prove Abel’s theorem in the form: If the power series Zioaﬂx" has a

finite non-zero radius of convergence R and if it converge at X=R_ then
it converges uniformly in —R < x <0.

5. Find the series for loge(l+x) by integration and use Abel’s theorem to

show that l—%+%—%+...:10g2.

6. Find by integration or otherwise the power series for tan'x in the form

tan’lx:x—%XS+%x5—%x7+..., -1<x<1

and show that

l—l+l— +...=
3°5

z
1

~3|—

7. Without finding the sum f (x) of the series

2 4 2
l+x—+x—+...+ﬂ+..., —0<Lx <
1 2! n! ’

Show that f’(x)=2xf(x) in —o<x <.

8. Prove the following :
(i) A power series can be integrated term by term in any closed interval
wich lies entirely within its interval of convergence.
(i) A power series may be Differentiated term by term in any closed interval
wich lies entirely within its interval of convergence.

Answer :
2.() 1 (ii) 1

(i) 5 @iv) e.
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