
PREFACE 

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,” 

the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations 

for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and 

Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based 

credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this 

entire exercise shall leverage the potential of higher education in three-fold ways – learner’s personal 

enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively 

therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising 

individual attainments towards the enhancement of our national goals.  

     In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of 

an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in 

upholding the qualitative parameters. It is time to acknowledge that the implementation of the National 

Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its 

syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of 

Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities 

in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among 

Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas 

Open University is committed to both quantity and quality in its mission to spread higher education. It 

was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate 

syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the 

CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are 

relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge 

Systems.  

     Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open 

University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s. 

From our mandate of offering quality higher education in the mother tongue, and from the logistic 

viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English. 

All our faculty members are constantly engaged in this academic exercise that combines subject specific 

academic research with educational pedagogy. We are privileged in that the expertise of academics across 

institutions on a national level also comes together to augment our own faculty strength in developing 

these learning materials. We look forward to proactive feedback from all stakeholders whose participatory 

zeal in the teaching-learning process based on these study materials will enable us to only get better. On 

the whole it has been a very challenging task, and I congratulate everyone in the preparation of these 

SLM’s. 

I wish the venture all success.      

 

Professor Indrajit Lahiri 

Vice Chancellor 
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Unit - 1  Set Theory

Structure
 
 
 
 
 
 
 
 

1.1 Objectives
 The following are discussed here:
 * Definition of set and subset
 * Elementary operations on sets, De Morgan’s law, Cartesion product
 
 
 
 
 

1.2 Introduction

1.3  Sets

A set is a collection of objects, called the elements or members of the set. The 
objects could be anything (planets, squirrels, characters in Shakespeare’s plays, 

7

  Set  theory  is  the  branch  of  mathematical  logic  that  studies  sets,  which  can  be
informally  described  as  collections  of  objects. Although  objects  of  any  kind  can  be
collected into a set, set theory, as a branch of mathematics, is mostly concerned with
those that are relevant to mathematics as a whole. 

1.1  Objectives
1.2  Introduction
1.3  Sets
1.4  Summary
1.5  Key Words
1.6  Model  Questions
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orother sets) but for us they will be mathematical objects such as numbers, or sets of 
numbers. We write x ∈ X if x is an element of the set X and x ∉ X if x is not an element 
of X.

Sets are determined entirely by their elements. Thus, the sets X, Y are equal, 
written X = Y , if

x ∈ X   if and only if   x ∈ Y.

It is convenient to define the empty set, denoted by ∅, as the set with no 
elements. (Since sets are determined by their elements, there is only one set with no 
elements!) If X ≠ ∅, meaning that X has at least one element, then we say that X is 
nonempty.

We can define a finite set by listing its elements (between curly brackets). For 
example,

X = {2, 3 , 5, 7, 11}

is a set with five elements. The order in which the elements are listed or repetitions 
of the same element are irrelevant. Alternatively, we can define X as the set whose 
elements are the first five prime numbers. It doesn’t matter how we specify the 
elements of X, only that they are the same.

Infinite sets can’t be defined by explicitly listing all of their elements. 
Nevertheless, we will adopt a realist (or “platonist”) approach towards arbitrary 
infinite sets and regard them as well-defined totalities. In constructive mathematics 
and computer science, one may be interested only in sets that can be defined by a rule 
or algorithm — for example, the set of all prime numbers — rather than by infinitely 
many arbitrary specifications.

1.3.1 Numbers : The infinite sets we use are derived from the natural and real 
numbers, about which we have a direct intuitive understanding. 

Our understanding of the natural numbers 1, 2, 3, . . . derives from counting.We 
denote the set of natural numbers by

  = {1, 2 , 3, . . . }.

We define  so that it starts at 1. In set theory and logic, the natural numbers are 
defined to start at zero, but we denote this set by 0 = {0 , 1, 2, . . . }. Historically, the 
number 0 was later addition to the number system, primarily by Indian mathematicians 
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in the 5th century AD. The ancient Greek mathematicians, such as Euclid, defined a 
number as a multiplicity and didn’t consider 1 to be a number either.

Our understanding of the real numbers derives from durations of time and 
lengths in space. We think of the real line, or continuum, as being composed of an 
(uncountably) infinite number of points, each of which corresponds to a real number, 
and denote the set of real numbers by .

We denote the set of (positive, negative and zero) integers by
 = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . },

and the set of rational numbers (ratios of integers) by

 = {p/q : p, q ∈  and q ≠ 0}.

The letter “Z” comes from “zahl” (German for “number”) and “Q” comes from 
“quotient.”  These number systems are discussed further in unit 2.

Although we will not develop any complex analysis here, we occasionally make 
use of complex numbers. We denote the set of complex numbers by

 = {x + iy : x, y ∈ } ,
where we add and multiply complex numbers in the natural way, with the additional 
identity that i2 = −1, meaning that i is a square root of −1. If z = x + iy ∈ , we call x = 
ℜz the real part of z and y = ℑz the imaginary part of z, and we call

| |z x y= +2 2

the absolute value, or modulus, of z. Two complex numbers z = x + iy,  w = u + iv are 
equal if and only if x = u and y = v.

1.3.2 Subsets : A set A is a subset of a set X, written A ⊆ X , if every element of 
A belongs to X; that is, if

x ∈ A implies that x ∈ X.
We also say that  A is included in X. For example, if P is the set of prime 

numbers, then P ⊆ , and  ⊆ . The empty set ∅ and the whole set X are subsets of 
any set X. Note that X = Y if and only if X ⊆ Y and Y ⊆ X; we often prove the equality 
of two sets by showing that each one includes the other.

If A ≠ X but A ⊆ X, then A is called a proper subset of X and is denoted by A ⊂ 
X. In our notation, A ⊆ X does not imply that A is a proper subset of X (that is, a subset 
of X not equal to X itself), and we may have A = X.
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A B

Fig. 1.1 : Venn diagram of set A with a subset B

Definition 1.3.3 : The power set P (X) of a set X is the set of all subsets of X.

Example 1.3.4 : If  X = {1, 2, 3}, then
P (X) = {∅, {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}} .

The power set of a finite set with n elements has 2n elements because, in defining 
a subset, we have two independent choices for each element (does it belong to the 
subset or not?).  In Example 1.3.4, X has 3 elements and P(X) has 23 = 8 elements.

The power set of an infinite set, such as , consists of all finite and infinite 
subsets and is infinite.

We imagine that a general subset A ⊆  is “defined” by going through the 
elements of  one by one and deciding for each n ∈  whether n ∈ A or n not belongs 
to A.

If X is a set and P is a property of elements of X, we denote the subset of X 
consisting of elements with the property P by {x ∈ X : P (x)}.
Example 1.3.5 : The set

{n ∈  : n = k2 for some k ∈ }
is the set of perfect squares {1, 4, 9, 16, 25, . . . }. The set

{x ∈  : 0 < x < 1}
is the open interval (0, 1).

1.3.6 Set operations : The intersection A ∩ B of two sets A, B is the set of all elements 
that belong to both A and B; that is

x ∈ A ∩ B if and only if x ∈ A and x ∈ B.
Two sets A, B are said to be disjoint if  A ∩ B = ∅; that is, if A and B have no elements 
in common.

The union A ∪ B is the set of all elements that belong to A or B; that is
x ∈ A ∪ B if and only if x ∈ A or x ∈ B.
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A A∩B BA B

                   Fig. 1.2 :  Union of A and B                     Intersection of A and B

Note that we always use ‘or’ in an inclusive sense, so that x ∈ A ∪ B if x is an element 
of A or B, or both A and B. (Thus, A ∩ B ⊂ A ∪ B.)

The set-difference of two sets B and A is the set of elements of B that do not 
belong to A,

B \ A = {x ∈ B : x ∉ A} .
If we consider sets that are subsets of a fixed set X that is understood from the context, 
then we write Ac = X \A to denote the complement of A ⊂ X in X.  Note that (Ac)c = A.

A

X\A

 Fig. 1.3 : Complement of A

Example 1.3.7 : If
A = {2, 3, 5, 7, 11},        B = {1, 3, 5, 7, 9, 11}

then
A ∩ B = {3, 5, 7, 11},   A ∪ B = {1, 2, 3, 5, 7, 9, 11}.

Thus, A ∩ B consists of the natural numbers between 1 and 11 that are both prime and 
odd, while A  ∪ B consists of the numbers that are either prime or odd (or both). The 
set differences of these sets are

B \ A = {1, 9},      A \ B = {2} .
Thus, B \ A is the set of odd numbers between 1 and 11 that are not prime, and A \ B is 
the set of prime numbers that are not odd.

If A, B ⊂ X, we have De Morgan’s laws:
(A ∪ B)c = Ac ∩ Bc,      (A ∩ B)c = Ac ∪ Bc
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  A            B

A ∪ B

A ∩ B

A

(A ∪ B)

B

  ... (1)

  ... (2)

   A              B

 ∪   

 ∪   

 ∪   

 ∪   

 ∪   

   A            B

   A              B   A              B

Fig. 1.4 : De Morgan’s laws

The Cartesian product X × Y of sets X, Y is the set of all ordered pairs (x, y ) with 
x ∈ X and y ∈ Y.  If  X = Y , we often write X × X = X2. Two ordered pairs (x1, y1), 
(x2, y2) in X × Y  are equal if and only if x1 = x2 and y1 = y2. Thus, (x, y) ≠ (y, x) unless  
x = y. This contrasts with sets where {x, y} = {y, x} .

Example 1.3.8 :  If X ={1, 2, 3} and Y = {4 , 5} then

X × Y = {(1, 4), (1, 5), (2, 4) , (2, 5), (3, 4), (3, 5)} .

Example 1.3.9 : The Cartesian product of  with itself is the Cartesian plane 2 

consisting of all points with coordinates (x, y ) where x, y ∈ .

A B
A×B

=×

Fig. 1.5 : Cartesian Product of Two Sets.
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The Cartesian product of finitely many sets is defined analogously.

Definition  1.3.10  :  The  Cartesian  products  of  n  sets  X1  ,  X2,  .  .  .  ,  Xn  is  the  set  of
ordered  n-tuples,
  X1×  X2  × . . . ×  Xn  = {(x1, x2  , . . . ,  xn  ) :  xi  ∈  Xi  for  i  = 1, 2, . . . ,  n}, where (x1,  x2
, . . . ,  xn  ) = (y1,  y2  , . . . ,  yn) if and only if  xi  =  yi  for every  i  = 1 , 2, . . . ,  n.

1.4 Summary:
This note outlines fundamental concepts in set theory, including set operations, relations, and
properties, with applications to other mathematical areas.

1.5  Keywords:
Set theory, operations, relations, properties, mathematical structures, foundations.

1.6 Model Questions

6 CC-MT-07



 
A relation R on two non-empty sets X and Y is a rule that associates some or all 

the elements of X with some elements or element of  Y . We write xRy if x ∈ X and 
y ∈ Y are related. One can also define relations on more than two sets, but we shall 
consider only binary relations and refer to them simply as relations. If X = Y , then we 
call R a relation on X

1

A B

1

2 2

3 3

 

       

    

2.3  Relations

xRy

Fig. 1.6  : A relation between A and B

The relation  R  between two non-empty sets  X  and  Y  is a subset of  X × Y, i.e.,
  R  = {(x,  y) :  xRy,  x  ∈  X  and  y  ∈  Y  }  ⊆  X  ×  Y.
Example 2.3.1 :  Suppose that  S  is a set of students enrolled in a university and  B  is a
set of books in a library. We might define a relation  R  on  S  and  B  by :

s  ∈  S  has read  b  ∈  B.

NSOU  CC-MT-10  7
Unit - 2  Relations

Structure
 
 
 
 
 
 
 
 2.1 Objectives

 
 
 
 
 
 
 

2.2 Introduction

2.1  Objectives
2.2  Introduction
2.3  Relations
2.4  Summary
2.5  Key Words
2.6  Model  Questions

The note explores the fundamental relations in set theory, highlighting key concepts 
such as equivalence relations, partial orders, and their applications in mathematical 
structures.

 
 

Set theory, a core area of mathematics, studies the properties and relations of sets.
This note delves into various types of relations, their significance, and foundational 
properties
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  When  used  informally,  relations  may  be  ambiguous  (did  s  read  b  if  she  only
read the first page?), but in mathematical usage we always require that relations are
definite, meaning that one and only one of the statements “these elements are related”
or “these elements are not related” is true.

The graph  GR  of a relation  R  on  X  and  Y  is the subset of  X  ×  Y  defined by
  GR  = {(x,  y)  ∈  X  ×Y  :  xRy}.

This graph contains all of the information about which elements are related.

Definition 2.3.3 :  A relation  R  on a set  S  is said to be reflexive if
  xRx  for all  x  ∈  S.
Example 2.3.4 :  The relation  R  defined on the set of real numbers    by

  xRy  if and only if  x  –  y  ≥  0.
Then the relation  R  is reflexive on  .

Example 2.3.5 :  Let  S  be the set of all students in a class. Now a reflexive relation  R
is defined on  S  by
  xRy  if and only if  x  and  y  obtain same marks.
Not all relations satisfy the reflexive condition, see the following example.
Example 2.4.6 :  Consider the relation  R  on the set of integers    defined by
  xRy  if and only if  x  +  y  = 1.
This relation is not reflexive.
Definition 2.4.7 :  A relation  R  on a set  S  is said to be symmetric if
  xRy  implies  yRx  ∀x,  y  ∈  S.
Example 2.4.8 :  The relation  R  defined on the set of real numbers    by
  xRy  if and only if  x  and  y  have a common divisor other than 1.
Then the relation  R  is symmetric on  .
Example  1.4.9  :  Let  S  be  the  set  of  all  students  in  a  school.  Now  a  relation  R  is
defined on  S  by
  xRy  if and only if  x  and y are from different classes.
This relation is symmetric but not reflexive.

Definition 1.4.10 :  A relation  R  on a set  S  is said to be transitive if
  xRy  and  yRz  implies  xRz  ∀x,  y,  z  ∈  S.
Example 1.4.11 :  The relation  R  defined on the set of integers    by

    
In that case,  sRb  if and only if  s  has read  b. Another, probably inequivalent, relation is:

s  ∈  S  has checked  b  ∈  B  out of the library.
Example 2.3.2 :  Let  S  be the set of balls in a box. Now define a relation  R  on  S  by

  xRy  if and only if  x  and  y  have the same colour.
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xRy if and only if x < y.
Then the relation R is transitive on  although it is neither reflexive nor symmetric.

1.4.12 : Equivalence relations : Equivalence relations decompose a set 
into disjoint subsets, called equivalence classes. We begin with an example of an 
equivalence relation on .

Example 1.4.12.1 : Fix N ∈  and say that m R n if
m ≡ n (mod N),

meaning that m - n is divisible by N . Two numbers are related by R if they have the 
same remainder when divided by N . Moreover, N is the union of N disjoint sets, 
consisting of numbers with remainders 0, 1,. . .N − 1 modulo N .

Definition 1.4.12.2 : An equivalence relation R on a set X is a binary relation on X 
such that for every x, y, z ∈ X :

(a) x R x (reflexivity);
(b) if x R y then y R x (symmetry);
(c) if  x R y  and y R z then x R z (transitivity).

Example 1.4.12.3 : The relation R on the set of integers defined by
x R y if and only if x – y is divisible by 2.

This relation is reflexive since x – x = 0 is divisible by 2. It is easy to check that this 
relation is symmetric and also transitive. Therefore, it is an equivalence relation.
Example 1.4.12.4 : The relation R on the set of balls in a box, S, defined by

x R y  if and only if both x and y has same colour.
This relation is an equivalence relation (check it !).
Example 1.4.12.5 : The relation R on the set of all triangles in the plane, K, defined by

x R y if and only if both x and y has same area.
This relation is an equivalence relation .

Example 1.4.12.6 : If we define a relation R on  by
x R y if and only if  x < y.

Then this relation is not equivalence as the it breaks the reflexive and symmetric 
conditions.

For each x ∈ X, the set of elements equivalent to x,
[x/R] = {y ∈ X : x R y} ,
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is called the equivalence class of x with respect to R When the equivalence relation is 
understood, we write the equivalence class [x/ R] simply as [x]. The set of equivalence 
classes of an equivalence relation R on a set X is denoted by X/ R. Note that each 
element of X/ R is a subset of X, so X/ R is a subset of the power set P(X) of X.

The following theorem is the basic result about equivalence relations. It says 
that an equivalence relation on a set partitions the set into disjoint equivalence classes.
Theorem 1.4.12.7 : Let R be an equivalence relation on a set X. Every equivalence 
class is non-empty, and X is the disjoint union of the equivalence classes of R.

Proof. If x ∈ X, then the reflexive of R implies that x ∈ [x]. Therefore every equivalence 
class is non-empty and the union of the equivalence classes is X.

To prove that the union is disjoint, we show that for every x, y ∈ X either [x] ∩ 
[y] = ∅ (if x R  y) or [x] = [y] (if  x R y).

Suppose that [x] ∩ [y] ≠ ∅. Let z ∈ [x] ∩ [y] be an element in both equivalence 
classes. If x1 ∈ [x], then x1 R z and z R y, so x1 R y by the transitivity of R and therefore 
x1 ∈ [y]. It follows that [x] ⊂ [y]. A similar argument applied to y1 ∈ [y] implies that 
[y] ⊂ [x], and therefore [x] = [y]. In particular, y ∈ [x], so x R y. On the other hand, if  
[x] ∩ [y] = ∅, then y does not belong to [x] since y ∈ [y], so x R  y.  

There is a natural projection p : X → X / R given by p (x) = [x], that maps each 
element of X to the equivalence class that contains it. Conversely, we can index the 
collection of equivalence classes

X/ R = {[a] : a ∈ A}
by a subset A of X which contains exactly one element from each equivalence class. It 
is important to recognize, however, that such an indexing involves an arbitrary choice 
of a representative element from each equivalence class, and it is better to think in 
terms of the collection of equivalence classes, rather than a subset of elements.

Example 1.4.12.8 : The equivalence classes of  relative to the equivalence relation 
m R n if m ≡ n (mod 3) are given by

I0 = {3, 6, 9, . . . }, I1 = {1, 4, 7, . . . }, I2 = {2, 5, 8, . . . }.
The projection p :  → {I0 , I1, I2} maps a number to its equivalence class e.g. p (101) 
= I2. We can choose {1,2, 3} as a set of representative elements, in which case

I0 = [3],        I1 = [1],        I2 = [2],
but any other set A ⊂  of three numbers with remainders 0, 1, 2 (mod 3) will do. For 
example, if we choose A = {7 , 15, 101}, then

I0 = [15],        I1 = [7],        I2 = [101],



Set theory, equivalence relations, partial orders, mathematical structures, 
relations.

 

 

 

The unit provides a concise overview of the different types of relations in set theory,
focusing on theircharacteristics, properties, and applications.

2.4 Summary

2.5  Keywords

2.6  Worked examples
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Unit - 3  Functions

Structure
 
 
 
 
 
 
 
 3.1 Objectives

 
 
 
 
 
 
 

3.2 Introduction

3.1  Objectives
3.2  Introduction
3.3  Functions
3.4  Summary
3.5  Key Words
3.6  Model  Questions

 
 

The note aims to explain the concept of functions within set theory, focusing on 
properties,types, and operations on functions.

In  set  theory, a  function  is  a  fundamental  concept  that  establishes  a  relationship
between two sets. It  is defined as a rule or mapping that assigns each element of
one  set, called  the  domain, to  a  unique  element  of  another  set, called  the
codomain. Every input from the domain has exactly one corresponding output in
the codomain, and no element in the domain is mapped to more than one element
in  the  codomain. Functions  can  be  classified  into  different  types  based  on  their
properties. A function is called injective or one-to-one if different elements in the
domain map to different elements in the codomain. It is called surjective or onto if
every  element  in  the  codomain  has  at  least  one  pre-image  in  the  domain. A
bijective  function  is  both  injective  and  surjective, meaning  every  element  in  the
codomain  is  mapped  by  exactly  one  element  in  the  domain. Functions  play  a
crucial  role  in  mathematics  as  they  define  operations, transformations, and
relationships between sets. They are essential in various branches of mathematics,
including  analysis, logic, and  algebra, as  well  as  in  practical  applications  like
computer science and engineering. Understanding functions in set theory provides
a  strong  foundation  for  exploring  more  advanced  mathematical  concepts  and
problem-solving techniques.
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  Functions
     

 

  

   
     

    

Fig. 1.7 : X Y
f

Example 3.5.2 : The identity function idx : X → X on a set X is the function idx : x → 
x that maps every element to itself.
Example 3.5.3 : Let A ⊂ X. The characteristic (or indicator) function of A,

χA :  X → {0 , 1},
is defined by

χA x
x A
x A

( ) =
∈
∈





1
0

if
if

Specifying the function χA is equivalent to specifying the subset A. 
Example 3.5.4 : Let A, B be the sets in Example 1.4. We can define a function  
f : A → B by

f (2) = 7,     f (3) = 1,     f (5) = 11,    f (7) = 3,      f (11) = 9,
and a function  g : B → A by

g (1) = 3,     g (3) = 7,     g (5) = 2,     g (7) = 2,     g (9)  = 5,     g (11)  = 11.

3.3
A  function  f  :  X  →  Y  between  sets  X  and  Y  assigns  to  each  x  ∈  X  a  unique

element  f  (x)  ∈  Y  . Functions are also called maps, mappings, or transformations. The
set  X  on which f is defined is called the domain of f and the set  Y  in which it takes its
values is called the codomain. We write  f  :  x  →  f  (x) to indicate that  f  is the function
that maps  x  to  f  (x).

Definition 3.5.1 :  A function  f  between two sets  X  and  Y  is a subset  f  ⊆  X  ×  Y  such that
(i) For all  x  ∈  X, there exists  y  ∈  Y  such that (x,  y)  ∈  f
(ii) For any  x  ∈  X, if there exists  y,  y′  ∈  Y  such that (x,  y), (x,  y′)  ∈  f  then  y  =  y′.
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Example 3.5.5 : The square function f :  →  is defined by

f (n) = n2,

which we also write as f : n → n2. The equation g (n) = n , where n  is the positive 

square root, defines a function g :  → , but h (n) = ± n  does not define a function 
since it doesn’t specify a unique value for h (n). Sometimes we use a convenient 
oxymoron and refer to h as a multi-valued function.

One way to specify a function is to explicitly list its values, as in Example 1.5.4 
Another way is to give a definite rule, as in Example 1.5.5 If X is infinite and f is 
not given by a definite rule, then neither of these methods can be used to specify the 
function. Nevertheless, we suppose that a general function f : X → Y may be “defined” 
by picking for each x∈ X a corresponding value f (x) ∈ Y .

If  f  : X → Y  and U ⊂ X, then we denote the restriction of  f  to U by  
 f |U : U → Y, where f |U (x) = f (x) for x ∈ U.

In defining a function f : X → Y , it is crucial to specify the domain X of elements 
on which it is defined. There is more ambiguity about the choice of codomain, 
however, since we can extend the codomain to any set Z ⊃Y and define a function  
g : X → Z by g(x) = f (x). Strictly speaking, even though f and g have exactly the same 
values, they are different functions since they have different codomains. Usually, 
however, we will ignore this distinction and regard  f and g as being the same function.

The graph of a function  f : X → Y is the subset Gf  of  X × Y defined by

Gf = {(x, y) ∈ X × Y : x ∈ X and y = f (x)} .

For example, if f  :  → , then the graph of f is the usual set of points (x, y) with y = 
f (x) in the Cartesian plane 2. Since a function is defined at every point in its domain, 
there is some point (x, y) ∈ Gf for every x ∈ X, and since the value of a function 
is uniquely defined, there is exactly one such point. In other words, for each x ∈ X 
the “vertical line” Lx = {(x, y ) ∈ X × Y : y ∈ Y } through x intersects the graph of a 
function f : X → Y in exactly one point : Lx ∩ Gf = (x, f (x)).

Definition 3.5.6 : The image, of a function f : X → Y is the set of values

Img(f  ) = {y ∈ Y : y = f (x) for some x ∈ X } .



18   NSOU  CC-MT-10 NSOU 6CC-MT-07  19

A

B

C

D

1

2

3

4

5

Domain               {A,B,C,D}

Image                  {2,3,5}

Codomain           {2,2,3,4,5}

Fig. 1.8 : Function

Definition: function f  : X → Y  is said to

• Onto or surjective if the image of  f  is the whole Y, i.e.,
Img(f) = Y

X

1

2

3

4

D

B

C

Y

Fig. 1.9 : Onto

• One-one or injective if each point in the image of  f  in Y has a unique pre-image in 
X, i.e.,

f (x) = f (y) implies x = y  ∀x, y ∈ X.

X

1

2

3

4

D

B

C

A

Y

Fig. 1.10 : One-one
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• Bijective if  f is both onto and one-one.
X

1 .

2 .

3 .

4 .

.D

.B

.C

.A

Y

Fig. 1.11 : Bijective

3.4 Summary
In this chapter, we have discussed the preliminary concept in set, relation and 

functions. Various elementary operations in sets such as union, intersection etc are 
discussed. Various types of relations are presented and also some clasification of 
functions are described in pictorial notion.

3.6 Worked examples 
1. Determine whether each of the following relations are reflexive, 

symmetric and transitive :
(i) Relation R in the set A = {1, 2, 3…13, 14} defined as
R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and  x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y) : x – y is as integer}

Solution :
(i)  A = {1, 2, 3 … 13, 14}
R = {(x, y): 3x − y = 0}
∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}
R is not reflexive since (1, 1), (2, 2) … (14, 14) ∉ R.

3.5 Keywords 
Functions, Bijective, One-to-one, Onto
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Also, R is not symmetric as (1, 3) ∈R, but (3, 1) ∉ R. [3(3) − 1 ≠ 0]
Also, R is not transitive as (1, 3), (3, 9) ∈ R, but (1, 9) ∉ R.
Hence, R is neither reflexive, nor symmetric, nor transitive.
(ii) R = {(x, y): y = x + 5 and x < 4} = {(1, 6), (2, 7), (3, 8)}
It is seen that (1, 1) ∉ R.
∴ R is not reflexive. Now (1, 6) ∈R But, (1, 6) ∉ R.
∴ R is not symmetric. Now, since there is no pair in R such that (x, y) and (y, z) ∈R, 
then (x, z) cannot belong to R. Therefore, R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.
(iii) A = {1, 2, 3, 4, 5, 6}
R = {(x, y): y is divisible by x}
We know that any number (x) is divisible by itself.
⇒ (x, x) ∈R
∴ R is reflexive. Now,
(2, 4) ∈ R [as 4 is divisible by 2] But, (4, 2) ∉ R. [as 2 is not divisible by 4]
∴ R is not symmetric.
Let (x, y), (y, z) ∈ R. Then, y is divisible by x and z is divisible by y. ∴z is divisible 
by x.
⇒ (x, z) ∈ R
∴ R is transitive.
Hence, R is reflexive and transitive but not symmetric.
(iv) R = {(x, y): x − y is an integer}
Now, for every x ∈ Z, (x, x) ∈R as x – x = 0 is an integer.
∴ R is reflexive.
Now, for every x, y ∈ Z if (x, y) ∈ R, then x − y is an integer.
⇒ −(x – y) is also an integer.
⇒ (y – x) is an integer.
∴ (y, x) ∈ R. Hence, R is symmetric.
Now, Let (x, y) and (y, z) ∈ R, where x, y, z ∈ Z.
⇒ (x – y) and (y – z) are integers.
⇒ x – z = (x – y) + (y – z) is an integer.
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∴ (x, z) ∈ R. Hence, R is transitive.
Hence, R is reflexive, symmetric, and transitive.

2. Show that the relation R in the set R of real numbers, defined as
R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.

Solution :
R = {(a, b): a ≤ b2}

1
2

1
2,( ) ∉R, since 1

2
1
2

1
4

2
> ( ) =

It can be observed that
∴R is not reflexive.
Now, (1, 4) ∈ R as 1 < 42 But, 4 is not less than 12.
∴ (4, 1) ∉ R
∴ R is not symmetric.
Now, (3, 2), (2, 1.5) ∈ R (as 3 < 22 = 4 and 2 < (1.5)2 = 2.25) But, 3 > (1.5)2 = 2.25
∴ (3, 1.5) ∉ R
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.

3.8 Model Questions
A 1.  Do the following relations represent functions? Why?
 (a)  f :  →  defined by
 i.  f = {(x, 1) : 2 divides x}∪ {(x,5) : 3 divides x}.
 ii.  f = {(x, 1) : x ∈ S} [ {(x, −1) : x ∈Sc}, where S = {n2 : n ∈ } and Sc =  \ S.
 iii.  f = {(x, x3) : x∈ }.
 (b)  f  : + →  defined by f = {(x, ± x ) : x ∈ +}, where + is the set of all 

positive real numbers.
 (c)  f :  →  defined by f  = {(x, x ) : x ∈ }.
 (d)  f :  →  defined by f = {(x, x ) : x ∈ }.
 (e)  f : – →  defined by f = {(x, loge |x|) : x ∈ –}, where – is the set of all 

negative real numbers.
 (f )  f :  →  defined by f  = {(x, tanx) :  x ∈ }.
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 2.  Let f : X → Y be a function. Then  f –1 is a relation from Y to X. Show that the 
following results hold for f –1 :

 (a)  f –1(A ∪ B) = f –1(A) ∪  f –1(B) for all A, B ⊆ Y .
 (b)  f –1(A \ B) = f –1(A) \ f –1(B) for all A, B ⊆ Y .
 (c)  f –1(∅) = ∅.
 (d)  f –1(Y ) = X.
 (e)  f –1(Y \ B) = X \ ( f –1(B)) for each B ⊆ Y .

 3.  Let S = {(x, y) ∈ 2 : x2 + y2 = 1, x ≥ 0}. It is a relation from  to . Draw a 
picture of the inverse of this relation.

B Determine the equivalence relation among the relations given below. Further, for 
each equivalence relation, determine its equivalence classes.

 1.  R = {(a, b) ∈ 2 : a ≤ b} on .
 2.  R = {(a, b) ∈ * × * : a divides b} on *, where * =  \ {0}.
 3.  Recall the greatest integer function f :  →  given by f(x) = [x] and let  = 

{(a, b) ∈  ×  : [a] = [b]} on .
 4.  For x = (x1, x2), y = (y1, y2) ∈ 2 and * =  \ {0}, let

 (a)  R = {(x, y) ∈ 2 × 2 : x x y y1
2

2
2

1
2

2
2+ = +  }.

 (b)  R = {(x, y) ∈ 2 × 2 : x = ay for some a ∈ *}.
 (c)  R = {(x, y)∈ 2 × 2 : 4 9 4 91

2
2
2

1
2

2
2x x y y+ = + }.

 (d)  R = {(x, y) ∈ 2 × 2 : x – y = a(1, 1) for some a ∈ *}.
 (e)  Fix c ∈ . Now, define  = {(x, y) ∈ 2 × 2  : y2 − x2 = c(y1 – x1)}.
 (f )  R = {(x, y) ∈ 2 × 2  : |x1| + |x2 | = a( |y1| + |y2|)}, for some number a  ∈ +.
 (g)  R = {(x, y) ∈ 2 × 2  : x1x2 = y1y2}.

 5.  For x = (x1, x2), y = (y1, y2) ∈ 2, let S = {x ∈ 2 : x x1
2

2
2 1+ = }. Then, are the 

relations given below an equivalence relation on S?
 (a)  R = {(x, y) ∈ S × S : x1 = y1, x2 = –y2}.
 (b)  R = {(x, y) ∈ S × S : x = –y}.

 6.  Let f, g be two equivalence relations on . Then, prove/disprove the following 
statements.

 (a)  f ο g is necessarily an equivalence relation.
 (b)  f ∩ g is necessarily an equivalence relation.



24   NSOU  6CC-MT-07 NSOU  CC-MT-10  25

 (c)  f ∪ g is necessarily an equivalence relation.
 (d)  f ∪ gc is necessarily an equivalence relation. (gc = ( × ) \ g)

7 a.  Find an example of two nonempty sets A and B for which A × B = B × A is 
true.

 b.  Prove A ∪ φ = A and A ∩ φ = φ.
 c.  Prove A ∪ B = B ∪ A and A ∩ B = B ∩ A.
 d.  Prove A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
 e.  Prove A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
 f.  Prove A ⊂ B if and only if A ∩ B = A.
 g.  Prove (A ∩ B)′ = A′ ∪ B′.
 h.  Prove A ∪ B = (A ∩ B) ∪ (A \ B) ∪ (B \ A).
 i.  Prove (A ∪ B) × C = (A × C) ∪ (B × C).
 j.  Prove (A ∩ B) \ B = φ.
 k.  Prove (A ∪ B) \ B = A \ B.
 l.  Prove A \ (B ∪ C) = (A \ B) ∩ (A \ C).
 m.  Prove A ∩ (B \ C) = (A ∩  B) \ (A ∩  C).
 n.  Prove (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩  B).

 8.  Prove the relation defined on 2 by (x1, y1) ∼ (x2, y2) if x y x y1
2

1
2

2
2

2
2+ = +  is 

an equivalence relation.

 9.  Let  f  : A → B and g : B → C be maps.
 (a)  If  f  and g are both one-to-one functions, show that g ο f is one-to-one.
 (b)  If g ο f  is onto, show that g is onto.
 (c)  If g ο f  is one-to-one, show that  f  is one-to-one.
 (d)  If g ο f  is one-to-one and  f is onto, show that g is one-to-one.
 (e)  If g ο f  is onto and g is one-to-one, show that f is onto.

 10.  Define a function on the real numbers by

f x x
x( ) = +

−
1
1

  What are the domain and range of f ? What is the inverse of  f  ? Compute  
f ο f –1 and f –1 ο f.
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 11.  Let  f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .

 (a)  Prove f (A1 ∪ A2) = f (A1) ∪ f (A2).

 (b)  Prove f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2). Give an example in which equality fails.

 (c)  Prove f –1(B1 ∪ B2)  =  f –1(B1) ∪ f –1(B2), where

f –1 (B) = {x ∈ X : f (x) ∈ B}.

 (d)  Prove f –1 (B1 ∩ B2) = f –1 (B1) ∩ f –1(B2).

 (e)  Prove  f –1 (Y \ B1) = X \  f –1 (B1).
 12.  Determine whether or not the following relations are equivalence relations on 

the given set. If the relation is an equivalence relation, describe the partition 
given by it. If the relation is not an equivalence relation, state why it fails to 
be one.

  (a)  x ∼ y in  if x ≥ y (c) x ∼ y in   if  |x − y| ≤ 4
  (b)  m ∼ n in  if mn > 0 (d) m ∼ n in   if  m ≡ n  (mod 6)

 13.  Define a relation ∼ on 2 by stating that (a, b) ∼ (c, d) if and only if a2 + b2 ≤ 
c2 + d2. Show that ∼ is reflexive and transitive but not symmetric.

 14.  Show that an m × n matrix gives rise to a well-defined map from n to m.
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The followings are discussed here :
• Definition of binary operation along with examples
• Definition of group
• Basic properties of group
• Definition of subgroups, centralizer, normalizer, center of a group
• Order of a group and order of an element

 
Group theory, in modern algebra, is the study of groups, which are systems 

consisting of a set of elements and a binary operation that can be applied to two 
elements of the set, which together satisfy certain axioms. Groups are vital to modern 
algebra; their basic structure can be found in many mathematical phenomena. Groups 
can be found in geometry, representing phenomena such as symmetry and certain 
types of transformations. In this unit, we introduce the concept of group and subgroup 
and demonstrate this concept through some examples.

 

  

  

 

 

 

 

 

 

  

4.1  Objectives

4.2  Introduction

4.3  Binary Operation
Definition 4.3.1 :  Let  S  be a set. The the binary operation * on  S  is a map
  * :  S  ×  S  →  S (x,  y)  →  x  *  y.
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Unit -4    Introduction to Groups
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4.1  Objectives
4.2  Introduction
4.3  Binary Operation
4.4  Definition of Group
4.5  Summary
4.6  Keywords
4.7  Model  Questions
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Fig. 2.1  :  Binary operation on  S.

Example 4.3.2 :  The arithmetic operations +,−,×, ... are binary operations on suitable
sets of numbers such as  ,    etc.

Example 4.3.3 :  Matrix addition and multiplication are binary operations on the set of
all  n  ×  n  matrices.

Example 4.3.4 :  Vector addition and subtraction are binary operations on  n.

Example 4.3.5 :  The vector product, or cross product, (a,  b,  c) × (x,  y,  z) = (bz  –  cy,
cx  –  az,  ay  –  bx) is a binary operation on  3.

Example  4.3.6  :  Composition  of  symmetries  is  a  binary  operation  on  the  set  of
symmetries of a triangle, square, cube,...
  In  the  definition  of  binary  operation,  for  any  two  elements  from  a  set,  the
element  produced  by  applying  binary  operation  on  them  is  also  an  element  of  the
same  set,  i.e.,  a  *  b  ∈  S  whenever  a  ∈  S  and  b  ∈  S.  This  property  is  sometimes
expressed as :  S  is closed with respect to  ‘*′. The notion becomes important when we
consider restricting a binary operation to subsets of the set on which it was originally
defined.
  Let  T  be a subset of  S  and  S  is closed under the binary operation *. Then  T  ×T
⊂  S  ×  S. Now we consider the restriction of the map * :  S  ×  S  →  S  to  T  ×  T. Then it is
not always true that for any  x  *  y  ∈  T  whenever  x,  y  ∈  T.
For example, take  S  =    and define a binary operation * on  S  as follows :
for any

n  *  m  =  n  +  m  + 1   for any  n,  m  ∈  S.



NSOU  CC-MT-10  29

  

    

 

r+t

r
t

 

x y
x x y
y

* =
≥




if age of age of 
otherwise.                

 
  

28  NSOU   6CC-MT-07

Then  S  is closed under *. But if we consider the set of even number  E  ⊂  S, then  E  is
not closed under the restricted binary operation * from S. Hence, we say the following
definition :
Definition 4.3.7 :  Let the set  S  is closed under the binary operation *. Then we say 
that a subset  T  of  S  is closed under the restricted binary operation *
if

x  *  y  ∈  T  whenever  x,  y  ∈  T.
Example 4.3.8 :  The set of all non-singular (non-zero determinant)  n  ×  n  real matrices
is  denoted  by  GL(n,  ).  Now  this  set  GL(n,  )  closed  under  matrix  multiplication.
Again, consider the subset  SL(n,  ) of  GL(n,  ), the of all matrices whose determinant
is 1. This subset is also closed under matrix multiplication.
Example 4.3.9 :  Let  C  be the set of all concentric circles with center at the origin. A
circle in  C  with radius  r  is denoted by  ar. Now the binary operation is defined by
  ar*  at  =  ar+t  .

The set  C  is closed under the binary operation *.

Fig. 2.2  : Binary operation on concentric circles

  Binary  operation  can  also  be  imposed  on  real  life  objects,  see  the  following
example:
Example  4.3.10  :  Let A  be  the  set  of  all  students  in  a  class.  Now  define  the  binary
operation on  A  as follows: for any  x,  y  ∈  A,

Definition  4.3.11  :  A  binary  operation  *  on  a  set  S  is  said  to  be  commutative
if  x  *  y  =  y  *  x  for all  x,  y  ∈  S.
  In general binary operation may not be commutative, see the following example:
Example 4.3.12 :  Let  M  (n,  ) be the set of all real  n  ×  n  matrices. The binary 
operation
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addition is commutative on M (n, ). But the binary operation multiplication is not 
commutative on M (n, ).

 

    
  

  
     

* e a b c
e
a
b
c
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c
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b
c
e
a

c
b
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4.4  Definition of Group
Definition 4.4.1 :  Let  G  be a non-empty set * be a binary operation defined in such a
way that the following four rules are true :

1. * is closed in  G, i.e., if  a,  b  ∈  G  then  a  *  b  ∈  G.
2. * is associative, i.e.,  a  * (b  *  c) = (a  *  b) *  c  for  a,  b,  c  ∈  G.
3. G  contains an identity element  e, i.e.,

a  *  e  =  e  *  a  =  a  for all  a  ∈  G.
4.   Inverse exists in  G, i.e., for any  a  ∈  G  there exists an inverse element  a′  ∈  
G such that

a  *  a′  =  a′  *  a  =  e.
Then the pair (G, *) is called a group with the binary operation &.
  In multiplicative notation the inverse of an element a is  denoted by  a–1. If  G
is  commutative  with  respect  to  the  binary  operation  *, then  (G, *) is  called  the
abelian
group.
Example 4.4.2 :  The set of real numbers  , integers  , rational numbers  , complex
numbers    forms a group under the binary operation ‘+′. The identity element is 0 and
for each element  x, the inverse is –x.

Table 2.1 : Multiplication table

Example 4.4.3 :  The set of all  m  ×  n  real matrix is denoted by  M  (m,  n). Then  M  (m,
n) forms a group under matrix addition. Hence, the identity element is the zero matrix.
This is an abelian group.
Example 4.4.4 :  The set  GL(n,  ) forms a group under matrix multiplication. Let  A,
B  ∈  GL(n,  ). Then  det  (A)  ≠  0 and  det  (B)  ≠  0. Now  det  (AB) =  det  (A) * det (B)  ≠
0.  Hence,  A  *  B  ∈  GL(n,  ).  The  matrix  multiplication  is  associative.  The  identity
matrix In acts as identity element. For any element  A  ∈  GL(n,  ), the inverse is  A–1.
Hence,  GL(n,  ) is a group under matrix multiplication. But this group is not abelian,
since matrix multiplication is not commutative.
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Example 4.4.5 :  Let  G  = {e,  a,  b,  c} with multiplication as defined by the table 2.1 
From the table, we observe that
1. G  is closed under composition.
2. e  is the identity element.
3. e–1  =  e,  a–1  =  a,  b–1  =  b  and  c–1  =  c.
4. the multiplication is commutative.
It can be checked that the multiplication is associative. Thus, (G,*) is anabelian group.
This group is called Klein’s 4-group. The multiplication table 2.1 is known as Cayley
table of a group.

Example 4.4.6 :  The set  C  [a,  b] is the set of all continuous functions on [a,  b]. Let  f,
g  ∈  C[a,  b]. The binary operation + defined by
  (f  +  g)(x) =  f  (x) +  g(x)  ∀x  ∈  [a,  b].
Then  f  +  g  is also continuous. The binary operation + is also associative. The identity
function  i  is the identity element and for any  f  ∈  C  [a,  b], the inverse is –  f. Therefore,
C  [a,  b] forms a group under addition +. In fact it abelian.

Example 4.4.7 :  In the Euclidean plane, let  Gp  be the set of all rotations about a fixed
point  p. If two rotations differ by a multiple of 2p  then we say that they are equal. If  a
and  b  are two elements of  GP  then  a ο b  is the rotation obtained by first applying  b  and
then applying  a. Thus,  GP  is closed under composition. Again functional composition
is  associative. An  identity  element  of  GP  is  the  rotation  of  0°.  Each  rotation  has  an
inverse  :  rotation  of  the  same  magnitude  in  the  opposite  direction.  Finally,  as  an
operation on  GP  , composition is commutative. Therefore,  GP  is a group with respect
to the rotation about the point p.

Example  4.4.8  :  The  subset  {1,−1,  i,–i}  of  the  complex  numbers  is  a  group  under
complex multiplication. Note that –1 is its own inverse, whereas the ainverse of  i  is –i,
and vice versa.

Example 4.4.9 :  In the example 2.3.7, the set  C  does not form a group under the given
binary operation as the inverse of any non-zero element does not exists (why?).
Example  4.4.10  :  The  set  S  of  positive  irrational  numbers  together  with  1  under
multiplication satisfies the three properties given in the definition of a group but is not
a group. Indeed,  2  *  2  =  2  , so  S  is not closed under multiplication.
Example  4.4.11  :  The  set  n  =  {1,  2,  ...,  n  –  1}  for  n  ≥  1  is  group  under  integer
modulo  n. For any  j  > 0 in  n, the inverse of  j  is  n  –  j. This group is called  integer
modulo n  group.
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Mod 10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Table  2.2

(Recall that ab mod n is the unique integer r with the property a.b = nq + r, 
where 0 ≤ r < n and a.b is ordinary multiplication.) In the case that n is prime, then 
U(n) = {1, 2, ..., n − 1}.

In his classic book Lehrbuch der Algebra, published in 1895, Heinrich Weber 
gave an extensive treatment of the groups U(n) and described them as the most 
important examples of finite Abelian groups.
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Example 4.4.12 :  For  n  > 1, we define  U  (n), to be the set of all positive integers less
than  n  and relatively prime to  n. Then  U  (n) is a group under multiplication modulo  n.
  For  n  = 10, we have  U(10) = {1, 3, 7, 9}. The Cayley table for  U(10) is

Example 4.4.13 :  Let 1 =  0  1  
I

IJ  =  K,  JK  =  I,  KI  =  J,  JI  = –K,  KJ  = –I,  IK  = –J  hold. The set  Q8  = {±1, ±I, ±J, ±K} 

is a group called the quaternion group. Notice  that  Q8  is  non-abelian.
Example 4.4.14 :  Let  * be the set of nonzero complex numbers. Under the operation
of  multiplication  *  forms  a  group.  The  identity  is  1.  If  z  =  a  +  ib  is  a  
nonzero
complex number, then

is the inverse of  z. It is easy to see that the remaining group axioms hold.
Example  4.4.15  :  (Direct  product  of  groups).  Let  (G1,  *1),  .  .  .  (Gn,  *n)  be  groups.
Then the direct product  G  =  G1  ×  G2  × . . . ×  Gn  is the set of  n-tuples (g1,  g2, . . . ,  
gn)
where  gi  ∈  Gi  with operation defined componentwise :

(g1,  g2, . . . ,  gn) * (h1,  h2, . . . ,  hn) = (g1  *1  h1,  g2  *2  h2, . . . ,  gn  *n  hn).
It  is  a  routine  checkup  that  G  =  (G1,  *1)  ×  .  .  .  ×  (Gn,  *n)  forms  a  group  under  
the binary operation defined above.
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4.5 Summary

4.6  Keywords

4.7  Worked examples

In this unit we explored fundamental concepts related to group theory. Section 4.3 
introduced binary operations, explaining how they combine two elements from a set 
to produce another element within the same set, along with their properties such as 
associativity and commutativity.InSection 4.4, we defined groups, highlighting key 
characteristics like closure, associativity,identity,and inverse elements. Finally, we 
examined examples of groups, demonstratinghow different sets and operations 
satisfy the group axioms in various mathematical structures.

Binary relation, Associativity, Abelian, Group 

1. Define a binary operation and provide an example.

2. What are the key properties of a binary operation?

3. Define a group and state its four axioms.

4. Give an example of a set with a binary operation that forms a group.

5. What is an identity element in a group? Provide an example.

6. Explain the concept of an inverse element in a group with an example.

7. Is the set of natural numbers under addition a group? Justify your answer.

8. Explain the concept of a binary operation with at least two examples.

9. Verify whether the set of integers Z under multiplication forms a group.

10. Consider the set {1, -1, i, -i} under multiplication. Prove that it forms a group.

11. Show that the set of nonzero rational numbers (Q-{0}) under multiplication is a group.

12. Give three real-life examples of groups and explain why they satisfy the group properties.
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Structure
 
 
 
 
 
 
 
 5.1 Objectives

 
 5.2 Introduction

5.1  Objectives
5.2  Introduction
5.3  Basic Properties of Groups
5.4  Summary
5.5  Key Words
5.6  Model  Questions

After completing this section, the reader should be able to:

 Understand the fundamental properties of a group in abstract algebra.
 Identify and verify the group axioms (closure, associativity, identity, and 

inverse).
 Differentiate between various types of groups, such as abelian and non-abelian 

groups.
 Apply the properties of groups in solving mathematical problems.

mathematics. A  group  is  a  set  equipped  with  a  binary  operation  that  satisfies  four
key properties: closure, associativity, the  existence of  an identity  element, and the
existence  of  inverse  elements. These  properties  provide  a  foundation  for
understanding  algebraic  structures  used  in  diverse  fields, including  geometry,
number  theory, and  cryptography. In  this  section, we  explore  these  essential
properties in detail, demonstrating their significance and applications.

Groups  play  a  fundamental  role  in  abstract  algebra  and  many  branches  of
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c d
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 No

Dn Composition R0 Ra, L R360 – a, L No

Fig. 2.3

5.3  Basic properties of groups
Proposition 5.3.1 :  The identity element  e  of a group is unique, i.e., there exists only
one e  such that  ex  =  xe  =  x  for all x  ∈  G.
Proof. Suppose both  e  and  e′  are the identity element. Then  xe  =  ex  =  x  and  xe′  =  e′x  =
x  for all  x  ∈  G. We need to show that  e  =  e′. If we think  e  as identity then  ee′  =  e′  and
if we think  e′  as identity, then  ee′  =  e′. Therefore, combining them we get  e  =  e′.

Similarly we can say that
Proposition 5.3.2 :  Inverse of an element is also unique.
Proof.  Let  g′  and  g″  be two identity elements of  g. Then  g′g  =  e  and  g″g  =  e. We want
to show that  g′  =  g″. Now  g′  =  g′e  =  g′(gg″) = (g′g)g″  =  eg″  =  g″. Hence,  g′  =  g″.

Form of
Group  Operation  Identity  Element  Inverse  Abelian
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Proposition 5.3.3 :  Let  G  be a group. then for any two elements  a,  b  ∈  G, (ab)–1  =
b–1  a–1.
Proof. Let  a,  b  ∈  G. Then  abb–1  a–1  =  aea–1  =  e. Similarly,  b–1  a–1  ab  =  e. Therefore,
(ab)–1  =  b–1  a−1.
Proposition 5.3.4 :  In a group  G, right and left cancellation law holds, i.e.,  ba  =  bc 
implies  a  =  c  and  ab  =  cb  implies  a  =  c.
Proof.  Taking inverse of  b  in both sides of  ba  =  bc  we get
  b–1  ba  =  b–1  bc  =)  ea  =  ec.
which implies that  a  =  c. The right cancellation can be proved similarly.
Definition 5.3.5 :  (Order of a Group). The number of elements of a group  G  (finite or
infinite) is called the order of the group  G  and it is denoted by |G|.
Example 5.3.6 :  The group of integers    under addition is of infinite order.
Example 5.37 :  The group  10  is of order 10. The group  U(7) is of order 6.
Definition 5.3.8 :  (Order of an element). The order of an element  g  in a group  G  is 
the  smallest  positive  integer  n  such  that  gn  =  e.  (In  additive  notation,  this  would  be
ng  =  0).  If  no  such  integer  exists,  we  say  that  g  has  infinite  order.  The  order  of  an
element  g  is denoted by |g|.
Example  5.3.9  :  Consider  U(15)  =  {1,  2,  4,  7,  8,  11,  13,  14}.  under  multiplication
modulo 15. This group has order 8. Then for any element, say 7, 71  = 7, 72  = 4, 73  =
13, 74  = 1. Hence, the order of 7 is 4. Similarly, the order of 11 is 2.
Example 5.3.10 :  The order of  Q8  is 8. In this group order of each element, except 
identity, are of order 4.
Proposition 5.3.11 :  Let  G  be a group and  g  be an element of order  m. Then  gi  ≠  gj  for
i  ≠  j  and 1  ≤  i,  j  ≤  m. And if  g  is of infinite order, then all the elements  g,  g2, ...,  gn, ...
are distinct.
Proof.  For  the  first  proof  let  us  assume  that  gi  =  gj  for  some  i  ≠  j  and  1  ≤  i,  j  ≤  m.
Suppose  i  <  j, then  g  j  −  i  =  e. But  j  –  i  <  n. Which contradicts that |g| =  n. Hence, our
assumption is wrong.
For the second proof, suppose  g i  =  g  j  for some  i,  j  ≥  1 and  i  ≠  j. Assume that  j  >  i, then
it implies that  g  j−i  =  e. Which contradicts that  g  has infinite order.

The question naturally arises :
Given a set  A, can we define a binary operation on  A  which makes  A  a group?.
In case of empty set it is not possible. But in case of non-empty set, fortunately,
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1The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that 
consists of exactly one element from each element of the family.
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this  question  has  an  affirmative  answer  if  we  assume  the  Axiom  of  Choice1  (which 
is  done  in  most  of  mainstream  mathematics,  but  may  not  be  done  in  the  more 
foundational parts). To answer this first we need to prove the following theorem:
Theorem 5.3.12 :  Let  A  be a non-empty set and  G  be a group such that there exists a
bijection  f  :  A  →  G.  Then a group structure can be defined on  A.
Proof.  First we define a binary operation on  A. Let  a,  b  ∈  A. Then the binary operation 
a  *  b  on  A  is defined by

a  *  b  =  f  –1  (f  (a)  f  (b)).
Since  f  is a bijection, this binary operation is well-defined. It is clear that  A  is closed
under the binary operation *. The operation is associative since  G  is a group and  f  is a
bijection. Let  eA  =  f  

–1(e),  e  be the identity element of  G. Then for any  a  ∈  A.
  a  *  eA  =  f

–1(f  (a)  f  (eA)) =  f–1(f  (a)e) =  f  –1(f  (a)) =  a  =  eA  *  a.
Which shows that  eAis the identity element in  A. Now what is the inverse of an element 
a  ∈  A? The inverse is  a′  =  f  –1(f  (a)  –1). Here  f  (a)−1  means inverse of the element  f  (a)
in the group  G. Then

a * a′  =  f  –1(f  (a)  f  (a′))
=  f  –1(f  (a)  f  (f  –1(f  (a)  –1)))
=  f  –1(f  (a)  f  (a)  –1)
=  f  –1(e) =  eA.

Similarly,  we  can  show  that  a′  *  a  =  eA. Therefore,  eA  is  the  identity  element  of  A.
Thus (A, *) is a group.
  Now  come  to  our  main  question.  If  A  is  finite,  having  n-number  of  elements,
then there is a bijection between  A  and  n. Then by the above theorem,  A  can be given
a  group  structure.  If  A  is  countably  infinite,  then  A  forms  a  group  under  the  binary 
operation which can be constructed from the bijection between  A  and  . And in case 
when  A  is uncountable, the same thing can also be done by the bijection between  A 
and  R.



 
 

 

Identity element, Inverse element, Abelian group, Non-abelian group

1.  Prove  that  if  G  is  an  abelian  group,  then  for  all  a,  b  ∈  G  and  all  integers  n,
(a  ·  b)n  =  an  ·  bn.

2.  If  G  is  a  group  such  that  (a  ·  b)2  =  a2  ·  b2  for  all  a,  b  ∈  G,  show  that  G  must be  abelian.

3.  If  G  is  a  finite  group,  show  that  there  exists  a  positive  integer  N  such  that
aN  =  e  for  all  a  ∈  G.

4.  (1)  If  the  group  G  has  three  elements,  show  it  must  be  abelian.
(2)  Do  part  (1)  if  G  has  four  elements.
(3)  Do  part  (2)  if  G  has  four  elements

5.  Show  that  if  every  element  of  the  group  G  is  its  own  inverse,  then  G  is abelian.

6.  If  G  is  a  group  of  even  order,  prove  it  has  an  element  a  =6  e  satisfying  a2  =  e.

7.  For  any  n  >  2  construct  a  non-abelian  group  of  order  2n.  (Hint:  imitate  the
relations  in  S3.)

 5.4 Summary

 5.5 Keywords

 5.6 Model Questions

In this section, we explored the basic properties of groups, which include closure, 
associativity,identity, and inverse elements. We discussed the implications of these 
properties  and  their  role  in  defining  a  group  structure. Additionally, we  highlighted  different
types  of  groups, such  as  abelian  and  non-abelian  groups, and  their  significance  in  abstract
algebra. These properties form the basis for further studies in group theory and its 
applications in mathematics and beyond.
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Structure
 
 
 
 
 
 

 6.1 Objectives

 6.2 Introduction

6.1  Objectives
6.2  Introduction
6.3  Subgroups
6.4  Summary & Keywords
6.5  Model  Questions

 In abstract algebra, the concept of subgroups plays a fundamental role in understanding the 
structure of groups. A subgroup is a subset of a group that  is itself a group under the same  
binary operation. This concept helps in analyzing  symmetry, constructing new groups from  
existing ones, and studying homomorphisms. In this chapter, we will explore the definition of  
subgroups, the necessary conditions  for a subset to qualify as a subgroup, and key examples 
that illustrate their importance  in group theory.

Understand the concept of subgroups and their significance in group theory.
Identify and verify whether a subset of a group forms a subgroup.
Explore key properties and types of subgroups, including normal subgroups and cyclic 
subgroups.Apply subgroup criteria to solve mathematical problems in algebraic structures.

By the end of this unit readers should be able to:

 
Sometimes we wish to investigate smaller groups sitting inside a larger group. The set 
of even integers 2 = {...−2, 0, 2, 4...} is a group under the operation of addition. This 
smaller group sits naturally inside of the group of integers under addition.

6.3  Subgroups
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 which also belongs to 

SL(2, ). Therefore, SL (2, ) is a group under matrix multiplication. Also SL(2, ) ⊂ 
GL (2, ), so SL(2, ) is a subgroup of GL(2, ).

NSOU  35

Definition 6.3.1 :  We define a  subgroup  H  of a group  G  to be a subset  H  of  G  such
that when the group operation of  G  is restricted to  H,  H  is a group in its own right.

Fig. 2.4  :  Group G with two subgroups H and K

  Observe that every group  G  with at least two elements will always have at least
two  subgroups,  the  subgroup  consisting  of  the  identity  element alone  and  the  entire
group   itself.  The   subgroup  H  =  {e}  of   a   group  G  is   called   the   trivial   subgroup.
A subgroup  that  is  a  proper  subset  of  G  is  called  a  proper  subgroup.  In  many  of
the  examples   that   we   have   investigated   up   to   this   point,  there   exist   other
subgroups besides the trivial and improper subgroups. The set of rationals  , the set
of integers   are subgroups of    under addition.

Example  6.3.2  :  The  set  of  non-zero  complex  numbers  *  is  a  group  under
multiplication  and  also  the  set  H  =  {±1,  ±  i}  is  also  a  group  under  multiplication.
Since  H  ⊂  *,  H  is a subgroup of  *.

Example 6.3.3 :  The set of all 2 × 2-matrix with determinant 1 is the set
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Theorem 6.3.4 :  (Two-steps test). Let  G  be a group and  H  be a non-empty subset of 
G. If  ab  ∈  G  whenever  a,  b  ∈  G  and  a–1  ∈  H  whenever  a  ∈  H, then  H  is a subgroup
of  G.
Proof.  Since  H  is  a  subset  of  G  and  G  is  a  group,  the  binary  operation  on  H  is
associative. Let  a  ∈  H. Then  a–1  ∈  H  from the hypothesis. Now  aa–1  =  e  ∈  H. Hence,
H  contains the identity element. Also from the hypothesis inverse of each element of
H  exists in  H. So,  H  is a subgroup of  G.
Theorem 6.3.5 :  (One-steps test). Let  G  be a group and  H  be a non-empty subset of 
G. If  ab–1  ∈  G  whenever  a,  b  ∈  G, then  H  is a subgroup of  G.
Proof. Let  a,  b  ∈  H. Then by the hypothesis  ab–1  ∈  H  also  ba–1  ∈  H. Now
  e  = (ab–1)(ba–1)  ∈  H,
So,  H  contains identity element. Also for a  ∈  H,  a–1  belongs to  H, since  a–1  = ea–1.
Which implies that  ab  =  a(b–1)–1  ∈  H  for  anb  ∈  H. Therefore,  H  is a subgroup of  G.
Example 6.3.6 :  For any  a  ∈  G. The set  〈a〉  = {an  :  n  ∈  } is a subgroup of  G. For 
any  p,  q  ∈  〈a〉,  p  =  ak  and  q  =  at  for some  k,  t  ∈  . Now  pq–1  =  ak  a–t  =  ak–t  ∈  〈a〉.
So, by the above theorem it is proved that hai is a subgroup of  G. In fact this group
is generated by one element a. This type of group is called cyclic group and it will be
discussed in detail in next chapter.
Example 6.3.7 :  Let G be a group of non-zero real numbers under multiplication,

H  = {x  ∈  G  :  x  = 1 or  x  is irrational} and
  K  = {x  ∈  G  :  x  ≥  1}.

Now  H  is not a subgroup of  G  since  2  ∈  H  but  2  .  2  ∉  H. Similarly, it can be
shown that  K  is also not a subgroup of  G.
Example  6.3.8  :  (Centralizer  of  an  element).  Let  G  be  a  group  and  a  ∈  G.  Now
consider the set

Ca  = {x∈  G  :  xa  =  ax}.
This set is non-empty, since  ea  =  ae. Let  x,  y  ∈  Ca. Then  xa  =  ax  and  ya  =  ay. Now

(xy–1)  a  (xy–1)–1  =  xy–1  ayx–1

=  x(y–1  y)  ax–1

=  axx–1  =  a.
Which implies that

(xy–1)  a  =  a  (xy–1).
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Therefore,  xy–1  ∈  Ca, whenever  x,  y  ∈  Ca. So,  Ca  is a subgroup of  G. This subgroup is
called centralizer of  a.

Example 6.3.9 :  (Center of a group). The center of a group  G  is defined by 

Z(G) = {a  ∈  G  :  ax  =  xa  ∀x  ∈  G}.

Now  Z(G)  ≠  φ, since  e  ∈  Z(G). By using the same arguments of the above example it
can be proved that  Z(G) is a subgroup of  G  (Complete the proof). This group in fact is
the largest abelian subgroup of  G. If  G  is abelian, then  Z(G) =  G.

Example  6.3.10  :  (Normalizer  of  a  subgroup).  Let  H  be  a  subgroup  of  G.  Now
consider the set

N(H) = {x  ∈  G  :  xHx–1  ⊆  H} = {x  ∈  G  :  xhx–1  ∈  H  ∀h  ∈  H}.

Now  e  ∈  N(H). Let  x,  y  ∈  N(H). Then  xhx–1  ∈  H  and  yhy–1  ∈  H  for all  h  ∈  H. Now for
all  h  ∈  H,

(xy)  h  (xy)–1  =  (xy)  h  (y–1  x–1)

=  x  (yhy  –1)  x–1

=  xh1x
–1  ∈  H

Thus  xy  ∈  N(H),  whenever  x,  y  ∈  N(H). Again  x–1  h  (x–1)–1  =  x–1hx  =  (xh–1  x–1)–1  =
h′–1  ∈  H, since  xh–1x–1  ∈  H. Therefore,  x–1  ∈  N(H) for  x  ∈  N(H). Hence,  N(H) is a
subgroup of  G. This group is called normalizer of  H  in  G.

Proposition  6.3.11  :  Let  H  and  K  be  two  subgroups  of  G.  Then  H  ∩  K  is  also  a
subgroup of  G.

Fig. 6.5  : Group, Normal subgroup and center of a group
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1.  Let x and y be elements in a group G such that xy ∈ Z(G). Prove that xy = yx.
Solution : Since xy = x–1x(xy) and xy ∈ Z(G), we have xy = x–1x(xy) = x–1(xy)x = (x–1x)
yx = yx.
2.  Let G be a group with exactly 4 elements. Prove that G is Abelian.
Solution : Let a and b be non identity elements of G. Then e, a, b, ab, and ba are 
elements of G. Since G has exactly 4 elements, ab = ba. Thus, G is Abelian.
3.  Let a be an element in a group. Prove that (an)–1 = (a–1)n for each n ≥ 1.
Solution : We use Math. induction on n. For n = 1, the claim is clearly valid. Hence, 

Fig. 6.6  : Intersection of two subgroups

Proof.  Since  H  and  K  are two subgroups of  G,  H  ∩  K  contains the identity element  e.
Let  a,  b  ∈  H  ∩  K. Then  a,  b  ∈  H  and  a,  b  ∈  K. Hence,  ab–1  ∈  H  and  ab–1  ∈  K. Which
implies that  ab–1  ∈  H  ∩  K. Therefore,  H  ∩  K  is a subgroup of  G.
  The above theorem can also be extend in case of finite sum, i.e., if  H1,  H2, ...,  Hn 
are subgroups of  G, then   ii  ==n1  Hi  is also a subgroup of  G. Can we extend this theorem
in case of infinite sum? Yes it is possible and the proof is same as the finite one.
  Union of two subgroups may not be a subgroup. For example let  G  =  . Then
3  and 5  are subgroups of  . Now 3  ∈  3  ∪  5  and 5  ∈  3  ∩  5. But 3 + 5 = 8
∉  3  ∩  5.

6.5  Worked examples

6.4  Summary and Keywords
In this unit, we have mainly studied the concept of group along with various kinds of
subgroups such as normalizer of a group, centralizer of a group. We have seen that the
examples of groups are abundance in nature.

Keywords: Subgroups, Centralizer, Normal subgroup, Center of a group
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assume that (an)–1 = (a–1)n. Now, we need to prove the claim for n + 1. Thus, (an+1)–1 = 
(aan)–1 = (an)–1 a–1 = (a–1)n a–1 = (a–1)n+1.
4.  Let H and D be two subgroups of a group such that neither H ⊂ D nor D ⊂ H. 
Prove that H ∪ D is never a group.
Solution : Deny. Let a ∈ H \ D and let b ∈ D \ H. Hence, ab ∈ H or ab ∈ D. Suppose 
that ab = h ∈ H. Then b = a–1h ∈ H, a contradiction. In a similar argument, if ab ∈ D, 
then we will reach a contradiction. Thus, ab ∉ H ∪ D. Hence, our denial is invalid. 
Therefore, H ∪ D is never a group.
5.  Give an example of a subset of a group that satisfies all group-axioms except 
closure.
Solution : Let H = 3Z and D = 5Z. Then H and D are subgroups of Z. Now, let 
C = H ∪ D. Then by the previous question, C is never a group since it is not closed.
6.  Let H = {a ∈ Q : a = 3n 8m for some n and m in Z}. Prove that H under 
multiplication is a subgroup of Q \ {0}.
Solution : Let a, b ∈ H. Then a = 3n1 8n2 and  b = 3m1 8m2 for some n1, n2, m1, m2 ∈ 
Z. Now, a−1 b = 3m1 – n1 8 m2 – n2 ∈ H. Thus, H is a subgroup of Q \ {0} by Theorem 
12..29..71.
7.  Let a, x be elements in a group G. Prove that ax = xa if and only if a–1x = xa–1.
Solution : Suppose that ax = xa. Then a−1x = a−1xaa−1 = a−1axa−1 = exa−1 = xa−1. 
Conversely, suppose that a−1x = xa−1. Then ax = axa−1a = aa−1xa = exa = xa.
8.  Let H = {x ∈ C : x301 = 1}. Prove that H is a subgroup of C \ {0} under 
multiplication.
Solution  : First, observe that H is a finite set with exactly 301 elements. Let a, b ∈ H. Then 
(ab)301 = a301b301 = 1. Hence, ab ∈ H. Thus, H is closed. Hence, H is a subgroup of C \ {0}.
9.  Let H = {A ∈ GL(608, Z89) : det(A) = 1}. Prove that H is a subgroup of GL(608, 
Z89).
Solution : First observe that H is a finite set. Let C, D ∈ H. Then det(CD) = det(C)
det(D) = 1. Thus, CD ∈ H. Hence, H is closed. Thus, H is a subgroup of GL(608, Z89).
10.  Prove that if G is an abelian group, then for all a, b ∈ G and all integers n,  
(a . b)n = an . bn.
Solution : We resort to induction to prove that the result holds for positive integers. 
For n = 1, we have (a . b)1 = a . b = a1 . b1. So the result is valid for the base case. 
Suppose result holds for n = k – 1, i.e. (a . b)k−1 = ak−1 . bk−1.
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We need to show result also holds good for n = k. We have
 (a . b)k  =  (a . b)k−1 . (a . b)

  =  (a k−1 . bk−1) . (a . b)

  =  (ak−1 . bk−1) . (b . a)

  =  (ak −1 . bk) . a

  =  a . (ak−1 . bk)

  =  ak . bk

So the result holds for n = k too. Therefore, result holds for all n ∈ . Next suppose n 
∈ . If n = 0, then (a.b)0 = e where e the identity element. Therefore (a . b)0 = e = e . e 
= a0 . b0. So the result is valid for n = 0 too. Next suppose n is a negative integer. So n 
= −m, where m is some positive integer. We have
 (a . b)n  =  (a . b)−m

  =  ((a . b)−1)m by definition of the notation
  =  (b−1 . a−1)m

  =  ((a−1) . (b−1))m

  =  (a−1)m . (b−1)m as the result is valid for positive integers
  =  (a−m) . (b−m)
  =  an . bn

So the result is valid for negative integers too. Hence the result that (a . b)n = an . bn 
holds in an abelian group for all n ∈ . 
11.  If G is a group in which (a . b)i = ai . bi for three consecutive integers i for all  
a, b ∈ G, show that G is abelian.
Solution  : Let n, n+1, n+2 be some three consecutive integers. Therefore we have

 (a . b)n = an . bn (1)
 (a . b)n+1  =  an+1 . bn+1 (2)
 (a . b)n+2 = an+2 . bn+2  (3)

Using (2) we have
  (a . b)n+1 = an+1 . bn+1

 ⇒ (a . b)n . (a . b) = an+1 . (bn . b)
 ⇒  (an . bn) . (a . b) = (an+1 . bn) . b, Using (1)
 ⇒  ((an . bn) . a) . b = (an+1 . bn) . b



40   NSOU  CC-MT-10 NSOU  6CC-MT-07  41

 ⇒  (an . bn) . a = (an . a) . bn

 ⇒  an . (bn . a) = an . (a . bn)
 ⇒  bn . a = a . bn                                        (4)

Again using (3), analogously we have
  bn+1 . a = a . bn+1

 ⇒ b . (bn . a) = a . bn+1

 ⇒ b . (a . bn) = a . bn+1,  Using (4)
 ⇒ (b . a) . bn = (a . b) . bn

 ⇒ b . a = a . b
So we have a . b = b . a ∀ a, b ∈ G. And hence G is abelian.
12.   If G is a group of even order, prove it has an element a ≠ e satisfying a2 = e.
Solution  : We prove the result by contradiction. Note that G is a finite group. Suppose 
there is no element x satisfying x2 = e except for x = e. Thus if some g ≠ e belongs to G, 
then g2 ≠ e, i.e. g ≠ g−1. It means every non-identity element g has another element g−1 
associated with it. So the non-identity elements can be paired into mutually disjoint 
subsets of order 2. We can assume the count of these subsets equals to some positive 
integer n as G is a finite group. But then counting the number of elements of G, we 
have o(G) = 2n + 1, where 1 is added for the identity element. So G is a group of odd 
order, which is not true. Hence there must exist an element a ≠ e such that a2 = e for G 
is a group of even order.
13.  Let : P be the set of all real numbers except the integer 1. Let the operation 
‘∗’ be defined by a ∗ b  = a + b – ab  for all a, b ∈ P.  Show that (P,∗) is a group.
Solution  : (i) Closure Property: Let  a, b ∈ P.

So, a and b are two real numbers and a ≠ 1, b ≠ 1.
Now, a * b = a+b – ab which is a real number and a + b – ab ≠ 1, because a + 
b – ab = 1 ⇒ b(1 – a) = 1 – a ⇒ b = 1,  since a ≠ 1. But b ≠ 1.
Therefore, a * b is a real number and  a * b ≠ 1 . So, a ∗ b ∈ P ∀ a, b ∈ P.
Hence P is closed under the binary operation ‘∗’.

(ii) Associative Property :  Let a, b, c ∈ P,  where a, b, c ∈ R and a ≠ 1, b ≠ 1, c ≠ 1.
Now, a * (b * c) = a * (b + c – bc) = a + b + c – bc – a (c + c – bc)
          = a + b + c – bc – ab – ac + abc
(a * b) * c = (a + b – bc) * c   = a + b – bc + c – (a + b – ab) c
             = a + b + c – ab – ac – bc + abc
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Therefore, a * (b * c) = (a * b) * c  ∀ a, b, c ∈ P.
So, associative property is satisfied w.r.t. the binary operation ‘∗’.

(iii) Identity Property : 0 ∈ P.
Now, 0 ∗ a = 0 + a − 0. a  = a ∀ a ∈ P.
So 0 is the left identity element in : under the binary operation ‘∗’.

(iv) Inverse Property : Let b be an element in P such that b ∗ a = 0.

Now,  b ∗ a = 0 ⇒ b + a – ba = 0 ⇒ b(1 – a) = –a ⇒ b = a
a −1 , since ≠ 1 

Since  a
a −1  is a real number as a ≠ 1 and a

a −1  ≠ 1, so b = a
a −1  ∈ P.

Therefore, for any element a in P, ∃ an element  a
a −1  in P such that  a

a −1 * a 
= 0.

So,  a
a −1  is the left 0-inverse in P under the binary operation ‘∗’.

Therefore, (P, *) is a group.

14.  Let (G, o) be a group and a, b ∈ G. If o(a) = 3 and aoboa–1 = b2, find the order 
of b if b is not the identity element of G.
Solution  : aoboa–1 = b2  ⇒ a2oboa–2 = aob2oa–1

 =  (aoboa–1) o (aoboa–1) since ‘o’ is associative.
 =  b2ob2 = b4

 ⇒   a3oboa–3 = aob4oa–1 = (aoboa–1) o (aoboa–1) o (aoboa–1) o (aoboa–1)
 =  b2ob2ob2ob2 = b8

 or,  b = b8  ⇒ b7 = e.
 Since  b ≠  e  and 7 is prime, so o (b) = 7.

 
 1.  In each case, find the inverse of the element under the given operation.
 i)  17 in 20.
 ii)  2, 7 and 8 in U(9).

 2.  Prove that for a group G,
Z G C

a G
a( ) =

∈


6.6  Model  Questions
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 3.  List all the elements of U(20).

 4.  Let a, b be any two elements of an aleblian group and n be an integer. Show 
that (ab)n = anbn. Is this also true for non-abelian groups?

 5.  Prove that a group G is abelian iff

(ab)−1 = a−1 b−1, ∀a, b ∈ G.

 6.  Give an example of a group with 105 elements. Give two examples of groups 
with 44 elements.

 7.  Prove that in a group (ab)2 = a2b2 iff ab = ba.

 8.  Prove that if G is a group with the property that the square of every element 
is the identity, then G is abelian.

 9.  Let a.b ∈ G. Find x ∈ G such that xabx−1 = ba.

 10.  For each divisor k > 1 of n, let Uk(n) = {x ∈ U(n) | x mod k = 1}. [For example, 
U3(21) = {1, 4, 10, 13, 16, 19} and U7(21) = {1, 8}.] List the elements of 
U4(20), U5(20), U5(30), and U10(30). Prove that Uk(n) is a subgroup of U(n). 
Let H = {x ∈ U(10) | x mod 3 = 1}. Is H a subgroup of U(10)?

 11.  Suppose that a is a group element and a6 = e. What are the possibilities for 
|a|? Provide reasons for your answer.

 12.  If a is a group element and a has infinite order, prove that am ≠ an when  
m ≠ n.

 13.  For any group elements a and b, prove that |ab| = |ba|.

 14.  Show that if a is an element of a group G, then |a| ≤ |G|.

 15.  Show that U(14) = 〈3〉 = 〈5〉. [Hence, U(14) is cyclic.] Is U(14) = 〈11〉?

 16.  Show that U(20) ≠ 〈k〉 for any k in U(20). [Hence, U(20) is not cyclic.]

 17.  Suppose n is an even positive integer and H is a subgroup of Zn. Prove that 
either every member of H is even or exactly half of the members of H are even.

 18.  Let n be a positive even integer and let H be a subgroup of Zn of odd order. 
Prove that every member of H is an even integer.

 19.  Prove that for every subgroup of Dn, either every member of the subgroup is 
a rotation or exactly half of the members are rotations.
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 20.  Let H be a subgroup of Dn of odd order. Prove that every member of H is a 
rotation.

 21.  Prove that a group with two elements of order 2 that commute must have a 
subgroup of order 4.

 22.  For every even integer n, show that Dn has a subgroup of order 4.

 23.  Suppose that H is a proper subgroup of Z under addition and H contains 18, 
30, and 40. Determine H.

 24.  Suppose that H is a proper subgroup of Z under addition and that H contains 
12, 30, and 54. What are the possibilities for H?

 25.  Suppose that H is a subgroup of Z under addition and that H contains 250 and 
350. What are the possibilities for H?

 26.  Prove that the dihedral group of order 6 does not have a subgroup of order 4.

 27.  If H and K are subgroups of G, show that H ∩ K is a subgroup of G. (Can 
you see that the same proof shows that the intersection of any number of 
subgroups of G, finite or infinite, is again a subgroup of G?)

 28.  Let U(n) be the group of units in n. If n > 2, prove that there is an element k 
∈ U(n) such that k2 = 1 and k ≠ 1.

 29.  Prove the right and left cancellation laws for a group G; that is, show that in 
the group G, ba = ca implies b = c and ab = ac implies b = c for elements  
a, b, c ∈ G.

 30.  Show that if a2 = e for all elements a in a group G, then G must be abelian.

 31.  Show that if G is a finite group of even order, then there is an a ∈ G such that 
a is not the identity and a2 = e.

 32.  Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G. Prove that 
G is an abelian group.

 33.  Find all the subgroups of 3 × 3. Use this information to show that 3 × 3 
is not the same group as 9.

 34.  Find all the subgroups of the symmetry group of an equilateral triangle.

 35.  Compute the subgroups of the symmetry group of a square.

 36.  Let H = {2k : k ∈ }. Show that H is a subgroup of ∗.
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 37.  Let n = 0, 1, 2, . . . and n = {nk : k ∈ }. Prove that n is a subgroup of . 
Show that these subgroups are the only subgroups of .

 38.  Let T = {z ∈ ∗ : |z| = 1}. Prove that T is a subgroup of *.
 39.  Let G consist of the 2 × 2 matrices of the form

cos sin
sin cos

θ θ
θ θ

−





  where θ ∈ . Prove that G is a subgroup of SL2().
 40.  Prove that

G = {a + b 2  : a, b ∈  and a and b are not both zero}
  is a subgroup of ∗ under the group operation of multiplication.
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The followings are discussed here:
• Definition of cyclic group
• Examples of cyclic group
• Basic properties of cyclic group
• Euler Phi function
• Roots of unity

 
Cyclic group is the basic building block of group theory. In this unit we discuss 

the notion of cyclic group. The generators of a cyclic group is also derived. Finally, 
as an application of cyclic group, the circle group and the root of unity are discussed.

 
  

  

Unit - 7    Cyclic Groups 

Structure
7.1  Objectives
7.2  Introduction
7.3  Definition and  Examples
7.4  Properties of Cyclic Group
7.5  The Circle Group and the Roots of Unity
7.6  Summary & Keywords
7.7  Worked examples
7.8  Model  Questions
7.9  Solution of some selected problems

7.1  Objectives

7.2  Introduction

7.3  Definition and examples
Definition 7.3.1 :  A group  G  is called cyclic if there exists an element  g  ∈  G  such 
that

  G  = {gn  :  n  ∈  }.
  The element  g  is called the generator of  G. The generator may not be unique. 
If G  is cyclic and generated by  g  then  G  can be written as  〈g〉.

46
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a5

a4

a0

a1

a2

a3

 

 

    

   
   

Fig. 3.1  : Cyclic group generated by a

Example 7.3.2 :  Any integer n 2 Z can be expressed as
  n  = 1 + 1 + ... + 1(n  times), when  n  is positive.
Also
  n  = (−1) + (−1) + ... + (−1)(|n| times), when  n  is negative.
Which implies that both 1 and −1 are generators of the infinite cylic group  .
Example  7.3.3  :  n  =  {0,  1,  2,  ...,  n  −  1}  with  addition  modulo  n  is  a  finite  cyclic
group. In this group 1 and −1 =  n  − 1 are the generators.
For example  8  =  〈1〉  =  〈3〉  =  〈5〉  =  〈7〉. To verify that  8  =  〈3〉, we note that  〈1〉  = {3,
3 + 3, 3 + 3 + 3, ...} = {3, 6, 1, 4, 7, 2, 5, 0}. On the other hand 2 is not a generator
(check it).
Example 7.3.4 :  U(12) = {1, 5, 7, 11}, in this case  〈1〉  = 1,  〈5〉  = {1, 5},  〈7〉  = {1, 7}
and  〈11〉  = {1, 11}. Therefore,  U(12) is not cyclic. But note that  U(10) is cyclic and
generated by 3 and 7.
Example 7.3.5 :  The group  2  ×  3  = {(m,  n) :  m  ∈  2,  n  ∈  3} is a cyclic group. The
binary operation is component wise addition
  (m,  n) + (m′,  n′) = (m  +  m′,  n  +  n′).

In this group the element (1, 1) has order 6.
(1, 1) + (1, 1)  =  (0, 2)
(1, 1) + (0, 2)  =  (1, 0)
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 (1, 1) + (1, 0)  =  (0, 1)
 (1, 1) + (0, 1)  =  (1, 2)
 (1, 1) + (1, 2)  =  (0, 0).

Hence, 2 × 3 is a cyclic group of order 6. Be careful, in general it is not true that 
m× n is cyclic.

 

  

 
  

  
  

 

 

7.4  Properties of Cyclic Group
Since the elements of a cyclic group are the powers of an element, properties of cyclic
groups are closely related to the properties of the powers of an element.
Theorem 7.4.1 :  Every cyclic group is Abelian.
Proof.  Let  G  be a cyclic group generated by  g. Take  a,  b  ∈  G. Then  a  =  gn  and  b  =  gm.
Now
  ab  =  gngm  =  gn+m  =  gm+n  =  gmgn  =  ba.
Which implies that  G  is Abelian.
  The converse of the above theorem need not be true always, check that (hints:
try)

Theorem 7.4.2 :  Every subgroup of a cyclic group is cyclic.
Proof.  The main tools used in this proof are the division algorithm and the Principle
of  Well-Ordering.  Let  G  be  a  cyclic  group  generated  by  a  and  suppose  that  H  is  a
subgroup of  G. If  H  = {e}, then trivially  H  is cyclic. Suppose that  H  contains some
other  element  g  distinct  from  the  identity.  Then  g  can  be  written  as  an  for  some
integer  n. We can assume that  n  > 0. Let m be the smallest natural number such that
am  ∈  H. Such an  m  exists by the Principle of Well-Ordering. We claim that  h  =  am  is
a generator for  H. We must show that every  h0  ∈  H  can be written as a power of  h.
Since  h0  ∈  H  and  H  is a subgroup of  G,  h0  =  a

k  for some positive integer  k. Using the
division algorithm, we can find numbers  q  and  r  such that  k  =  mq  +  r  where 0  ≤  r  <  m;
hence,

ak  =  amk  +r  = (am)ka  r  =  h  qa  r.

So  ar  =  akh−q. Since  ak  and  h−q  are in  H,  ar  must also be in  H. However,  m  was the
smallest positive number such that  am  was in  H; consequently,  r  = 0 and so  k  =  mq.
Therefore,

  h′  =  ak  =  amq  =  hq

and  H  is generated by  h.

Corollary 7.4.3 :  The subgroups of    is exactly  n  for  n  = 1, 2, ....
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1. 〈ak〉 = 〈agcd(n, k)〉

2. |ak| =  n
n kgcd( , ) .

This theorem is related to the order of ak and the groups generated by it. They 
will help us to find generators of a cyclic group
Proof.  1.  Let d = gcd(n, k). So, in particular, d is a divisor of k so there exists an 
integer r such that k = dr. So, ak = (ad)r. This implies that ak ∈ 〈ad〉, i.e., 〈ak〉 ⊆ 
〈agcd(n,k)〉.
Conversely, with d as above we know there exist integers s and t such that d = ns + kt. 
So,

 ad  =  ans+kt

  =  (an)s + (ak)t

  =  e(ak)t

  =  (ak)t.
Therefore, ad ∈ 〈ak〉 and so 〈ad〉 ⊆  〈ak〉 by closure.

2.  It is clear that ( )ad
n
d  = an = e, so that |ad|  ≤ nd . We can not have |ad| < nd . If we 

did, then there exists i < nd  such that |ad| = i, then adi = e and di < n which contradicts 

that |a| = n. Thus, |ad| = nd  . This is true for every positive divisor of n and gcd(n, k) is 

such a divisor. So, we have |ak| = |〈ak〉| = |〈agcd(n,k)〉| = n
n kgcd( , )  .     
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Theorem 7.4.4 :  Let a  ∈  G  such that |a| =  n. Then for any  k  ∈  

Theorem 7.4.5 :  Let  G  =  〈a〉  be a cyclic group of order  n. If  G  contains an element  b
of order  n, then  〈b〉  =  G.
Proof.  Since  b  ∈  G and |b| =  n. Then  〈b〉  contains  n  number of distinct elements. Again
〈b〉  ⊆  G. Hence,  〈b〉  =  G.
Definition  7.4.6  :  (Euler  Phi  Function).  Let  n  ∈  +.  The  Euler  Phi  function  of  n,
denoted by  φ(n) is the number of positive integers less than  n  and relatively prime to
n  and we set  φ(1) = 1.
Example 7.4.7 :  The following table shows the value of  φ  for different  n.
  n  1  2  3  4  5  6  7  8

φ  1  1  2  2  4  2  6  8
Example 7.4.8 :  By definition |U(n)| =  φ(n).

 6CC-MT-07
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e j2p 2 /12

e j2p /12

e j2p 11 /12

e j2p 10 /12
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e j2p 8 /12
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e j2p 6 /12

e j2p 5 /12

e j2p 0 /12   =  e j2p 12 /12

    

 

7.5  The Circle Group and the Roots of Unity
The  multiplicative  group  of  the  complex  numbers,  +,  possesses  some  interesting
subgroups. Whereas  +  and  +  have no interesting subgroups of finite order,  +  has
many. We first consider the  circle group,
  S = {z  ∈    : |z| = 1}.
Proposition 7.5.1 :  The circle group is a subgroup of  +.
Although the circle group has infinite order, it has many interesting infinite subgroups.
Suppose  that  H  = {1,−1,  i,−i}. Then  H  is  a  subgroup  of  the  circle  group. Also, 1,
−1, i,  and  −i  are  exactly  those  complex  numbers  that  satisfy  the  equation  z4  =  1.
The  complex  numbers  satisfying  the  equation  zn  = 1  are  called  the  nth  roots  of
unity.

e  j2p  2 /12

Fig. 3.2

Theorem 7.5.2 :  If  zn  = 1, then the nth root of unity are

z  =  exp  (  2knπ  ),

where  k  = 0, 1, ...,  n  − 1. Furthermore, the nth roots of unity form a cyclic subgroup 
of S  of order  n.
Proof.  By DeMoivre’s Theorem

zn  =  exp  (n  2knπ  )  =  exp(2kπ)  =  1

The  z’s   are   distinct   since   the   numbers   2kp/n  are   all   distinct   and  are   greater   than
or  equal   to   0   but   less   than   2p.  The   fact   that   these   are   all   of   the   roots   of   the
equation  zn  =1   follows   from   from   fundamental   theorem   of   algebra,  which
states  that  a
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polynomial of degree n can have at most n roots. We will leave the proof that the nth 
roots of unity form a cyclic subgroup of S as an exercise.     

A generator for the group of the nth roots of unity is called a primitive nth root 
of unity.

 

 
1.  Find all generators of Z22.
Solution : Since |Z22| = 22, if a is a generator of Z22, then |a| must equal to 22. Now, let 
b be a generator of Z22, then b = 1b = b. Since |1| = 22, we have |b| = |1b|= 22/gcd(b, 22) = 
22 . Hence, b is a generator of Z22 iff gcd(b,22) = 1. Thus, 1,3,5,7,9,11,13,15,17,19,21 
are all generators of Z22.

2.  Let G = (a), a cyclic group generated by a, such that |a| = 16. List all generators 
for the subgroup of order 8.
Solution : Let H be the subgroup of G of order 8. Then H = (a2) = (a16/8) is the 
unique subgroup of G of order 8 by Theorem 3.2.5. Hence,(a2)k is a generator of H iff 
gcd(k,8) = 1. Thus, (a2)1 = a2, (a2)3 = a6, (a2)5 = a10, (a2)7 = a14.

3.  Suppose that G is a cyclic group such that |G| = 48. How many subgroups does 
G have?
Solution : Since for each positive divisor k of 48 there is a unique subgroup of order 
k by Theorem 3.2.5, number of all subgroups of G equals to the number of all positive 
divisors of 48. Hence, Write 48 = 3123. Hence, number of all positive divisors of 48 = 
(1+1)(3+1) = 8. If we do not count G as a subgroup of itself, then number of all proper
subgroups of G is 8 − 1 = 7.

4.  Let a be an element in a group,and let i, k be positive integers. Prove that 
H = (ai) ∩ (ak) is a cyclic subgroup of (a) and H = (alcm(i,k)).
Solution : Since (a) is cyclic and H is a subgroup of (a), H is cyclic by Theorem 3.2.2. 
By Theorem 1.2.18 we know that lcm(i, k) = ik/gcd(i, k). 

 

7.7  Worked examples

7.6  Summary  & Keywords
In this unit, we have introduced the concept of cyclic group. We have showed that a
subgroup of a cyclic group is cyclic. Also we have studied that for each divisor of the
order of a cyclic group there exists a unique cyclic subgroup of that order.
Ketwords: Cyclic subgroup, roots of unity,  Generators
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Since k/gcd(i,k) is an integer, we have alcm(i,k) = (ai)k/gcd(i,k). Thus, (alcm (i,k)) ⊂ (ai). 
Also, since k/gcd(i, k) is an integer, we have alcm(i,k) = (ak )i/gcd(i.k). Thus, (alcm(i, k)) ⊂ 
(ak). Hence, (alcm (i, k) ) ⊂ H. Now, let h ∈ H. Then h = aj = (ai)m = (ak)n for some j, m, 
n ∈ Z. Thus, i divides j and k divides j. Hence, lcm(i,k) divides j.
Thus, h = aj = (alcm(i,k))c where j = lcm(i,k)c. Thus, h ∈ (alcm(i,k)). Hence, H ⊂ (alcm(i,k)). 
Thus, H = (alcm(i,k)).

5.  Let a be an element in a group. Describe the sub-group H = (a12) ∩ (a18).
Solution : By the previous Question, H is cyclic and H = (alcm(12,18) = (a36).

6.  Let G = (a), and let H be the smallest subgroup of G that contains am and an. 
Prove that H = (agcd(n, m)).
Solution : Since G is cyclic, H is cyclic by Theorem 3.2.2. Hence, H = (ak) for some 
positive integer k. Since an ∈ H and am ∈ H, k divides both n and m. Hence, k divides 
gcd(n,m). Thus, agcd(n,m) ∈ H = (ak). Hence, (agcd(n,m)) ⊂ H. Also, since gcd(n,m) 
divides both n and m, an ∈ (agcd(n,m)) and am ∈ (agcd(n,m)). Hence, Since H is the 
smallest subgroup of G containing an and am and an, am ∈ (agcd(n,m)) ⊂ H, we conclude 
that H = (agcd(n,m)).

7.  Let G be an infinite cyclic group. Prove that e is the only element in G of finite 
order.
Solution : Since G is an infinite cyclic group, G = (a) for some a ∈ G such that |(a)| 
is infinite. Now, assume that there is k an element b ∈ G such that |b| = m and b ≠ e. 
Since G = (a), bk = a for some k ≥ 1.

 Hence, e = bm = (ak)m = akm. Hence, |a| divides km.

a contradiction since |a| is infinite. Thus, e is the only element in G of finite order.

8.  Let G = (a) be a cyclic group. Suppose that G has a finite subgroup H such that 
H ≠ {e}. Prove that G is a finite group.

Solution :  First, observe that H is cyclic by Theorem 3.2.2. Hence, H = (an) for some 
positive integer n. Since H is finite and H = (an), Ord(an) = |H| = m is finite. Thus, (an)
m = anm = e. Hence, |a| divides nm. Thus, (a) = G is a finite group.

9.  Let a be an element in a group G such that |a| is infinite. Prove that (a), (a2), (a3), ... 
are all distinct subgroups of G, and Hence, G has infinitely many proper subgroups.

Solution : Suppose that (ai) = (ak) for some positive integers i, k such th  at k > i. 
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Thus, ai = (ak)m for some m ∈ Z. Hence, ai = akm. Thus, ai km = e. Since k > i, km ≠ i 
and therefore i − km ≠ 0. Thus, | a | divides i − km . Hence, |a| is finite, a contradiction.

10.  Let G be a group containing more than 12 elements of order 13. Prove that G 
is never cyclic.

Solution : Suppose that G is cyclic. Let a ∈ G such that |a| = 13. Hence, (a) is a finite 
subgroup of G. Thus, G must be finite by the previous Question. Hence, by Theorem 
3.2.5 there is exactly φ (13) = 12 elements in G of order 13. A contradiction. Hence, G 
is never cyclic.

 

 1.  Find all generators of the cyclic group 28.
 2.  In 30 find the order of the subgroup 〈18〉 and 〈24〉.
 3.  Show that any cyclic group of even order has exactly one element of order 2.
 4.  Show that + is not a cyclic group.
 5.  Let G be an abelian group of order 15. Show that if you can find an element a 

of order 5 and an element b of order 3, then G must be cyclic.

 6.  Let H =  ± ± ± ±{ }1 2
2

2
2, , ,i i  is a cyclic subgroup of +.

 7.  Let H =  
1 0
0 1 0
0 0 1

3

m
GL m















∈ ∈











( ) :� �  and K = 

1 0
0 1 0
0 0 1

n













∈






  GL3() : n ∈  } are cyclic groups of GL3().

 8.  Prove that p does not have any non-trivial subgroup if p is prime.
 9.  Let G be an abelian group. Show that the elements of finite order in G form a 

subgroup. This subgroup is called the torsion subgroup of G.
 10.  Find all generators of 48.
 11.  Prove that the following groups are not cyclic:
  (i)  2 × 2

  (ii)  2 × 
  (iii)   × 

7.8  Model  Questions
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 12.  Prove that the cyclic subgroup 〈a〉 is the smallest subgroup of G containing  
a ∈ G.

 13. If a cyclic group has an element of infinite order, how many elements of 
finite order does it have?

 14.  Suppose that G is an Abelian group of order 35 and every element of G 
satisfies the equation x35 = e. Prove that G is cyclic. Does your argument 
work if 35 is replaced with 33?

 15.  Let G be a group and let a be an element of G.
  a.   If a12 = e, what can we say about the order of a?
  b.   If am = e, what can we say about the order of a?
  c.   Suppose that |G| = 24 and that G is cyclic. If a8 ≠ e and a12 ≠ e, show that    

      〈a〉 = G.
 16.  Prove that a group of order 3 must be cyclic.
 17.  Let Z denote the group of integers under addition. Is every subgroup of Z 

cyclic? Why? Describe all the subgroups of Z. Let a be a group element with 
infinite order. Describe all subgroups of 〈a〉.

 18.  For any element a in any group G, prove that 〈a〉 is a subgroup of C(a) (the 
centralizer of a).

 19.  If d is a positive integer, d ≠ 2, and d divides n, show that the number of 
elements of order d in Dn is φ (d). How many elements of order 2 does Dn 
have?

 20.  Find all generators of Z. Let a be a group element that has infinite order. Find 
all generators of 〈a〉.

 21.  Prove that C*, the group of nonzero complex numbers under multiplication, 
has a cyclic subgroup of order n for every positive integer n.

 22.  Let a be a group element that has infinite order. Prove that 〈ai〉 = 〈aj〉 if and 
only if i = ± j.

 23.  List all the elements of order 8 in Z8000000. How do you know your list is 
complete? Let a be a group element such that |a| = 8000000. List all elements 
of order 8 in 〈a〉. How do you know your list is complete?

 24.  Suppose that G is a group with more than one element. If the only subgroups 
of G are {e} and G, prove that G is cyclic and has prime order.
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 25.  Let G be a finite group. Show that there exists a fixed positive integer n such 
that an = e for all a in G. (Note that n is independent of a.)

 26.  Determine the subgroup lattice for Z12. Generalize to Z p q2 , where p and q 
are distinct primes.

 27.  Determine the subgroup lattice for Z8. Generalize to Z pn , where p is a prime 
and n is some positive integer.

 28.  Prove that a finite group is the union of proper subgroups if and only if the 
group is not cyclic.

 29. List all of the elements in each of the following subgroups.
  (a)  The subgroup of  generated by 7
  (b) The subgroup of 24 generated by 15
  (c)  All subgroups of 12

  (d)  All subgroups of 60

  (e)  All subgroups of 13

  (f)  All subgroups of 48

  (g)  The subgroup generated by 3 in U(20)
  (h)  The subgroup generated by 5 in U(18)
  (i)   The subgroup of ∗ generated by 7
  (j)   The subgroup of ∗ generated by i where i2 = −1
  (k)  The subgroup of ∗ generated by 2i

  (l)   The subgroup of ∗ generated by ( ) /1 2+ i

  (m) The subgroup of ∗ generated by ( ) /1 3 2+ i
 30. Find the subgroups of GL2() generated by each of the following matrices

  (a) 
0 1
1 0−







 (c) 
1 1
1 0

−



  (e) 

1 1
1 0

−
−







  (b) 
0 1 3
3 0

/





 (d) 
1 1
0 1

−



  (f) 

3 2 1 2
1 2 3 2

/ /
/ /−








 31. Find the order of every element in 18.
 32. Find the order of every element in the symmetry group of the square, D4.
 33. What are all of the cyclic subgroups of the quaternion group, Q8?
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 34. List all of the cyclic subgroups of U(30).
 35. List every generator of each subgroup of order 8 in 32.
 36.  Find all elements of finite order in each of the following groups. Here the “∗” 

indicates the set with zero removed.
  (a)    (b)  *  (c)  *
 37.  If a24 = e in a group G, what are the possible orders of a?
 38.  Find a cyclic group with exactly one generator. Can you find cyclic groups 

with exactly two generators? Four generators? How about n generators?
 39.  For n ≤ 20, which groups U(n) are cyclic? Make a conjecture as to what is 

true in general. Can you prove your conjecture?

 
 1.  { 1, 3, 5, 9, 11 , 13, 15, 17, 19, 21, 23, 25, 27}
 2.  5, 5
 10. All the elements less than and prime to 48.
 13.  Only one
 15.  (a) order of a may be 1, 2, 3, 4, 6 or 12
  (b) order of a may be all the divisors of m
 17.  Use the fact that all the subgroups of a cyclic group are cyclic
 20.  {+1, –1}
 23.  Use theorem 3.4.3
 29.  (a) {7n : n ∈ Z}
  (b) {0, 6, 12, 15, 6, 21}

 30.  (a)  { : }
0

0
a

a
a R

−






∈

 31.  use theorem 3.4.3
 36.  (a) 0
  (b) {+1, –1}
  (c) {+1, –1}
 37.  All the divisors of 24
 38.  Z2

7.9  Solutions of some selected problems
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In this unit, we prove the single most important theorem in finite group theory—
Lagrange’s Theorem. In his book on abstract algebra, I. N. Herstein likened it to the 
ABC’s for finite groups. But first we introduce a new and powerful tool for analyzing 
a group—the notion of a coset. This notion was invented by Galois in 1830, although 
the term was coined by G. A. Miller in 1910.

The Euclidean plane 2 forms a group under component wise addition, i.e., for 
any two (a, b), (c, d) ∈ 2, then 

(a, b) + (c, d ) = (a + c, b + d ).
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8.1 Objectives
The followings are discussed here:
• Definition of cosets and examples
• Lagrange’s theorem

8.2 Introduction

8.3 Definition and concept

Structure
8.1  Objectives
8.2  Introduction
8.3  Definition and concept
8.4  Lagrange’s Theorem

8.5    Summary

8.6    Keywords
8.7  Model  Questions

Unit  -  8    Cosets 
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Now the subset X = {(x, 0) : x ∈ R} is a subgroup of 2 which is nothing but the x axis 
(check it!). If we take any element (a, b) ∈ 2 which is not in X, then the set

H(a, b) = (a, b) + X = {(a + x, b) : x ∈ }
is parallel to x-axes and looks like the set X, see Figure 4.1. Also it can be seen that if 
we choose an element from X, i.e., of the form (a, 0), then H(a,0) is X itself. Therefore, 
we conclude that either H(a,b) = X or H(a,b)  X = φ. Since the collection of all straight 
lines, parallel to x-axes covers the whole Euclidean plane, it implies that (a,b)∈2 
H(a,b) = 2. Hence, the collection {H(a,b)} forms a partition of the Euclidean plane. If 
we take the collection

H(a,b) = X + (a, b) = {(x + a, b) : x ∈ }
then we also get the same image as the figure 4.1 for the commutativity of the addition 
in 2. In group theoretic language this type of element is called coset, more specifically 
left-coset. Here comes the formal definition.

H(a,3/2)

H(a,1)

Y

X(0, 0)

H(a,–1)

   

  

Fig. 8.1

Definition  8.3.1  :  Let  G  be  a  group.  Now  take  an  element  a  ∈  G,  then  the  set  
aH defined by
  aH  = {ah  :  h  ∈  H}
is called the left coset. Similarly we can define the right-coset  Ha.
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Example 8.3.2 :  Consider the subgroup  H  =  〈3〉  of  6. The cosets are
0 +  H  = {0, 3} = 3 +  H
1 +  H  = (123)H  = {(13), (123)}
2 +  H  = (132)H  = {(23), (132)}

Example 8.3.3 :  Let  G  =  S3  and  H  = {(1), (12)}. Then the left cosets of  H  in  G  are
(1)H  = (12)H  = {(1), (1, 2)}
(13)H  = (123)H  = {(13), (123)}
(23)H  = (132)H  = {(23), (132)}
  The right cosets are
H(1) =  H(12) = {(1), (1, 2)}
H(13) =  H(132) = {(13), (132)}
H(23) =  H(123) = {(23), (123)}.

Note  that,  except  for  the  coset  of  the  elements  in  H,  the  left  and  right  cosets  
are different.

Fig. 8.2  :  Group G and cosets gH and g′H of the subgroup H

Proposition  8.3.4  (Properties).  Let  H  and  K  be  two  subgroups  of  G  and  a,  b  ∈  
G. Then
1. a  ∈  aH.
2. aH = H if and only if a  ∈  H.
3. aH = bH if and only if a  ∈  bH.
4. aH = bH or aH    bH =  φ.

 6CC-MT-07
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5. aH = bH if and only if a−1b  ∈  H.
6. |aH| = |bH|.
Proof. 1. Since  H  contains the identity element  e, which implies  a.e  =  a  ∈  aH.
2.  Suppose  aH  =  H,  then  e  =  ah  for  some  h  ∈  H.  Therefore,  a  =  eh−1  =  h−1  ∈  H.
Conversely, suppose  a  ∈  H. Then  aH  ⊂  H. Let  h  ∈  H. Then  h  can be expressed as  h  =
aa−1h  =  ah1  ∈  aH  for some  h1  ∈  H. Which implies  H  ⊆  aH. Hence,  aH  =  H.
3. This part can be easily deduced from 1. and 2.
4.  Let  aH    bH  ≠  φ. Take  x  ∈  aH    bH. Then  x  =  ah1  =  bh2  for  some  h1,  h2  ∈  H.
So, we get  a  =  bh2h1  ∈  bH. Hence, from (3) we say that  aH  =  bH. Therefore, either 
aH    bH  =  φ  or  aH  =  bH.
5.  Let  aH  =  bH.  Then  b  =  ah  for  some  h  ∈  H.  Which  implies  that  a−1b  =  h  ∈  H.
Conversely, let  a−1b  ∈  H. Then  b  ∈  aH. So, from (3) we get  aH  =  bH.
6.  Define a function  f  :  aH  →  bH  by  f  (ah) =  bh. (Check it!) This function is bijective.
Hence,  aH  and  bH  has same number of elements.

  From  (3)  of  the  Proposition  4.4,  it  is  clear  that  cosets  makes  partition  of  the 
group  G.  But  we  know  that  for  any  partition  there  must  be  a  equivalence  relation.
Now we define the equivalence relation.
  Let  H  be a subgroup of the group  G. For any  a,  b  ∈  G,  a  is related to  b,  a  ~  b  if 
and only if  a−1b  ∈  H.
  This  relation  is  reflective,  i.e.,  a  ~  a  since  a−1a  =  e  ∈  H. This  relation  is  also 
symmetric. Now for any  a,  b,  c  ∈  G  such that  a  ~  b and  b  ~  c, we get  a−1b  ∈  H  and 
b−1c  ∈  h.  Hence,  (a−1b)(b−1c)  =  a−1c  ∈  H. Which  implies  that  a  ~  c. Therefore,  the
relation  ~  is transitive. Hence  ~  is an equivalence relation.

Consider the equivalence class [a] of  a  ∈  g, i.e.,
  [a] = {b  ∈  G  :  a  ~  b}.

Theorem 8.3.5 :  The equivalence class [a] is nothing but the left coset aH.
Proof. Since the relation  ~  is reflective, [a] ≠  φ. Let  b  ∈  [a]. Then  a  ~  b, i.e.,  a−1b  ∈  H.
Which implies that  b  ∈  aH. Hence, [a]  ⊆  aH.
Again take  b  ∈  aH. Then  b  =  ah  for some  h  ∈  H. Which implies that  a−1b  =  h  ∈  H.
Therefore,  a  ~  b. So,  b  ∈  [a]. Therefore,  aH  ⊆  [a]. Hence, we get [a] =  aH.
  This theorem makes it clear why the cosets partition the whole group. Note that 
the above result holds if we replace ’left’ with ’right’.
Definition 8.3.6 :  Let  G  be a group and  H  be a subgroup. The number of left cosets of H  
in  G  is called index of  H  in  G  and denoted by [G  :  H].
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8.4 Lagrange’s Theorem
We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born 
mathematician Joseph Louis Lagrange.
Theorem 8.4.1  (Lagrange’s Theorem).  Let G be a finite group and H be a subgroup of 
G. Then |G|/|H| = [G : H]. In particular, |H| divides |G|.

Proof.  The  group  G  is  partitioned  into  [G  :  H]  number  of  left-cosets  and  each  lef
coset has |H| numbers of element by the proposition 8.3.4. Hence, |G| = |H|[G  :  H].

The converse of Lagrange’s Theorem is not true: namely, if  G  is a finite group
and  n  divides  |G|,  then  G  need  not  have  a  subgroup  of  order  n.  It  can  be  seen  by 
an  example:  A4  has  no  subgroup  of  order  6.  But  there  are  some  partial  converse  to
Lagranges  Theoem.  For  finite  abelian  group  the  full  converse  is  true,  i.e.,  for  each 
divisor of |G|, we have a subgroup of that order.
Theorem 8.4.2  (Cauchy’s Theorem).  If G is a finite group and p is a prime dividing 
|G|, then G has an element of order p.
Proof. The proof is out of the scope of this book.

We’ll now examine a host of consequence of Lagrange’s Theorem.

NSOU  61

Example 8.3.7 :  From the previous example we get [6,  H] = 3 and [S3,  H] = 3.
Theorem 8.3.8 :  Let H be a subgroup of G. Then the number of left cosets of H in G is 
same as the number of right cosets of H in G.
Proof.  Let  LH  and  RH  be  the  number  of  left  cosets  and  right  cosets  of  H  in
G  respectively. Now we define a bijection between  LH  and  RH. Consider the  function
  ϕ  :  LH  →  RH

defined by
ϕ(gH) =  Hg−1.

First,  we  will  show  that  this  map  is  well-defined.  Suppose  g1H  =  g2H.  Then 
by  proposition 4.4,  Hg1

−1  =  Hg2
−1  =  ϕ(g1H) =  ϕ(g2H). Thus,  ϕ  is well defined.

Let  ϕ(g1H) =  ϕ(g2H) for some  g1,  g2  ∈  G. Then,  Hg1
−1  =  Hg2

−1. Again, the proposition
8.3.4  implies  that  g1H  =  g2H.  Hence,  the  function  ϕ  is  injective.  The  function  ϕ
is  obviously surjective. Therefore,  ϕ  is a bijection so the result holds.

  The above theorem implies that in the definition of index of a subgroup  H  in the 
group  G  we can replace the term ‘left cosets’ with ‘right cosets’ also.

 6CC-MT-07
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Proof. By, Lagrange’s Theorem we have
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Corollary 8.4.3 :  Suppose  G  is a finite group and  g  ∈  G. Then
1.  |g| divided |G|.
2. g|G| = e.
3.  If |G| is a prime, then G is cyclic and every element g  ≠  e of G is a generator of G.
Proof. 1. Consider the cyclic group  〈g〉  generated by  g. Then  〈g〉  has order |g|. Now by
Lagrange’s theorem |  〈g〉  | divides |G|, hence, |g| divides |G|.
2. Since |g|||G|. So |G| =  m|g| for some integer  m. Now  g|G|  = (g|g|)m  =  em  =  e.
3.  Let  g  ∈  G  be  an  non-identity  element.  Now  |g|  divides  |G|.  But  |G|  is  a  prime 
number. So either |g| is one or |G|. But |g|  ≠  1 since  g  is not the identity. Therefore,
|g| = |G|. Therefore,  g  is a generator of  G. Since  g  is arbitrary, so every element  g  ≠  φ
of  G  is a generator of  G  and  G  is cyclic.
Corollary  8.4.4  :  Let  H  and  K  be  subgroups  of  G  such  that  K  ⊂  H  ⊂  G.  
Then  [G :K] = [G  :  H][G  :  K].

Theorem 8.4.5 :  (Fermat’s Little Theorem).  For every integer a and every prime p,
  ap  ≡  a  mod  p.
Proof. By division algorithm,  a  =  pm  +  r  where 0  ≤  r  <  p. Thus  a  ≡  r  mod  p, and it 
suffices to prove that  rp  ≡  r  mod  p. If  r  = 0 the result is trivial, so we may assume that 
r  ∈  U(p) = {1, 2, ...,  p  − 1}. Hence,  rp−1  ≡  1 mod  p  and therefore,  rp  ≡  r  mod  p.

Cosets Left Coset Right Coset Subgroups Lagrange’s Theorem

 8.5 Summary

 8.6 Keywords

This chapter introduced the concept of cosets and their significance in group theory. 
We explored the distinction between left and right cosets and discussed their role in 
partitioning a group into equal-sized subsets. Additionally, we examined the 
importance of cosets in proving fundamental theorems, such as Lagrange’s theorem. 
Understanding cosets provides a foundation for more advanced topics in abstrac
t algebra, including normal subgroups and quotient groups.



 1. Let G be a finite group. If a, b ∈ G such that |a| = 5 and |b| = 7, then show that 
|G| ≥ 35.

 2. Suppose that G is a finite group with 60 elements. What are the orders of possible 
subgroups of G?

 3. Prove or disprove: Every subgroup of the integers has finite index.
 4. Prove or disprove: Every subgroup of the integers has finite order.
 5. List the left and right cosets of the subgroups 〈8〉 in 18.
 6. List the left and right cosets of the subgroups 〈3〉 in U8.
 7. List the left and right cosets of the subgroups 3 in .
 8. Describe the left cosets of SL2() in GL2().
 9. Show that the integers have infinite index in the additive group of rational 

numbers.
 10. Let a and b be elements of a group G and H and K be subgroups of G. If aH = bK, 

prove that H = K.

 8.7 Model Questions
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Unit - 9   Normal Subgroups

 
 
 
 
 
 
 
 
 

 

 

 

 

 

  

 

9.1 Objectives

9.2 Introduction

By the end of this chapter, readers should be able to:

 Understand the concept of a normal subgroup and its significance in group theory.
 Identify and verify whether a given subgroup is normal within a group.
 Explore the relationship between normal subgroups and quotient groups.
 Apply normal subgroups in various algebraic structures and problem-solving

In group theory, the concept of a normal subgroup plays a fundamental 
role in understanding the structure of groups. Normal subgroups are 
crucial in defining quotient groups, which provide insights into the internal 
structure of groups and their classification. This chapter explores the 
properties of normal subgroups, their applications, and their role in abstract
algebra.

 

   
  

9.3 Normal Subgroups
Normal subgroups was introduced by Evariste Galois in 1831 as a tool for deciding
whether  a  polynomial  is  solvable  by  radical  or  not.  Galois  noted  that  a  subgroup  H
of a group  G  of permutation induced two decompositions of  G  into what we call left
cosets and right cosets. If the two decompositions coincide, that is, if the left cosets are
the same as the right cosets, Galois called the decomposition proper. Thus a subgroup
giving a proper decomposition is what we called normal subgroup.
Definition 9.3.1 :  A subgroup  H  of  G  is called normal, denoted by  H    G, if  gH  =  Hg
for all  g  ∈  G, i.e., left-coset and right-coset are equal.

  You should think of a normal subgroup in this way: You can switch the order of
a product of an element  a  from the group and an element  h  from the normal subgroup

57

Structure
9.1  Objectives
9.2  Introduction
9.3  Normal Subgroups
9.4  Summary & Keywords
9.5  Worked examples
9.6  Model  Questions
9.7  Solution of some selected problems
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	 								σ    (1)   (1,2)  (1,3)  (2,3)  (1,2,3)   (1,3,2)
	 σ(1, 2)σ−1  (1,2)  (1,2)  (2,3)  (1,3)    (2,3)      (1,3)

The idea of conjugation can be applied not just to elements, but to subgroups. If 
H is a subgroup of G and g ∈ G, the set

gHg−1 = {ghg−1 : h ∈ H}
is the conjugacy class of g in H.

Example 9.5.5 :  In  S3, what are the conjugates of (1, 2)? We make a table of  σ(1, 
2)σ−1  for all  σ  ∈  S3.
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H, but you must “fudge” a bit on the element from the normal subgroup  H  by using  some
h′  from  H  rather than  h. That is, there is an element  h′  in  H  such that  ah  =  h′a.
Likewise, there is some  h′′  in  H  such that  ha  =  ah′′. (It is possible that  h′  =  h  or  h′′  =  h,
but we may not assume this.)
Proposition 9.3.2 :  Let G be a group and H be a subgroup with index  2. Then H is 
normal in G.
Proof. Let  g  ∈  G  −  H  so, ny hypothesis, there are two left cosets of  H  in  G, they are  eH 
and  gH. Since  eH  =  H  and the cosets partition  G, we must have  gH  =  G  −  H. Now  the  two 
right  cosets  of  H  in  G  are  He  and  Hg.  Since  He  =  H,  we  again  must  have  Hg  =  G  −  H. 
Combining these gives,  gH  =  Hg  for all  g  ∈  G. Hence,  H  is normal in  G.
Example 9.3.3 :  Every subgroup of an abelian group  G  is normal.
Example 9.4.4 :  G  =  S3,  H  =  〈(1, 2, 3)〉  = {e, (1, 2, 3), (1, 3, 2)}. Now  [G  :  H] = 2, so  H  is 
normal in  G.
Let  g  = (1, 2). Then

gH  = {(1, 2), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)} = {(1, 2), (2, 3), (1, 3)}
Hg  = {(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)} = {(1, 2), (1, 3), (2, 3)}.

this example shows that if  H  is normal in  G, then  gH  =  Hg  ∀g  ∈  G  but it is not true  that 
gh  =  hg  for all  h  ∈  H.
  There are several equivalent formulations of the definition of normality. Normal 
subgroup can also be expressed in terms of conjugacy relation.
In a group  G, two elements  g  and  h  are said to be conjugate if
  h  =  xgx−1  for some  x  ∈  G.
The  conjugacy  relation  in  G  is  an  equivalence  relation  (Check  it  !).  The  conjugacy  class 
of  g  ∈  G  is denoted by

[g] = {xgx−1  :  x  ∈  G}.

 6CC-MT-07
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a1H

a1g2H

a1g2H

a1NG(H)

a1g3H

a1g1H

H

g4N=Ng4

g2H=Hg2

NG(H)

g3H=Hg3

g1H=Hg1

a3H

a3g4H

a3g2H

a3NG(H)

a2g3H

a3g1H

a2H

a2g2H

a2g2H

a2NG(H)

a3g3H

a2g1H

    Fig. 9.3  : Abstract visualization of the relationships  H  ∆  NGH  ∆  G
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Proposition 9.3.6 :  The conjugacy class gHg−1  is a subgroup of G.
Proof.  Since  e  ∈  H,  which  implies  e  ∈  gHg−1.  So  gHg−1  ≠  φ.  Let  x,  y  ∈
gHg−1.
Then  x  =  gh1g

−1  and  y  =  gh2g
−1  for some  h1,  h2  ∈  H. Now,  xy−1  =  gh1g

−1(gh2g
−1)−1 

=gh1g
−1gh2

−1g−1  =  g(h1h2
−1)g−1  ∈  gHg−1. Therefore,  gHg−1  is a subgroup of  G.

Theorem 9.3.7 :  A subgroup  H  of  G  is normal if and only if  gHg−1  ⊆  H for all  g  ∈  G.
Proof. Let  H  is normal in  G. Then  gH  =  Hg  for all  g  ∈  G. Now for any  h  ∈  H, 
there  exists h′  ∈  H  such that  gh  =  h′g. Which implies that  ghg−1  =  h′  ∈  H. Hence,
gHg−1  ⊆  H for all  g  ∈  G. Conversely, let  gHg−1  ⊆  H  for all  g  ∈  G. Then for any  gh  ∈  gH 
there exists  h′  ∈  H  such that  gh  =  h′g  from the hypothesis. Hence,  gH  ⊆  Hg. Similarly, we 
can show  Hg ⊆  gH. Therefore,  gH  =  Hg  for all  g  ∈  G. Hence,  H  is normal in  G.

Definition 9.3.8 :  Let  H  and  K  be subgroups of a group  G  and define 
HK  = {hk  :  h  ∈  H,  k  ∈  K}.
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| | | || |
| |HK H K
H K= ∩

.

Proof. Notice that HK is a union of left cosets of K, namely,

HK hK
h H

=
∈
 .

Since each coset of K has |K| elements it suffices to find the number of distinct left 
cosets of the from hK, h ∈ H. But h1K = h2K for h1, h2 ∈ H if and only if h2

−1 h1 ∈ K. 
Thus

h1K = h2K 



 h2
−1h1 ∈ H  K 



 h1(H  K) = h2(H  K).

Thus the number of distinct cosets of the from hK, for h ∈ H is the number of distinct 
cosets h(H  K), for h ∈ H. The latter number, by Lagrange’s theorem, equals | |

| |
H

H K∩ . 
Thus HK consists of | |

| |
H

H K∩   number of cosets of K which proves the result.  

 

 

 1.  List the cosets of 〈9〉 in Z16×× , and find the order of each coset in Z16×× /〈9〉.
Solution: Z16

×  = {1, 3, 5, 7, 9, 11, 13, 15}.
	 	 〈9〉 = {1, 9}    3 〈9〉 = {3, 11}     5 〈9〉 = {5, 13}      7 〈9〉 = {7, 15}
  Now the order of aN is the smallest positive integer n such that an ∈ N.
  The coset 3 〈9〉 has order 2 since 32 = 9 and 9 belongs to the subgroup 〈9〉. (We 

could have used either element of the coset to do the calculation.) The coset 5 〈9〉 
also has order 2, since 52 = 9. The coset 7 〈9〉 has order 2 since 72 = 1.

 2. List the cosets of 〈7〉 in Z16×× . Is the factor group Z16×× / 〈7〉 cyclic?
Solution: Z16

×  = {1, 3, 5, 7, 9, 11, 13, 15}.
	 	 〈7〉 = {1, 7}      3 〈7〉 = {3, 5}      9 〈7〉 = {9, 15}      11 〈7〉 = {11, 13}
  Since 32 ∉ 〈7〉, the coset 3 〈7〉 does not have order 2, so it must have order 4, 

showing that the factor group is cyclic.
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Proposition 9.3.9 :  If H and K are finite subgroups of a group, then

 9.4  Summary  & Keywords
This chapter introduced the concept of normal subgroups, a special type of subgroup
that  remains  unchanged  under  conjugation. We  discussed  methods  to  determine
whether  a  subgroup  is  normal  and  examined  its  significance  in  forming  quotient
groups. 

Keywords: Normal subgroup, Quotient group, Normalizer.

9.5  Worked examples

 6CC-MT-07
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 3. Show that the subgroup {id, (1 3)} of S3 is not normal.
Solution: Here’s the multiplication table for S3, the group of permutations of {1, 2, 3}.

id (1 2 3) (1 3 2) (2 3) (1 3)  (1 2)
id  id (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

(1 2 3)  (1 2 3)  (1 3 2)  id (1 2)  (2 3)  (1 3)
(1 3 2) (1 3 2) id (1 2 3) (1 3)  (1 2)  (2 3)
(2 3)  (2 3)  (1 3)  (1 2)  id (1 2 3) (1 3 2)
(1 3)  (1 3)  (1 2)  (2 3) (1 3 2)  id (1 2 3)
(1 2)  (1 2)  (2 3)  (1 3)  (1 2 3)  (1 3 2)  id

  We have to find an element g ∈ S3 such that
g{id, (1 3)}g−1 ⊄ {id, (1 3)}.

  There are several possibilities. For example,
  (1 2){id, (1 3)}(1 2)−1 = (1 2){id, (1 3)}(1 2) = {(1 2)id(1 2), (1 2)(1 3)(1 2)} = {id, 

(2 3)}.
  Since {id, (2 3)} ⊄ {id, (1 3)}, the subgroup {id, (1 3)} is not normal in S3.  
 4. Let G and H be groups. Let G × {1} = {(g, 1) | g ∈ G}.
  Prove that G × {1} is a normal subgroup of the product G × H.
Solution: First, I’ll show that it’s a subgroup. Let (g1, 1), (g2, 1) ∈ G × {1}, where g1,  

g2 ∈ G. Then
(g1, 1) ⋅ (g2, 1) = (g1g2, 1) ∈ G × {1}.

  Therefore, G × {1} is closed under products.
  The identity (1, 1) is in G × {1}.
  If (g, 1) ∈ G × {1}, the inverse is (g, 1)−1 = (g−1, 1), which is in G × {1}.
  Therefore, G × {1} is a subgroup.
  To show that G × {1} is normal, let (a, b) ∈ G × H, where a ∈ G and b ∈ H. I must 

show that
(a, b)(G × {1})(a, b)−1 ⊂ G × {1}.

  We can show one set is a subset of another by showing that an element of the first 
is an element of the second. An element of (a, b)(G × {1})(a, b)−1 looks like (a, b)
(g, 1)(a, b)−1, where (g, 1) ∈ G × {1}. Now

(a, b)(g, 1)(a, b)−1 = (a, b)(g, 1)(a−1, b−1) = (aga−1, b(1)b−1) = (aga−1, 1).
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  aga−1 ∈ G, since a, g ∈ G. Therefore, (a, b)(g, 1)(a, b)−1 ∈ G × {1}. This proves 
that (a, b)(G × {1})(a, b)−1 ⊂ G × {1}. Therefore, G × {1} is normal.

 5. The cosets of the subgroup 〈19〉 in U20 are
	 	 	 〈19〉 = {1, 19}
   3 ⋅ 〈19〉 = {3, 17}
   7 ⋅ 〈19〉 = {7, 13}
    9 ⋅ 〈19〉 = {9, 11}
  (a) Compute {3, 17} ⋅ {9, 11}.
  (b) Compute {3, 17}−1.
  (c) Compute {9, 11}3.
Solution: (a) Take an element (it doesn’t matter which one) from each coset, say 

3 ∈ {3, 17} and 11 ∈ {9, 11}.
  Perform the operation on the elements you chose. In this case, it’s multiplication:

3 ⋅ 11 = 33 = 13.
  Find the coset containing the answer: 13 ∈ {7, 13}. 
  Hence,

 {3, 17} ⋅ {9, 11} = {7, 13}.  
  (b) Take an element (it doesn’t matter which one) from the coset, say 3 ∈ {3, 17}.
  Perform the operation on the elements you chose. In this case, it’s finding the 

inverse (use the Extended Euclidean Algorithm, or trial and error):
3−1 = 7.

  Find the coset containing the answer: 7 ∈ {7, 13}.
  Hence,

 {3, 17}−1 = {7, 13}.  
  (c) Take an element (it doesn’t matter which one) from the coset, say 11 ∈ {9, 11}.
  Perform the operation on the elements you chose. In this case, it’s cubing:

113 = 1331 = 11.
  Find the coset containing the answer: 11 ∈ {9, 11}.
  Hence,

 {9, 11}3 = {9, 11}.  
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 6. Let G be a group of order 24. What are the possible orders for the subgroups of G.
  Solution: Write 24 as product of distinct primes. Hence, 24 = (3)(23). By Theorem 

1.2.27, the order of a subgroup of G must divide the order of G. Hence, We 
need only to find all divisors of 24. By Theorem 1.2.17, number of all divisors 
of 24 is (1 + 1)(3 + 1) = 8. Hence, possible orders for the subgroups of G are :  
1,3,2,4,8,6,12,24.

9.6 Model Questions

 1.  If H and K are subgroups of G and g belongs to G, show that g(H  K) = gH  
gK.

 2.  Let a and b be nonidentity elements of different orders in a group G of order 155. 
Prove that the only subgroup of G that contains a and b is G itself.

 3.  Let H be a subgroup of R*, the group of nonzero real numbers under 
multiplication. If R+ ⊆ H ⊆ R*, prove that H = R+ or H = R*.

 4.  Let C* be the group of nonzero complex numbers under multiplication and let 
H = {a + bi ∈ C* | a2 + b2 = 1}. Give a geometric description of the coset (3 + 4i)
H. Give a geometric description of the coset (c + di)H.

 5.  Let G be a group of order 60. What are the possible orders for the subgroups of 
G?
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 6.  Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If 
|K| = 42 and |G| = 420, what are the possible orders of H?

 7.  Let G be a group with |G| = pq, where p and q are prime. Prove that every proper 
subgroup of G is cyclic. 

 8.  Recall that, for any integer n greater than 1, φ(n) denotes the number of positive 
integers less than n and relatively prime to n. Prove that if a is any integer 
relatively prime to n, then aφ(n) mod n = 1.

 9.  Compute 515 mod 7 and 713 mod 11.
 10. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove that the order of 

U(n) is even when n > 2.
 11. Suppose G is a finite group of order n and m is relatively prime to n. If g ∈ G and 

gm = e, prove that g = e.
 12. Suppose H and K are subgroups of a group G. If |H| = 12 and |K| = 35, find 

|H ∩ K|. Generalize.
 13. For any integer n ≥ 3, prove that Dn has a subgroup of order 4 if and only if n is 

even.
 14. Let p be a prime and k a positive integer such that ak mod p = a mod p for all 

integers a. Prove that p – 1 divides k – 1.
 15. Suppose that G is an Abelian group with an odd number of elements. Show that 

the product of all of the elements of G is the identity.
 16. Suppose that G is a group with more than one element and G has no proper, 

nontrivial subgroups. Prove that |G| is prime. (Do not assume at the outset that G 
is finite.) 

9.7 Solutions of some selected problems
 2. Use Lagrange’s theorem
 5. {0, 8, 16 ,6, 14,4,
 7. Z3

 8. R*

 14. The coset (3 + 4i)H is the circle with center at the origin and radius |3 + 4i|.
 15. Use Lagrange’s theorem
 16. 42*n where 1 < n < 10.
 22. 1
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Permutation groups are central to the study of geometric symmetries and 
to Galois theory, the study of finding solutions of polynomial equations. They also 
provide abundant examples of nonabelian groups. In this chapter, we shall deal with 
various concepts of permutations.

Let X be a set. Then any bijection on X is called a permutation. We have already 
seen that the set of all permutation SX forms a group under functional composition. If 

Unit - 10  Permutation Groups-I

Structure
10.1  Objectives
10.2  Introduction
10.3  Definition & Notation
10.4  Operations on Permutation
10.5      Summary & Keywords
10.6  Model  Questions
10.7  Solution of some selected problems

The followings are discussed here:
• Definition of permutation group
• Examples
• Operation on permutation

10.1 Objective

10.2 Introduction

10.3 Definitions and Notation
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X is finite, then we can assume that X = {1, 2, ..., n}. In this case we write Sn instead 
of SX. The following theorem says that Sn is a group. We call this group the symmetric 
group on n letters. This group has n! numbers of element, i.e., |Sn| = n!.
10.3.1 Notation :
Suppose X = {1, 2, 3, 4, 5} and consider the permutation σ defined by σ(1) = 3, 
σ(2) = 2, σ(3) = 5, σ(4) = 1 and σ(5) = 4. This permutation can also be expressed in 
array notation by writing

σ
σ σ σ σ σ

= 





= 





1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
3 2 5 1 4( ) ( ) ( ) ( ) ( )

.

where the top row represent the original elements and the bottom row represents what 
each element is mapped to. Note that some texts use square brackets. This is one of 
the notations of a permutation. Below, we will see there is another way to represent 
permutations. Let us look at some specific examples.
Example 10.3.2 : Let A = {1, 2, 3, 4}. And suppose that σ(1) = 3, σ(2) = 1, σ(3) = 4, 
σ(4) = 2 ans then we would write

σ = 





1 2 3 4
3 1 4 2

.

and to indicate the action of α on an element, say 2, we would write

1 1

2 2

3 3

4 4

Fig. 5.1 : Visualization of σ

σ( ) ( )2
1 2 3 4
3 1 4 2

2 1= 





= .

Example 10.3.3 : Any symmetry of an equilateral triangle is also a permutation. Let 
∆ABC be an equilateral triangle whose vertices are marked as A,B,C counterclockwise. 
Then each symmetry represents a permutation on the set {A, B, C}, see Figure 5.2:
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Group of Permutation of 
{A, B, C}

Group of Symmetries of 
an Equilateral Triangle Interpretation

p
A B C
A B C
A B C

1 = 





( )( )( )

A

B C

Do nothing

p
A B C
B C A
ABC

2 = 





( )

A B

C

Counterclockwise rotation 
of 120°

p
A B C
C A B
ACB

3 = 





( )

A

B

C

Counterclockwise rotation 
of 240°

p
A B C
A C B
A BC

4 = 





( )( )

A

BC

Flip through vertex A

p
A B C
C B A
AC B

5 = 





( )( )

AB

C

Flip through vertex B

p
A B C
B A C
AB C

6 = 





( )( )

A

B

C

Flip through vertex C

Fig. 10.2 : Symmetries of an equilateral triangle
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Example 10.3.4 : The identity permutation on A = {1, 2, 3, ..., n} is

σ = 





1 2 3 4
1 2 3 4





n
n

,

in other words, it does not change anything.

10.4 Operation on Permutation
Above we said that Sn was a group under composition. Let us look in more detail at 
composition of permutations. Composition of permutations written in array notation 
is performed from right to left, that is the permutation on the right is performed first.

Let A = {1, 2, ..., n} and σ, β ∈ Sn. Then the composition σβ is the functional 
composition. This composition can be written in cyclic notation as

σ
σ σ σ σ β β β β

= 










1 2 3
1 2 3

1 2 3
1 2 3









n
n

n
n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

 = 





1 2 3
1 2 3





n
nβσ βσ βσ βσ( ) ( ) ( ) ( ) .

Example 10.4.1 : Let A = {1, 2, 3, 4} and σ, β ∈ S4 defined by

σ = 





1 2 3 4
3 1 4 2    and   β = 





1 2 3 4
2 1 4 3

Then

σβ = 





1 2 3 4
4 2 3 1

And

βσ = 





1 2 3 4
1 3 2 4

Example 10.4.2 : Consider two permutations

P = 





1 2 3 4
2 3 4 1    and    Q = 





1 2 3 4
2 1 4 3

Then

PQ = 





1 2 3 4
1 4 3 2

.
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10.4.3 Inverse of Permutations :
If a permutation σ maps ni to nj, then the inverse permutation σ−1 maps nj back to ni. 
In other words, the inverse of a permutation can be found by simply interchanging the 
top and bottom rows of the permutation σ and (for convenience in reading) reordering 
the top row in numerical order 1, 2, ..., n.
For example,

σσ = 





⇒ 





−1 2 3 4 5
3 5 2 4 1

1 2 3 4 5
5 3 1 4 2

1 .

Here, σ(1) = 5 so σ−1(5) = 1.

10.5 Summary & Keywords

 

 In  this  unit, we  explored  the  concept  of  permutation  groups, which  consist  of
permutations  that  follow  the  fundamental  properties  of  a  mathematical  group. A
permutation  is  a  way  of  rearranging  elements, and  when  combined  systematically,
these permutations form a group under composition. We examined how permutation
groups  help  in  understanding  symmetry, structure, and  transformations  in  various
mathematical and real-world contexts.
Keywords: Permutation group, order of permutation.

10.6  Model Questions

1. Illustrate Cayley’s Theorem by calculating the left regular representation for the
group V4 = {e, a, b, c} where a2 = b2 = c2 = e, ab = ba = c, ac = ca = b, bc =
cb = a.

2. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements
of order 2.

3. Show that if n ≥ m then the number of m-cycles in Sn is given by n(n− 1)(n−
2)...(n−m+ 1)/m.

4. Let σ be the m-cycle (12 . . .m). Show that σi is also an m-cycle if and only if i
is relatively prime to m.
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Structure
11.1  Objectives
11.2  Introduction
11.3  Cyclic Notation
11.3  Transposition
11.4  The Alternating Groups
11.5  Summary & Keywords
11.6   Worked  Examples
11.7  Model  Questions

  11.8  Solution of some selected problems

11.1 Objective
The followings are discussed here:
• Introduction
• Cyclic notation of permutation
• Transposition
• Alternation group 

11.2  Introduction
In permutation theory, cyclic notation is a compact way to represent a 
permutation by expressing it as a product of cycles. A cycle is a 
sequence of elements that are permuted among themselves while all 
other elements remain fixed. 



11.3 Cyclic Notation
The notation that we have used to represent permutations up to this point is 
cumbersome, to say the least. To work effectively with permutation groups, we need a 
more streamlined method of writing down and manipulating permutations. The cycle 
notation was introduced by the French mathematician Cauchy in 1815. The notation 
has the advantage that many properties of permutations can be seen from a glance. We 
now present this notation.
Definition 11.3.1 : Let A = {1, 2, ..., n}. A permutation σ ∈ Sn is a cycle of length k if 
there exists elements a1, a2, ..., ak ∈ A such that

σ(a1) = a2

σ(a2) = a3

.

.

.
σ(ak) = a1,

and σ(x) = x for all other elements x ∈ A. We write them as (a1, a2, ..., ak).
Example 11.3.2 : Let A = {1, 2, 3, 4, 5} and σ ∈ S5 defined by

σ = 





1 2 3 4 5
3 2 5 1 4 .

Then this permutation can be expressed in cyclic notation as (1, 3, 5, 4). Observe that 
there are also some other cyclic notations of this permutation as:

(1, 3, 5, 4) = (3, 5, 4, 1) = (5, 4, 3, 1) = (4, 1, 3, 5).
Bur we usually prefer the notation in ascending order.
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Definition 11.3.3 When two cycles have no elements in common, they are said to be 
disjoint.
Example 11.3.4 The permutation

σ = 





1 2 3 4 5 6
2 1 4 6 5 3 ,

can be represented by (1, 2)(3, 4, 6)(5) and (1, 2)(3, 4, 6) if we omit the 1-cycle.
Note. If you wanted to dial the telephone number 413−2567 but accidentally dialed 
314 − 5267, then you permuted the digits according to (2, 5)(3, 4).

Theorem 11.3.5 Let σ be any elements of Sn.
Then σ may be expressed as a product of disjoint cycles. This factorisation is unique. 
ignoring 1-cycles, up to order. Teh cycle type of σ is the lengths of the corresponding 
cycles.
Proof. We first prove the existence of such a decomposition. Let a1 = 1 and define ak 
recursively by the formula

ai+1 = σ(ai).
Consider the set

{ai | i ∈ }.
As there are only finitely many integers between 1 and n, we must have some 
repetitions, so that ai = aj, for some i < j. Pick the smallest i and j for which this 
happens. Suppose that i ≠ 1. Then σ(ai−1) = ai = σ(aj−1). As σ is injective, ai−1 = aj−1. 
But this contradicts our choice of i and j. Let τ be the k-cycle (a1, a2, . . . , aj). Then ρ 
= στ−1 fixes each element of the set

{ai | i ≤ j}.
Thus by an obvious induction, we may assume that ρ is a product of k − 1 

disjoint cycles τ1, τ2, . . . , τk−1 which fix this set.
But then

σ = ρτ = τ1τ2 . . . τk,
where τ = τk.

Now we prove uniqueness. Suppose that σ = σ1σ2 . . . σk and σ = τ1τ2 . . . τl are 
two factorisations of σ into disjoint cycles. Suppose that σ1(i) = j. Then for some p, 
τp(i) ≠ i. By disjointness, in fact τp(i) = j. Now consider σ1(  j). By the same reasoning, 
τp(  j) = σ1(  j). Continuing in this way, we get σ1 = τp. But then just cancel these terms 
from both sides and continue by induction.  
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Example 11.3.6 : Let

σ = 





1 2 3 4 5
3 4 1 5 2 .

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the cycle 
decomposition is given by the transposition (1, 3). Now look at what is left {2, 4, 5}. 
Look at 2. Then 2 is sent to 4. Now 4 is sent to 5. Finally 5 is sent to 2. So another part 
of the cycle type is given by the 3-cycle (2, 4, 5).

It is claimed then that
σ = (1, 3)(2, 4, 5) = (2, 4, 5)(1, 3).

This is easy to check. The cycle type is (2, 3).
Lemma 11.3.7: Let σ ∈ Sn be a permutation, with cycle type (k1, k2, … kl). The order 
of   σ	is the least common multiple of k1, k2, …, kl.
Proof. Let k be the order of σ and let σ = τ1τ2 . . . τl be the decomposition of σ into 
disjoint cycles of lengths k1, k2, . . . , kl.

Pick any integer h. As τ1, τ2, . . . , τl are disjoint, it follows that
σ τ τ τh h h

l
h= 1 2 .

Moreover the RHS is equal to the identity, iff each individual term is equal to the 
identity.

It follows that
τik e= .

In particular ki divides k. Thus the least common multiple, m of k1, k2, . . . , kl divides 
k. But σ τ τ τ τm m m m

l
m e= =1 2 3  . Thus m divides k and so k = m.  

11.4  Transpositions
A 2-cycle is called a transposition.
Since

(a1, a2, . . . , an) = (a1an)(a1an−1) … (a1a3)(a1a2),
any cycle can be written as the product of transpositions, leading to the following 
proposition.
Proposition 11.4.1 : Any permutation of a finite set containing at least two elements 
can be written as the product of transpositions.
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Definition 11.4.2 : A permutation is said to be even if it can be expressed as the product 
of an even number of transpositions, and odd if it can be expressed as the product of 
an odd number of transpositions.

11.5 The Alternating Groups
One of the most important subgroups of Sn is the set of all even permutations, An. The 
group An is called the alternating group on n letters.
Theorem 11.5.1 : The set An is a subgroup of Sn.
Proof. Since the product of two even permutations must also be an even permutation, 
An is closed. The identity is an even permutation and therefore is in An. If σ is an even 
permutation, then

σ = σ1σ2 … σr,
where σi is a transposition and r is even. Since the inverse of any transposition is 
itself,

σ−1 = σrσr−1 … σ1

is also in An.  
Proposition 11.5.2 : The number of even permutations in Sn, n ≥ 2, is equal to the 
number of odd permutations; hence, the order of An is n!/2.
Proof. Let An be the set of even permutations in Sn and Bn be the set of odd 
permutations. If we can show that there is a bijection between these sets, they must 
contain the same number of elements. Fix a transposition σ in Sn. Since n ≥ 2, such a 
σ exists. Define

λσ : An → Bn
by

λσ(τ) = στ.
Suppose that λσ(τ) = λσ( μ). Then στ = σμ and so

τ = σ−1στ = σ−1σμ = μ.
Therefore, λσ is one-to-one. We will leave the proof that λσ is surjective to the 
reader.  
Example 11.5.3 : The group A4 is the subgroup of S4 consisting of even permutations. 
There are twelve elements in A4:
 (1) (12)(34) (13)(24) (14)(23)
 (123) (132) (124) (142)
 (134) (143) (234) (243).
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11.7 Worked Examples
 1. Find the orbit and cycles of the following permutations:

  (a) 1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8







  (b) 
1 2 3 4 5 6
6 5 4 3 1 2







Solution: 

  (a) Clearly 
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8





  = (1, 2, 3, 4, 5)(6)(7)(8, 9). So orbit 

of 1, 2, 3, 4 and 5 is the set {1, 2, 3, 4, 5}; orbit of 6 is 6; orbit of 7 is 7; orbit of 8 
and 9 is the set {8, 9}. Also (1, 2, 3, 4, 5) and (8, 9) are its cycles.

  (b) Again 
1 2 3 4 5 6
6 5 4 3 1 2





  = (1, 6, 2, 5)(3, 4). So the orbit of 1, 2, 5 and 6 is 

the set {1, 2, 5, 6}; and the orbit of 3 and 4 is the set {3, 4}. Also (1, 6, 2, 5) and 
(3, 4) are its cycles.

 2. Write the permutation in the worked example 1 as the product of disjoint cycles.

  Solution: We have 
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8







 = (1, 2, 3, 4, 5)(6)(7)(8, 9)

  and  
1 2 3 4 5 6
6 5 4 3 1 2







 = (1, 6, 2, 5)(3, 4).

 3. Express as the product of disjoint cycles:
  (a) (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3).
  (b) (1, 2)(1, 2, 3)(1, 2).
  Solution:
  (a) Let (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3) = τ . So we have τ = τ1τ2τ3τ4, where 
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11.6  Summary  &  Keywords
  In  this  unit,  we  have  studied  various  concept  of  permutation  group.  We  have
showed  that  a  permutation  can  be  expressed  as  the  product  of  transpositions.  The
concept of alternating group is also discussed in this unit.

Keywords: Orbit, Cycle, Transposition, Alternating group
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τ1 = (1, 5), τ2 = (1, 6, 7, 8, 9), τ3 = (4, 5) and τ4 = (1, 2, 3). Now
	 	 	 τ(1) = τ1τ2τ3τ4(1)
    = τ1(τ2(τ3(τ4(1))))
    = τ1(τ2(τ3(2)))
    = τ1(τ2(2))
    = τ1(2)
    = 2
  Repeating analogously, we have τ(2) = 3; τ(3) = 6; τ(6) = 7; τ(7) = 8; τ(8) = 9; 

	 	 τ(9) = 5; τ(5) = 4; and τ(4) = 1. Thus we have τ = 





1 2 3 4 5 6 7 8 9
2 3 6 1 4 7 8 9 5

 
= (1, 2, 3, 6, 7, 8, 9, 5, 4).

  (b) Proceeding as in part (a), we have (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2).
 4. Prove that (1, 2, . . . , n)−1 = (n, n − 1, n − 2, . . . , 2, 1).
  Solution: One can easily check (1, 2, . . . , n)(n, n−1, . . . , 1) = I, where I is the 

identity permutation. Hence (1, 2, . . . , n)−1 = (n, n − 1, . . . , 1).
 5. Show that A3, the set of even permutations of {1,2,3} is a cyclic group with 

respect to the product of permutations. Find a generator of this cyclic group. 
Answer with reason.

  Solution: The set of even permutations of {1,2,3} is A3 = ρ0, ρ1, ρ2 where 

  ρ0
1 2 3
1 2 3

= 





, ρ1
1 2 3
2 3 1

= 





, ρ2
1 2 3
3 1 2

= 





.

  Find the composition table and prove that the set A3, the set of even permutations 
of {1,2,3} is a commutative group with respect to the product of permutations.

  The order of this group is 3 and since 3 is a prime number, so A3 is a cyclic group.
  Since o(ρ1) = 3 and o(A3) = 3, so ρ1 is a generator of this group.

 6. Let a =
1 2 3 4
3 1 2 4







. Find the smallest positive integer k such that ak = e in S4.

  Solution: S4 is the symmetric group with respect to the multiplication of 
permutations of the set {1,2,3,4} and e be the identity element in S4.

  Now, a = 





1 2 3 4
3 1 2 4   = (1  3  2) which is a cycle of length 3.

  So o(a) = 3.
  Therefore, 3 is the least positive integer such that a3 = e in S4.
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 7. Prove that α = (3, 6, 7, 9, 12, 14) ∈ S16 is not a prod-uct of 3-cycles.
  Solution: Since α = (3, 14)(3, 12)...(3, 6) is a product of five 2-cycles, α is an odd 

cycle. Since each 3-cycle is an even cycle by the previous problem, a permutation 
that is a product of 3-cycles must be an even permutation. Thus, α is never a 
product of 3-cycles.

11.8  Model Questions
 1. Write the following permutations in cycle notation.

  (a) 
1 2 3 4 5
2 4 1 5 3







  (c) 
1 2 3 4 5
3 5 1 4 2







  (b) 
1 2 3 4 5
4 2 5 1 3







  (d) 
1 2 3 4 5
1 4 3 2 5







 2. Compute each of the following.
  (a) (1345)(234)  (i) (123)(45)(1254)−2

  (b) (12)(1253)  (j) (1254)100

  (c) (143)(23)(24)  (k) |(1254)|
  (d) (1423)(34)(56)(1324)  (l) |(1254)2|
  (e) (1254)(13)(25)  (m) (12)−1 
  (f) (1254)(13)(25)2  (n) (12537)−1

  (g) (1254)−1(123)(45)(1254)  (o) [(12)(34)(12)(47)]−1

  (h) (1254)2(123)(45)  (p) [(1235)(467)]−1

 3. Express the following permutations as products of transpositions and identify 
them as even or odd.

  (a) (14356)  (d) (17254)(1423)(154632)
  (b) (156)(234)
  (c) (1426)(142)  (e) (142637)
 4. Find (a1, a2, . . . , an)

−1.
 5. List all of the subgroups of S4. Find each of the following sets.
  (a) {σ ∈ S4 : σ(1) = 3}
  (b) {σ ∈ S4 : σ(2) = 2}
  (c) {σ ∈ S4 : σ(1) = 3 and σ(2) = 2}
  Are any of these sets subgroups of S4?
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 6. Find all of the subgroups in A4. What is the order of each subgroup?
 7. Find all possible orders of elements in S7 and A7.
 8. Show that A10 contains an element of order 15.
 9. Does A8 contain an element of order 26?
 10. Find an element of largest order in Sn for n = 3, . . . , 10.
 11. Let σ ∈ Sn. Prove that σ can be written as the product of at most n – 1 

transpositions.
 12. Let σ ∈ Sn. If σ is not a cycle, prove that σ can be written as the product of at 

most n – 2 transpositions.
 13. If σ can be expressed as an odd number of transpositions, show that any other 

product of transpositions equaling σ must also be odd.
 14. If σ is a cycle of odd length, prove that σ2 is also a cycle.
 15. Show that a 3-cycle is an even permutation.
 16. Prove that in An with n ≥ 3, any permutation is a product of cycles of length 3.
 17. Prove that any element in Sn can be written as a finite product of the following 

permutations. 
  (a) (12), (13), . . . , (1n)
  (b) (12), (23), . . . , (n – 1, n)
  (c) (12), (12 . . . n)

5.11  Solution of some selected problems
 1. (a) (1 2 4 5 3)
  (b) (1 4)(3 5)
  (c) (1 3)(2 5)
  (d) (2 4)
 2. (a) (1 4) ( 3 2)
 3. (a) (1 6)(1 5)(1 3)(1 4)
 4. (an, an–1, … , a2, a1)
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Structure
12.1  Objectives
12.2  Introduction
12.3  Quotient group
12.4  Summary & Keywords

12.5  Model Questions

12.1 Objective
The followings are discussed here:
• Definition of quotient group

• Quotient operation

12.2 Introduction

Unit - 12  Quotient  Groups  

  We have yet to explain why normal subgroups are of special significance. The 
reason  is  simple. When  the  subgroup  H  of  G  is  normal, then  the  set  of  left  (or
right)cosets  of  H  in  G  is  itself  a  group—called  the  factor  group  of  G  by  H  (or  the
quotient group of  G  by  H). Quite often, one can obtain information about a group by
studying one of its factor groups. 

82
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12.3 Quotient group
Theorem 12.3.1 : Let G be a group and H be normal subgroup of G. Then the set 

G/H = {gH : g ∈ G}
is a group under the operation g1H ∗ g2H = g1g2 H of order [G : H].
Proof. This operation must be shown to be well-defined; that is, group multiplication 
must be independent of the choice of coset representative. Let aH = bH and cH = dH. 
We must show that

aH ∗ cH = acH = bH ∗ dH = dbH.
Now a = bh1 and c = dh2 for some h1, h2 ∈ H. Then,
 acH = bh1dh2H
  = bh1dH
  = bh1Hd
  = bHd
  = bdH.
Hence, the binary operation is well defined. Now the element eH acts as the identity 
element, since aH ∗ eH = eH ∗ aH = aH for all a ∈ G. Associativity property holds 
automatically as G is a group. Now for any element aH ∈ G/H, the inverse element is 
a−1H, since aH ∗ a−1H = a−1H ∗ aH = eH.
Hence, G/H forms a group. Since the number of cosets of H in G is [G : H], therefore 
the order of the group G/H is [G : H].  
Definition 12.3.2 : For a normal subgroup H of a group G, the set

G/H = {gH : g ∈ G}
with the binary operation g1H ∗ g2H = g1g2H is called Quotient group or Factor group.

Although the concept of quotient group is now considered to be fundamental to the 
study of groups, it is a concept which was unknown to early group theorists.It emerged 
relatively late in the history of the subject: toward the end of the 19th century. The main 
reason for this delay is that in order to give a recognizably modern definition of a quotient 
group, it is necessary to think of groups in an abstract way. Therefore the development of 
the concept of quotient group is closely linked with the abstraction of group theory.

This process of abstraction took place mainly during the period 1870-1890 and 
was carried out almost exclusively by German mathematicians. Thus by 1890 the 
development and understanding of the concept of quotient group had largely been 
completed.
Example 12.3.3 : Consider the normal subgroup 3 of . Then the cosets of 3 are 
0 + 3, 1 + 3 and 2 + 3. The group /3 is given by the multiplication table below 
Since |/3| = 3 so /3 is isomorphic to 3.
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+ 0 + 3 1 + 3 2 + 3
0 + 3 0 + 3 1 + 3 2 + 3
1 + 3 1 + 3 2 + 3 0 + 3
2 + 3 2 + 3 0 + 3 1 + 3

  

    
 

 

 

 

   

              
            

12.5  Model Questions

Fig. 12.1

Theorem 12.3.4 :The quotient group of a cyclic group is cyclic.
Proof. Let  H  be a subgroup of  G  and  G  =  〈a〉. Then we will show that  aH  is a 
generator of  G/H. Let  gH  ∈  G/H. Then  g  =  ak  for some integer  k.
Now

(aH)k  =  aH  ∗  aH  ∗  ...  ∗  aH  (k  times)
  =  akH  =  gH.

Hence,  G/H  is a cyclic group generated by  aH.

12.4  Summary  &  Keywords
  In  this  unit,  we  have  studied  various  concept  of  quotient  group.  We  have 
showed how a normal subgroup can create a quotient group

Keywords: Quotient group, Factor group



82   NSOU  CC-MT-10

NSOU  CC-MT-10  83

   
  

Structure
13.1  Objectives
13.2  Introduction
13.3  Group Homomorphism

13.4  Summary & Keywords
13.5  Model Questions

13.1 Objective
The followings are discussed here:

• Definition of group homomorphism, isomorphism and automorphism
• Properties of homomorphism
• Kernel of a homomorphism
• First, second and third isomorphism theorem
• Inner automorphism

13.2 Introduction

Unit - 13   Group  Homomorphism

 

  One  of  the  important  concept  of  group  theory  is  the  concept  of  homomorphism.
Homomorphism  is  the  natural  group  theoretic  mapping  between  two  groups
preserving  the  binary  compositions. The  study  of  homomorphism  reveals  various
properties of a group.

82

13.3 Group Homomorphism
Definition 13.3.1 (Homomorphisms). A mapping ϕ from a group (G, ο) to a 
group (H, ∗) is called a homomorphsim if it preserves the group operation, i.e., 
ϕ(a ο b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ G.
Definition 13.3.2 : If ϕ is a homomorphism of G into H, the kernel of ϕ, Kerϕ, is 
defined by Kerϕ = {x ∈ G : ϕ(x) = e′, e′ = identity element of H }.
Proposition 13.3.3 : Let G and H be groups and let ϕ : G → H be a homomorphism.
 (i) ϕ(e) = e′, where e and e′ are the identities of G and H, respectively.
 (ii) ϕ(g−1) = ϕ(g)−1 for all g ∈ G.
 (iii) ϕ(gn) = ϕ(g)n for all g ∈ G.



84   NSOU  CC-MT-10

NSOU  6CC-MT-07  85

Proof. (i) Since ϕ(e) = ϕ(e ο e) = ϕ(e) ∗ ϕ(e), the cancellation laws shows that 
ϕ(e) = e′.
(ii) ϕ(e) = ϕ(gg−1) = ϕ(g)ϕ(g−1) and, by part (i), ϕ(e) = e′, we get

e′ = ϕ( g)ϕ(g−1).
Now multiplying both sides on the left by ϕ(g)−1, we get the result.
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N= Ker (∅)
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aN
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e

e′

Fig. 13.1 : Homomorphism ϕ : G → H

(iii) This can be easily deduced by using induction and (i) and (ii).
Proposition 13.3.4 :Let  ϕ  be a homomorphism from (G,  ο) to (H,  ⋅). Then

  (i)  kernel of  ϕ, kerϕ, is a normal subgroup of G,
(ii)  image of  ϕ, Imϕ, is a subgroup of H.
Proof.  (i)  Since  ϕ(e)  =  e′,  so  kerϕ  is  non-empty.  Let  a,  b  ∈  kerϕ. Then  ϕ(a    b−1) =
ϕ(a)  ⋅  ϕ(b−1) =  ϕ(a)  ⋅  ϕ(b)−1  =  e′  ⋅  e′  =  e′. Therefore,  a    b−1  ∈  Kerϕ. Hence,  kerϕ  is a
subgroup of  G.
Now to prove  kerϕ  is normal, take  x  ∈  G. Then, for any  q  ∈  kerϕ,
  ϕ(x    q    x−1) =  ϕ(x)  ⋅  ϕ(q)  ⋅  ϕ(x−1)

=  ϕ(x)  ⋅  e′  ⋅  ϕ(x)−1

=  e′.
Hence,  xkerϕx−1  ⊆  kerϕ  for all  x  ∈  G. Therefore,  kerϕ  is a normal subgroup of  G.
(ii) Since  ϕ(e) =  e′, the identity of  H  lies in  Imϕ, so  Imϕ  is nonempty. Let  x,  y  ∈Imϕ.
Then there exists  a,  b  ∈  G  such that  ϕ(a) =  x  and  ϕ(b) =  y.
Now by using homomorphim and proposition 6.5, we get

x  ⋅  y−1  =  ϕ(a)  ⋅  ϕ(b)−1  =  ϕ(a)  ⋅  ϕ(b−1) =  ϕ(a  ⋅  b−1).
Therefore,  x  ⋅  y−1  ∈  Imϕ. So,  Imϕ  forms a subgroup of  H.
Theorem 1.3.5 : A  homomorphism  ϕ  :  G  →  H  is injective if and only if Kerϕ  = {e}.
Proof. Suppose  ϕ  is injective, and let  a  ∈  Kerϕ. Then  ϕ(e) =  e′  =  ϕ(x).
Hence,  x  =  e. Therefore,  kerϕ  = {e}.
  Conversely, suppose  kerϕ  = {e} and  x,  y  ∈  G  such that  ϕ(x) =  ϕ(y).
Then

ϕ(x    y−1) =  ϕ(x)  ⋅  ϕ(y)−1  =  e′.
Therefore,  x    y−1  ∈  kerϕ. But  kerϕ  = {e}. Hence  x    y−1  =  e, i.e.,  x  =  y.
Definition 13.3.6(Isomorphism). A homomorphism  ϕ  from a group  G  to a  group  H  is called 
isomorphism if  ϕ  is one-to-one and onto map.

If there is an isomorphism from a group  G  to a group  H, we say that  G  and  H
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Philosophical considerations give isomorphism a particular importance. Abstract 
algebra studies groups but does not care what their elements look like. Accordingly, 
isomorphic groups are regarded as instances of the same “abstract” group. For 
example, the dihedral groups of various triangles are all isomorphic, and are regarded 
as instances of the “abstract” dihedral group D3.
Example 13.3.7 : Let G be the real numbers under addition and let H be the positive 
real numbers under multiplication. Then G and H are isomorphic under the mapping 
ϕ(x) = 2x. To prove that this map is onto-to-one, suppose 2x = 2y. Which implies that 
loge2

x = loge2
y, and therefore x = y. For “onto,” we must find for any positive real 

number y some real number x such that ϕ(x) = y, that is, 2x = y. Now, solving for x 
gives log2 y. Again,

    

 
  

ϕ(9) = ϕ(3) ⋅ ϕ(3) = 1
and

ϕ(1) = 1.

   

    

  ϕ(x  +  y) = 2x  +  y  = 2x  ⋅  2y  =  ϕ(x)  ⋅  ϕ(y)  ∀x,  y  ∈  G.
Therefore,  G  is isomorphic to  H.
Example  13.3.8  :Any  infinite  cyclic  group  is  isomorphic  to  .  Indeed,  if  a  is  a 
generator of the cyclic group, the mapping  ak  →  k  is an isomorphism. Similarly, any
finite cyclic group  〈a〉  of order  n  is isomorphic to  n  and the isomorphism is defined
by  ak  →  k  mod  n.
Example 13.3.9 :  The groups  U(5) and  U(10) are isomorphic, since both of them are  cyclic 
groups of order 4.
Example  13.3.10  :  U(10)  and  U(12)  are  not  isomorphic,  although  they  have  same  
number of elements. First observe that,  x2  = 1 for all  x  ∈  U(12). Now, suppose that  ϕ  :
U(10) →  U(12) is an isomorphism. Then,

Thus,  ϕ(9) =  ϕ(1), but 9 ≠ 1. which contradicts the assumption that  ϕ  is one-to-one.
Example 13.3.11 :  The quotient group (/,  +) = {r  +    :  r  ∈  [0, 1)} is isomorphic to
the circle group  S  of complex numbers of absolute value 1. The isomorphism is given
by  r  +    →  ei2πr.
Example  13.3.12  :  There  is  no  isomorphism  from  ,  the  group  of  rational  number under
addition,  to  *,  the  group  of  nonzero  rational  numbers  under  multiplication.
Suppose there is an isomorphism  ϕ. Then there exists a rational number  a  such that
ϕ(a) = −1. But then,
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− = = +( ) = ( ) ( ) = ( )



1 1

2
1
2

1
2

1
2

1
2

2
ϕ ϕ ϕ ϕ ϕ( ) ·a a a a a a .

However, no rational number squared is −1.
Theorem 13.3.13  (Properties of Isomorphism). Suppose ϕ is an isomorphism from a 
group G to a group H. Then
 1. For any elements a and b in G, a and b commute if and only if ϕ(a) and ϕ(b) 

commute.
 2. G = 〈a〉 if and only if H = 〈ϕ(a)〉.
 3. |a| = |ϕ(a)| for all a ∈ G, i.e., isomorphism preserves order.
 4. For a fixed integer k and a fixed group element b in G, the equation xk = b has the 

same number of solutions in G as does the equation xk = ϕ(b) in H.
 5. If G is finite, then G and H has same number of elements of every order.
Proof. Property 1 can be easily proved by using the property of isomorphism. Let 
G = 〈a〉. Take q ∈ H, then p = ϕ−1(q) ∈ G. Hence, p = ak for some k > 0. Now, q = ϕ(p) 
= ϕ(ak) = ϕ(a)k. Hence, the second statement follows.
Third statement follows directly from the second one.
Forth statement follows from oder preserving property of isomorphism.
From third one, the fifth statement follows.  
Theorem 13.3.14 : Let H be a normal subgroup of G. Then the mapping f : G → G/H 
defined by f (x) = xH for x ∈ G is an onto homomorphism with kernel H.
Proof. Let us take two elements x, y ∈ G. Then f (x) = xH and f ( y) = yH.
Now

f (xy) = xyH
 = (xH) ∗ (yH)
 = f (x)f (y),
which shows that f is a homomorphism.
Now the identity element of G/H is H. Hence, kerf = {x ∈ G : f (x) = H} = {x ∈ G : xH 
= H}. Therefore, from the property of cosets, Kerf = H.  
Theorem 13.3.15 (First Isomorphism Theorem). Let ϕ : G → G′ be an onto 
homomorphism. Then G/Kerϕ is isomorphic to G′, i.e., G/kerϕ  G′.
Proof. Since H = Kerϕ, H is normal subgroup of G. Let us define a mapping 
f : G/H → G′ by f (aH) = ϕ(a), aH ∈ G/H.
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First we show that f is well defined in the sense that if aH = bH, then f (aH) = f (bH). 
Now

aH = bH  ⇒  a−1b ∈ H
	 ⇒  ϕ(a−1b) = e′ Since H = Karϕ
	 ⇒  ϕ(a−1)ϕ(b) = e′
	 ⇒  ϕ(a) = ϕ(b)
	 ⇒  f (aH) = f (bH),
where e′ is the identity of G′. So f is well defined.

G

f
p

φ
G

G / H
Fig. 13.3 : First Isomorphism Theorem

Again for aH, bH ∈ G/H, we get
 f (aH ∗ bH) = f (abH)
 = ϕ(ab)
 = ϕ(a)ϕ(b)
 = f (aH)f (bH).
Which shows that f is homomorphism.
Let aH ∈ Kerf. Then f (aH) = ϕ(a) = e′. Which shows that a ∈ Kerϕ = H. Hence, aH = H. 
Thus, Kerf only the identity element. So, f is one-one. Finally, f is onto, because each 
element of G′ is of the form ϕ(a) for some a ∈ G. And since ϕ(a) = f (aH), the pre-
image of ϕ(a) is aH in G/H. Thus f is an isomorphism from G/H to G′.  
Example 13.3.16 : Let ϕ : GLn() →  − {0} = * defined by ϕ(A) = det (A). Then 
ϕ is a homomorphism with kernel SLn(). Therefore, by First isomoprhism theorem 
GLn()/SLn()  *.
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Example 13.3.17 : Those who learn some complex analysis, might know the Möbius 
transformation on the complex plane . The Möbius transformation looks like

 
A z az b

cz d( ) = +
+   (6.1)

where ad − bc ≠ 0. Let M be the set of all Möbius transformation on .
Then M forms a group under the functional composition. Now consider the function 
ϕ : GL2() → M defined by

ϕ
a b
c d

A











=

where A is the Möbius transformation defined in (6.1). Since composition of two 
Möbius transformations is same as product of their respective matrices, the function 
ϕ is a homomorphism. Also ϕ is onto. What is the kernel of ϕ? Or said differently, 

for what values of a, b, c, d, the matrix 
a b
c d







 gives the identity operator? It it only 

possible when c = b = 0 and a = d = λ for λ ∈ ∗. Hence, the kernel is
kerϕ = {λI : λ ∈ *},

where I is the 2×2 identity matrix. Now by First Isomorphism theorem, we get
GL2()/Kerϕ  M.

The group GL2()/Kerϕ is called Projective General Linear group and is denoted by 
PGL2().

We have seen that the symmetric group Sn of all the permutations of n objects 
has order n!, and that the dihedral group D3 of symmetries of the equilateral triangle 
is isomorphic to S3, while the cyclic group C2 is isomorphic to S2. We now wonder 
whether there are more connections between finite groups and the group Sn. There is 
in fact a very powerful one, known as Cayley’s Theorem.
Theorem 13.3.18  (Cayley’s Theorem). Any group G is isomorphic to a subgroup of 
Sym(G), where Sym(G) is the group of all bijections of G.
Proof. The proof has been omitted.  
Theorem 13.3.19  (Second isomorphism Theorem). Let H be a subgroup of G (not 
necessarily normal in G) and N a normal subgroup of G. Then HN is a subgroup of G, 
H ∩ N is a normal subgroup of H, and 

H
H N

HN
N∩ ≅ .
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Theorem 13.3.20 (Correspondence Theorem). Let N be a normal subgroup of a group 
G. Then H → N/N is one-to-one correspondence between the set of subgroups H 
containing N and the set of subgroups of G/N. Furthermore, the normal subgroups of 
H correspond to normal subgroups of G/N.
Theorem 13.3.21 (Third Isomorphism Theorem). Let G be a group and N and H be 
normal subgroups of G with N ⊂ H. Then

G
H

G N
H N≅ /

/
.

 

 

   

              
            

13.5  Model Questions

   

              

13.4  Summary  &  Keywords
 This unit deals with the concept of homomorphism of a group. Three 
fundamental theorems of groups have been discussed.

Keywords: Homomorphism, Kernel, Image, Fundamental theorems



14.3 Automorphism
Definition 14.3.1 : An endomorphism of a group G, denoted by End(G), is a 
homomorphism of G into G; an automorphism of a group G, denoted by Aut(G), is an 
isomorphism of G onto itself.

Fig. 6.4 : Automorphism of G

Example 14.3.2 : Let G be a group. The identity mapping on G is an automorphism of 
G. This is called the identity automorphism and denoted by IG.
Example 14.3.3 : Let G be an abelian group and the mapping f : G → G defined by f (a) 
= a−1, a ∈ G. Then f is an automorphism.
Example 14.3.4 : Let G = (, +) and the mapping f : G → G defined by f z z( ) = , 
z ∈ G. Then f is an automorphism.
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The followings are discussed here:
• Automorphism
• Inner automorphism

14.1 Objective

14.2 Introduction

Structure
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14.2  Introduction
14.3  Automorphism
14.4  Summary
14.5 Worked example 
14.6  Model  Questions
14.7 Solutions of some selected problems
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Proposition 14.3.5 : The Aut(G) forms a group under composition.
Proof. Since identity function idG ∈ Aut(G), so Aut(G) ≠ φ. Let f, g ∈ Aut(G). Then 
it can conclude that f  g is also a homomorphism. Also we know that composition of 
two bijective functions is also bijective. Therefore, f  g is also an isomorphism. So, 
f  g ∈ Aut(G).

The function composition automatically satisfies associativity property. The 
identity function IG is the identity element.

Let f ∈ Aut(G). Then the inverse function f  −1 of f is the inverse element of 
Aut(G). Hence Aut(G) forms a group under composition.  

However, the class of abelian group is a little limited, and we should like to 
have some automorphism of non-abelian groups. Strangely enough the task of finding 
automorphism of non-abelian groups is easier than for abelian groups.

Let G be a group and g ∈ G. Then consider the mapping Ig : G → G defined by 
Ig(x) = gxg−1, x ∈ G.

Theorem 14.3.6 : The mapping Ig is an automorphism for each g ∈ G.
Proof. Ig is injective, because

Ig(x1) = Ig(x2)  ⇒  gx1g
−1 = gx2g

−1  ⇒  x1 = x2.
Ig is onto, because an arbitrary element y in G has a pre-image of g−1yg in G.
Therefore, Ig is an bijection.
Let x, y ∈ G. Then

Ig(xy) = g(xy)g−1 = (gxg−1)(gyg−1) = Ig(x)Ig(y).
Hence, Ig is a homomorphism. Thus Ig is an automorphism.  
Definition 14.3.7 : The automorphism Ig defined by Ig(x) = gxg−1, x ∈ G is said to be 
the inner automorphism of G determined by g.

x

y

z

G
G

gyg–1

gzg–1

gzg–1

Fig. 14.1 : Inner automorphism Ig
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The set of all inner automorphism of a group G is denoted by Inn(G).
If G is abelian, then each mapping Ig for all g ∈ G is simply the identity 

mapping. But if G is non-abelian, then there must be al least two distinct elements g, x 
∈ G, such that gx ≠ xg. Hence, the mapping Ig is non-trivial. Thus, the automorphism 
of non-abelian group is more interesting than that of abelian group.
Theorem 14.3.8 : The inner automorphism Inn(G) is a normal subgroup of Aut(G).
Proof. Since Ie is contained in Inn(G), Inn(G) ≠ φ. Take Ig1 , Ig2 ∈ Inn(G).
Then
  (Ig1  Ig2)(x) = Ig1(g2xg2

−1 ) = g1(g2xg2
−1)g1

−1

 = (g1g2)x(g1g2)
−1

 = Ig1g2(x), ∀x ∈ G.  

Aut(G)

Inn(G)

Fig. 14.2 : Automorphism and inner automorphism of G

14.4 Summary
This unit deals with the concept of quotient group , homomorphism and isomorphism. 
The most important topic in this unit are the isomorphism theorems. The concept of 
automorphism and inner automorphism have been discussed.

14.5 Worked Examples
 1. Let G be a finite cyclic group of order n. Prove that G ≅ Zn.
  Solution: Since G is a finite cyclic group of order n, we have G = (a) = {a0 = e, 

a1, a2, a3, ..., an–1} for some a ∈ G. Define Φ : G → Zn such that Φ(ai) = i. By a 
similar argument as in the previous Question, we conclude that G ≅ Zn.

 2. Let k, n be positive integers such that k divides n. Prove that Zn/(k) ≅ Zk.
  Solution: Since Zn is cyclic, we have Zn/(k) is cyclic by Theorem 5.1.2. Since 

Ord((k)) = n/k, we have order(Zn/(k)) = k. Since Zn/(k) is a cyclic group of order k, 
Zn/(k) ≅ Zk by the previous Question.
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 3. Prove that Z under addition is not isomorphic to Q under addition.
  Solution: Since Z is cyclic and Q is not cyclic, we conclude that Z is not isomorphic 

to Q.
4.  Consider the group 3. Let H = {(x1, x2, x3) ∈ 3 : x1 + 2x2 – x3 = 0}. Show that 

H is a normal subgroup of 3. Show that 3/H  .
  Proof. The identity of the additive group 3 is 0 = (0, 0, 0). Notice that 0 ∈ H so 

H ≠ ∅. Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of H.
  Then x1 + 2x2 – x3 = 0 and y1 + 2y2 – y3 = 0. It f ollows that the coordinates of 

z = x – y = (x1 – y1, x2 – y2, x3 – y3) satisfy
(x1 – y1) + 2(x2 – y2) – (x3 – y3) = (x1 + 2x2 – x3) + (y1 + 2y2 – y3) = 0.

So x – y ∈ H if x, y ∈ H. This directly proves that H is a subgroup of 3. Since 3 
is abelian, any subgroup is automatically normal.

Alternatively, we can argue as follows: Now define f : 3 →  by
f (x1, x2, x3) = x1 + 2x2 – x3.

 Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of 3. Then we verify that
f (x + y) = f (x1 + y1, x2 + y2, x3 + y3)

 = (x1 + y1) + 2(x2 + y2) – (x3 + y3)
 = (x1 + 2x2 – x3) + (y1 + 2y2 – y3)
 = f (x) + f (y).
  So f is a group homomorphism. Looking at the definition of H, we notice 

H = ker(f  ).
  Since the kernel of any homomorphism is a normal subgroup, we find that H is 

a normal subgroup of 3. Given any x ∈ , we notice that f (x, 0, 0) = x, so f 
is an onto homomorphism. Thus by the first isomorphism theorem, we get an 
isomorphism 3/H  .

5. a) Describe the set Hom(+, +) of all homomorphisms f : + → +. Which of 
them are injective? which are surjective, which are authomorphisms?

 b) Use the results of (a) to determine the group of automorphisms Aut(+).
  Solution:
 a) Let z ∈ Z we have two cases:
 i) If z ∈ Z+—set of non-negative integers.
  Since 1 is the generator for z under addition

z = 1 + 1 + ... + 1(z times)
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  since f is a homomorphism;
  f (z) = f (1 + 1 + ... + 1) = f (1) + f (1) + ... + f (1) = z f (1)
  Let f (1) = a ∈ Z then it follows that f (z) = az
 ii) If z ∈ Z—set of negative integers –1 is also a generator for Z under addition:

z = −1 −1 − ... −1 = (−1) + (−1) + ... + (−1)(–z times)
As from the hyopthesis, f is a homomorphism;
f (z) = f (−1 −1... −1) = f (−1) + f (−1) + ... + f (−1) = z f (−1)
But f (1) = a ⇒ f (−1) = −a ⇒ f (z) = −az.

	 	 ∴ we have proved that any homomorphism f : Z+ → Z+ is of the form f (z) = az
  where a = f (1)
  Suppose that f (z1) = f(z2) ) az1 = az2 ⇒ z1 = z2 when a ≠ 0 ⇒ f (z) = az is injective 

when a ≠ 0.
  When a = ±1, f (z) = az = ±z and f is surjective.
	 	 ∴ Hom(+,+) = {f : Z+ → Z+ : f (z) = az, z ∈ Z, a = f (1)}
 b) Aut(+) = {f : Z+ → Z+, f (z) = z, f (z) = –z} = 〈f (z) = –z〉
	 	 ∴ Aut(+)  C2.

14.6 Model Questions
 1. Prove that det(AB) = det(A) det(B) for A,B ∈ GL2(). This shows that the 

determinant is a homomorphism from GL2() to *.
 2. Which of the following maps are homomorphisms? If the map is a homomorphism, 

what is the kernel?
 (a) φ : * → GL2() defined by

φ( )a
a

= 





1 0
0

 (b) φ :  → GL2() defined by

φ( )a
a

= 





1 0
1

 (c) φ : GL2() →  defined by

φ
a b
c d

a d











= +
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 (d) φ : GL2() → * defined by

φ
a b
c d

ad bc











= −

 (e) φ : M2() →  defined by

φ
a b
c d

b











=

  where M2() is the additive group of 2 × 2 matrices with entries in .
 3. Let A be an m × n matrix. Show that matrix multiplication, x → Ax, defines a 

homomorphism φ : n → m.
 4. Let φ :  →  be given by φ(n) = 7n. Prove that φ is a group homomorphism. Find 

the kernel and the image of φ.
 5. Describe all of the homomorphisms from 24 to 18.
 6. Describe all of the homomorphisms from  to 12.
 7. In the group 24, let H = 〈4〉 and N = 〈6〉.
  (a) List the elements in HN (we usually write H + N for these additive groups) and 

H ∩ N.
(b) List the cosets in HN/N, showing the elements in each coset.
(c) List the cosets in H/(H ∩ N), showing the elements in each coset.
(d) Give the correspondence between HN/N and H/(H ∩ N) described in the proof 
of the Second Isomorphism Theorem.

 8. If G is an abelian group and n ∈ N, show that φ : G → G defined by g → gn

is a group homomorphism.
 9. If φ : G → H is a group homomorphism and G is abelian, prove that φ(G) is also 

abelian.
 10. If φ : G → H is a group homomorphism and G is cyclic, prove that φ(G) is also 

cyclic.
 11. Show that a homomorphism defined on a cyclic group is completely determined 

by its action on the generator of the group.
 12. Let G be a group of order p2, where p is a prime number. If H is a subgroup of G of 

order p, show that H is normal in G. Prove that G must be abelian.
 13. If a group G has exactly one subgroup H of order k, prove that H is normal in G.
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 14. Prove or disprove: / ≅ .
 15. Let G be a finite group and N a normal subgroup of G. If H is a subgroup of G/N, 

prove that φ−1(H ) is a subgroup in G of order |H| ⋅ |N|, where φ : G → G/N is the 
canonical homomorphism.

 16. Let G1 and G2 be groups, and let H1 and H2 be normal subgroups of G1 and G2 
respectively. Let φ : G1 → G2 be a homomorphism. Show that φ induces a natural 
homomorphism φ : (G1/H1) → (G2/H2) if φ(H1) ⊆ H2.

 17. If H and K are normal subgroups of G and H ∩ K = {e}, prove that G is isomorphic 
to a subgroup of G/H × G/K.

 18. Let φ : G1 → G2 be a surjective group homomorphism. Let H1 be a normal 
subgroup of G1 and suppose that φ(H1) = H2. Prove or disprove that G1/H1 ≅ G2/
H2.

 19. Let φ : G → H be a group homomorphism. Show that φ is one-to-one if and only if 
φ−1(e) – {e}.

 20. Given a homomorphism φ : G → H define a relation ~ on G by a ~ b if φ(a) = 
φ(b) for a, b ∈ G. Show this relation is an equivalence relation and describe the 
equivalence classes.

Automorphisms
 1. Let Aut(G) be the set of all automorphisms of G; that is, isomorphisms from G to  

itself. Prove this set forms a group and is a subgroup of the group of permutations 
of G; that is, Aut(G) ≤ SG.

 2. An inner automorphism of G,
ig : G → G,

  is defined by the map
ig(x) = gxg−1,

  for g ∈ G. Show that ig ∈ Aut(G).
 3. The set of all inner automorphisms is denoted by Inn(G). Show that Inn(G) is a 

subgroup of Aut(G).
 4. Find an automorphism of a group G that is not an inner automorphism.
 5. Let G be a group and ig be an inner automorphism of G, and define a map 

G → Aut(G)
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  by
g → ig.

  Prove that this map is a homomorphism with image Inn(G) and kernel Z(G). Use 
this result to conclude that

G/Z(G) ≅ Inn(G).
 6. Compute Aut(S3) and Inn(S3). Do the same thing for D4.
 7. Find all of the homomorphisms φ :  → . What is Aut()?
 8. Find all of the automorphisms of 8. Prove that Aut(8) ≅ U(8).
 9. For k ∈ n, define a map φk : n → n by a → ka. Prove that φk is a homomorphism.
 10. Prove that φk is an isomorphism if and only if k is a generator of n.
 11. Show that every automorphism of n is of the form φk, where k is a generator of 
n.

 12. Prove that ψ : U(n) → Aut(n) is an isomorphism, where ψ : k → φk.

14.7 Solutions of some selected problems
 2. (a) Ker(φ) = {1}
  (b) Ker(φ) = {0}

  (e) Ker
a b
c d

M R b( ) ( ) :φ 




∈ =








2 0

 4. Ker(φ) = {0}, Img(φ) = 7Z
Automorphism
7. All homomorphisms from Z to Z are of the type n → an for some fixed a ∈ Z. 

Aut(Z) = Z2.
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