PREFACE

With its grounding in the "guiding pillars of Access, Equity, Equality, Affordability and
Accountability," the New Education Policy (NEP 2020) envisions flexible curricular structures
and creative combinations for studies across disciplines. Accordingly, the UGC has revised the
CBCS with a new Curriculum and Credit Framework for Undergraduate Programmes
(CCFUP) to further empower the flexible choice based credit system with a multidisciplinary
approach and multiple/ lateral entry-exit options. It is held that this entire exercise shall leverage
the potential of higher education in three-fold ways - learner's personal enlightenment; her/his
constructive public engagement; productive social contribution. Cumulatively therefore, all
academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario,
the role of an Open University is crucial, not just in terms of improving the Gross Enrolment
Ratio (GER) but also in upholding the qualitative parameters. It is time to acknowledge that the
implementation of the National Higher Education Qualifications Framework (NHEQF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the
arena of Open and Distance Learning that is truly seamless in its horizons. As one of the largest
Open Universities in Eastern India that has been accredited with 'A' grade by NAAC in 2021,
has ranked second among Open Universities in the NIRF in 2024, and attained the much
required UGC 12B status, Netaji Subhas Open University is committed to both quantity and
quality in its mission to spread higher education. It was therefore imperative upon us to embrace
NEP 2020, bring in dynamic revisions to our Undergraduate syllabi, and formulate these Self
Learning Materials anew. Our new offering is synchronised with the CCFUP in integrating
domain specific knowledge with multidisciplinary fields, honing of skills that are relevant to each
domain, enhancement of abilities, and of course deep-diving into Indian Knowledge Systems.

Self Learning Materials (SLM's) are the mainstay of Student Support Services (SSS) of
an Open University. It is with a futuristic thought that we now offer our learners the choice of
print or e-slm's. From our mandate of offering quality higher education in the mother tongue,
and from the logistic viewpoint of balancing scholastic needs, we strive to bring out learning
materials in Bengali and English. All our faculty members are constantly engaged in this academic
exercise that combines subject specific academic research with educational pedagogy. We are
privileged in that the expertise of academics across institutions on a national level also comes
together to augment our own faculty strength in developing these learning materials. We look
forward to proactive feedback from all stakeholders whose participatory zeal in the teaching-
learning process based on these study materials will enable us to only get better. On the whole
it has been a very challenging task, and I congratulate everyone in the preparation of these
SLM's.

I wish the venture all success. Professor. Indrajit Lahiri

Vice-Chancellor
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Unit-1 U Hyperbolic Functions

Structure
1.1 Objectives
1.2 Introduction
1.3 Derivation of Hyperbolic Functions
1.3.1 Infinite Series Expansion of Hyperbolic Functions
1.3.2 Periodicity of Hyperbolic Functions
1.3.3 Some Important Identities
1.4 Inverse Hyperbolic Functions
1.4.1 Logarithmic Interpretation of Inverse Hyperbolic Functions
1.S Summary
1.6 Exercises

1.7 References

1.1 Objectives

We all know about trigonometric functions. In this lesson we will know about
hyerbolic functions and their relations to the trigonometric functions. After studying
this chapter the learner should be :

e understanding the meaning of hyperbolic functions and inverse hyperbolic
functions.

e able to derive the hyperbolic functions in terms of exponential functions.

mighty to realize the infinite series expansion of hyperbolic functions.
e aware of some important identities.

e skilled to express the inverse hyperbolic functions in terms of logarithmic
functions.

1.2 Introduction

We have seen the shape of a heavy cable suspended between pylons. Is there any
mathematical function corresponding the shape of the cable ? Yes, there is a function

7
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named hyperbolic function which has great applications in mathematics, physics and
engineering. The hyperbolic functions have similar names to the trigonometric
functions but they are defined in the forms of exponential functions. In this chapter
we will derive the expressions of hyperbolic functions and express them in logarithmic
forms. The first systematic development of hyperbolic functions was implemented by
Swiss Mathematician Johann Heinrich Lambert (1728-1777).

1.3 Derivation of Hyperbolic Functions

Hyperbolic functions can be derived mathematically in various ways. We will
derive the hyperbolic functions graphically. In this method an analogous relation can
be found between the circular (trigonometric) functions and the hyperbolic functions.
We elaborate this by starting first with the unit circle #* + v = 1. Consider x as an
angle forming a circular sector MOP of area C (see Fig. 1.1). Now the area C of this
circular sector MOP is %x. Then twice C (the area of the circular sector MOP) is
equal to circular angle x in radians.

For the unit circle #* + v* = 1, where OM = 1, we see that sin x = vOM = v,
and cos x = w/OM = u.

We can now develop analogously for the hyperbolic functinos. Suppose that H
is the area of hyperbolic sector MOP (see Fig. 1.2) of the unit rectangular (equilateral)

hyperbola #* —v* =1, or =2 —1.

a8 & -
0 n *‘q;\. 1l u

Fig. 1.1 Fig. 1.2

Then twice H (the area of the hyperbolic sector MOP) is equal to the hyperbolic
angle x in radians. Now, from Fig. 1.2 we see that H (the area of the hyperbolic sector

MOP) is the area of NOP less the area NMP, where area NOP:%uv and area



NSOU « CC-MT- 03 9

NMP = Jvdu . Then we obtain.

x = 2H (twice the area of MOP) = 2[%1,‘,_"'%1”}
1
= [uv— 2J.\/ﬁ du}

_ [uv i —l+log( 1)}

= [uv uv+log u+ l)}

= log(u +u’ —l).
From this we have

(u+\/u2—l):ex and (u— uz—l):e’x

X —X X —X

From this we get # = % and v = % . These last two expressions are the

familiar formulas “hyperbolic cosine” and “hyperbolic sine” denoted by cosh x and
sinh x respectively. So we have

e"+e” . e'—e”
——— and sinhx=——
2 2
where x is the twice of the area of the hyperbolic sector.

coshx =

Remark : We need to point out that graphically it is not possible to draw the
hyperbolic angle x in the same way that the circular angle x is drawn, for x has no
such reality. It only exists as a function of the hyperbolic sector area H. It is important
to avoid attempting to interpret x as an angle meeting at a point on the hyperbola.

1.3.1. Infinite Series Expansion of Hyperbolic Functions

Expanding ¢* and e, we get the expansions of cosh x and sinh x as

-

coshx—l+a+$+

3 5

sinhx = x+?+§+
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1.3.2. Periodicity of Hyperbolic Functions

Using the definition of hyperbolic functions we can easily prove that
sinh (2nmi + x) = sinh x, cosh (2nmi + x) = cosh x, tanh (2nmi + x) = tanh x.
Thus hyperbolic functions are periodic functions of imaginary periods.

1.3.3. Some Important Identities

X —X 2 X —X 2
(i) cosh® x — sinh? x :[e J;e j _(e 2e j =1

—X

sinhx e —e

coshx e"+e™
coshx e +e™ a

coth x == —
sinhx e —e

(i) tanh x =

2

1 __ 2
coshx e"+e

|

X —-x

cosech x = — =
sinhx e“—e

x ?

(iii) sechx =

2 X —-X 2
(iv) sech2x+tanh2x:( . 2 _x) +(ex e_x)
e'+e e'+e

x, - \? 2
(v) cothzx—cosechzx:(e te )—( 2 ):1,

et —e et —e
(vi) cosh (- x) = cosh x. sinh (—x) = — sinh x.
(vil) tanh (- x) = — tanh x, coth (- x) = — coth x.
(viii) sech (— x) = sech x, cosech (— x) = — cosech x.
(ix) cos (ix) = cosh x, sin (ix) = i sinh x.
(x) tan (ix) = i tanh x, cot (ix) = — i sinh x.
(xi) cosh 0 =1, sinh 0 = 0, tanh 0 = 0.

Example 1.3.1 Show that cosh (x — y) = cosh x cosh y — sinh x sinh y.
Solution : From the definition of hyperbolic functions we have

cosh x cosh y — sinh x sinh y
= %{(ex +e’x)(ey +e’y) —(ex —e’x)(ey —e’y)}

_ % {( T 4t Lo ) e—<x+y>) _( O LotV _ o e e—<x+y>)}

— %{exfy + ef(xfy)}

= cosh (x — y).
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Example 1.3.2 Show the equation sinh X = %

Solution ;: sinhx = %
ef—e™* 3
= -2
2 4

=2e*-3-2¢7"=0

—2e™ -3¢ —-2=0
:>(ex—2)(2ex+l):O
=e" =2 or2e=-1.

But e is always positive, so ¢*=2 = x =log2.

1.4 Inverse Hyperbolic Functions

The inverse hyperbolic function sinh™ x, cosh™ x are written as
y=sinh ' x = sinh y = x with x (—oo,oo).
y=cosh™ x = coshy=x with x>1and y>0.

y=tanh"' x = tanh y = x with |x| <land y (-, ©).

1.4.1. Logarithmic Interpretation of Inverse Hyperbolic functions

Suppose
y=sinh'x
= x=sinhy
ey _ e*y
j— =
T

=e? —2xe¢’ -1=0

=e’=x+Jx*+las e’ >0
:>y:10g(x+\/x2+l).

Thus y=sinh'x= log(er\/x2 +l).
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Similarly we see that
cosh ' x = log(me/x2 —1).

- 1 1+x
tanh 'x = =log—=
anh™ x > Ogl—x

1.5 Summary

In this unit we derived hyperbolic functions in terms of exponential functions and
their important identities. We also defined Inverse hyperbolic functions and their
logarithmic expressions. We learned about the relations between hyperbolic functions
and trigonometric functions. We expressed the infinite series expansion of hyperbolic
functions and discussed the periodicity property of this functions.

1.6 Exercises

1. Prove the following identities.

(1) sinh (x + y) = sinh x cosh y + cosh y sinh x
tanh x + tanh y
1—tanh x tanh y
Y ginh 2=
2

(i) tanh (x+y)=

(iii) coshx—coshy = 2sinh x;
(iv) cosh 2x = 1 + 2 sinh* x.

2. Solve the following equations.

() 2 cosh 2¢ + 10 sinh 2x = 5 (i) sinhx==>
(iii) 4 cosh x + sinh x = 4 (iv) tanhx :%
(v) 9 cosh x — 5 sinh x = 15 (vi) 3 cosh* x + 11 sinh x = 17.

3. Express the followings in logarithmic form

(1) sinh”% (i) sech™ x (iii) tanh™ x.

1.7 References

1. J.G. Chakravorty, P.R. Ghosh : Advanced Higher Algebra, UN. Dhar &
Sons Private Limited.

2. W. K. Robinson, Slide Rules with Hyperbolic Function Scales, The Journal
of the Oughtred Society, Vol. 14, No. 1, 2005.




Unit-2 U Higher Order Derivatives

Structure
2.1 Objectives
2.2 Introduction
2.3 Higher Order Derivatives
2.3.1 Notations of Higher Order Derivatives
2.4 Calculation of nth Order Derivatives
2.4.1. n derivative of x*
2.4.2. n™ derivative of e“.
2.4.3. n™ derivative of sin(ax + b)
2.4.4. n™ derivative of e sin(bx + c)
2.5 Leibnitz’s Theorem on Successive Differentiation
2.6 Summary
2.7 Exercises

2.8 References

2.1 Objectives

In this unit the readers will learn the followings.
e The definition of higher order derivatives.

e Leibnitz’s formula.
e The differentiation of power functions.

e The higher order derivatives of product functions and quotient functions.

2.2 Introduction

The derivative is the first of the two main tools of calculus which was discover
independently by Issach Newton and Gottfried Leibniz in the mid 17th century. The
derivative of a function of real variable measures the rate of change of function value
with respect to the change of independent variable. In this chapter we will see how
to compute higher order derivatives and will explore some of their applications.

13
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2.3 Higher Order Derivatives

Successive differentiation is the process of differentiating a function repeatedly
n times and the results of such differentiation are called successive derivatives. The
higher order derivatives have most importance in scientific and engineering
applications.

Let f{x) be a differentiable function and let its first derivative be f’(x). If f’(x)
itself differentiable, we denote the derivate of f'(x) by f"(x) and call f"(x), the
second order derivative of f(x). Continuing in this manner, we obtain the functions
fG0, £, "), ), . ... [f"(x), each of which is the derivative of previous
one. We call f“)(x), the n™ derivative of f(x) or the derivative of order n of the
function f(x).

2.3.1. Notations of Higher Order Derivatives

’ d ,
1** order derivative ;: f'(x) or Ey or Dy or y, or y

2
2" order derivative : f"(x) or ij; or D’y or y, or )

n™ order derivative : f(x) or Z’,x_J”/ or D"yory, or y*

dny d dn—ly d2 dn—Zy
Clearly N del ) de e T

and so on.

2.4 Calculation of n' Order Derivatives

2.4.1. n* derivative of x*

Let y = x*, k being any real number.
Then y, = kX!
v, = k(k — Ty
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v, = k(k— 1)(k—2). . .(k—n+ 1)x*, for all positive integer .
If k be positive integer, then y = k(k — 1)(k —2) . . . (k—k+ Ix* " F = k|
If k£ be positive integer but 7 is positive integer greater than &, then y = 0.
If y = x*, k being positive real number, then

y, = —k(~k —1)(~k—2)...(~k —n+1)x*" for all positive integer n

:G4yk@AJth§%(k+n—D

(k+n-1)!

= (—1)"m~

n Nl
eg, y=x', ¥Y,=(D RN

2 (m+1)!
e

1
y=logx (x>0), y=—.

Hence y = nth derivative of log x
= (n — D)th derivative of %

— 1y (n-1! .

xn

2.4.2, n'" derivative of e*.

Let y = e*

Then y, = ae™
y2 — aZeax
y, = aes

2.4.3. n™ derivative of sin(ax + b)

Let y = sin(ax + b).

Theny = a cos(ax + b) = a sin(ax+b+§)
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v, :azcos(ax+b+§):azsin(ax+b+27n)

Y, :a"sin(ax+b+’12—n)

¥,, =a’"sin (ax +b+ 211775) = a’"(-1)"sin(ax +b) = (-a’)" sin(ax + b) .

Similarly, if y =cos(ax +b),
y,=a’ cos(ax+b +%)
v, = (—a’) cos(ax+b).

2.4.4. n™ derivative of e sin(bx + c)

Let
y=e“sin(bx+c).
vy, =ae” sin(bx +c) + be” cos(bx +c)
=e” [a sin(bx +c¢) + b cos(bx + c)]
=e” [r cosasin(bx +c¢)+rsino cos(bx + c)]
[Putting a =r coso, b=rsina]
= re™sin(bx+c+o), where 7’ =a’ +5b°, tano, = g,
Similarly,  y, =r’¢™sin(bx+c+20)

vy, =r"e“sin(bx+c+na).
Similarly, if y = e™ cos(bx + ¢),
y, = r"e® cos(bx + ¢ + na).



17

NSOU « CC-MT- 03

Example 2.4.1 If y= ﬁ,then find y,.

Solution : Here

=l 1 :L[ 1 1 }
x*—a& (x+a)x—a) 2alx-a x+al

Thus Y=oyl —
> n 2a (x_a)nH (x+a)n+1 .

Example 2.4.2 If y = sin’ x, then find y .
We know that sin 3x = 3sin x — 4 sin’x. Hence

Solution :
y=sin’x= %(3 sin x —sin3x)
and Y, :%[3sin(x+n7n)—3” sin(3x+n7n)}

Example 2.4.3 If y = sin 3x cos 2x, then find y .

Solution : y=sin3xcos2x = %(sin 5x+sinx)

Therefore, V,= %[5" sin(Sx + nzn) +sin (x + ’%‘)J

Example 2.4.4 If y=1/x, then find V-
Solution : Here

y=xr=x"

Thus, Y= %xi%

1 1)
g

D B R B /e D |
Differentiating continuously, we get

135 (2n-3) 1
= (1 |
yn ( ) 2n xn—A
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2.5 Leibnitz’s Theorem on Successive Differentiation

If # and v are two functions of x such that their »* derivatives exist, then the »™
derivative of their product is given by

(wv) ="Cuv+"Cu, v+"Cu, v,+..+"Cu, v.+..+"Cuv,

ron-r r

where u_and v_represent r” derivatives of u and v respectively.

Proof :
By differentiating directly, we get
(wv), =uy + uy,
(v), =y +uy)+ @y, +uv)=uy+2uv +uv,
=Cauy +*Cuy, + 2C uv,.
Thus, the theorem is true for » = 1 and n = 2.

Now we assume that the theorem is true for a certain positive integer m (m < n).

rom-rv v

Then (uv), ="Cu v+"Cu, vi+"Cu, v,+..+"Cu, v +..+"C uv,
Differentiating both sides once more, we obtain

v),,., ="Cu, . v+uv)+"Cluyv,+u, v,)+..

m+1

mC (u +um I3 r+1)+ +mC (uV +uy +1)

m— r+1

v+ ("Co+ "Cu, v +("C+"Cu,, v,

m+1

="Cu

+..+("C_,+"C)u e

m— r+1
m m m
+( Cm—l + Cm)ulvm + Cmuva

'"”Cu v+'"”Cuv+ +™Cu

m+1 ¥ m—r+l

v,

. +"™C uv . (using”C, _ +"C, =""C).

m+1

Thus, the theorem is true for » = m + 1 if it is true for » = m. Thus, by
Mathematical induction the theorem is true for all positive integers n.

2.5.1. n'™ derivative of ¢’ sin x

Let y = e™** sin x = uy, where u = ¢ *" and v = sin x.

Then u, = a"e™"" andv, =sin (x+k?TC

Thus, by Leibnitz’s rule
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v, =a"e™sinx+"Ca"'e™" s1n(x+§)+...+e“’”b sin(x+ﬂ)
=e™{d"sinx+"Cia™" sin(x + E) +o+ sin(x +n_n) :
2 2
Similarly, if y=e™" cosx,then
y, =e™? {a" cosx+"Ca™’ cos(x + g) +o+ cos(x +n7n)}

2.5.2. n™ derivative of (ax + b)" sin x.

Let y = (ax + b)" sin x = uv, where # = (ax + b)" and v = sin x.

Then ¥, = (ax+b)"" and v, = s1n(x+k—n)

k
‘T
Thus, by Leibnitz’s theorem, we obtain

" !
y, = g:a sinx + Cl'!n a”l(ax+b)sin(x+g)

+...+(ax+b)" sin(x+’12—n)

1 "C, a™ . T

=nlk — +—1 + + =

=n! {ma sinx T (ax b)sm(x 2)
+...+—;!(ax+b)”sin(x+—nzn)}.

Similarly, if y = (ax + b)"cos x, then

n

V= n!{éa" cosx + G,

n-1 T
T a (ax+b)cos(x+5)

1 n nr
+...+n—!(ax+b) cos(x+7)}.

Example 2.5.1 Find the »” derivative of y = x* log x.
Solution : Let # = log x and v = x°.

! Y
Then uk:—( ) S{k D!

andv, =0 for k>4
X
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By Leibnitz’s theorem, we have

(wv) ="Cuv+"Cu_v,+"Cu_v,+..+"Cu, v.+.+"Cuv,

ron-rv r

Thus,

V= )" (=) ©+nC I)Hn(n —2)! 3

x" x™!

n(n D D" 3(n 3)' n(n ~D(n-2) (-1)"*(n-4)! 6

21 x" 3! ' ™3

1y 6(n 4)|.

Example 2.5.2 Find the n™ derivative of y = x*¢** sin 4x.

Solution ; Let # = e*sin 4x and v = x°.

Then u, =e*5" sin(4x+ktan_1 %) and v, =0 for £ > 3.

By Leibnitz’s theorem, we have

(wv) ="Cuv+"Cu, v,+"Cu_v,+..+"Cu,_v +..+"Cuv,.
Thus,

y, =e*5"sin (4x +ntan”’ %) x> +ne5" " sin (4x +(n—1)tan %).Zx

n(n l) 3x5n 2

5 s1n(4x+(n 2)tan” 1;‘)2

:eS’CS”{x2 sin(4x+ntan 143‘)+25ﬂs1n(4x+(n Dtan” 1;‘)

4 n(n—1)

o sin (4x +(n-2)tan™ g)} .

Example 2.5.3 If y = sin (m sin"x), then show that

(1- xz)yn+2 =2n+)xy, ., + (n2 - mz)yn.
Also find y (0).

Solution : y = sin (m sin™ x) (2.5.1)



NSOU « CC-MT- 03 21

m

= y = cos(msin”' x)
1 m (25.2)

=  (1-x)y =m’cos’(m sin ' x)

= (1-xX)y=m’(1-y)

= (1-x)y +m’y’ =m’.
Differentating w.r.t. x, we get

(1-x")2p,p, + ¥ (=2x)+m*2yy, =0

= (l—xz)yz—xlermzy:O. (2.53)
Using Leibnitz’s theorem, we get

[3,00=5)+"C,y,,(-22) + "C,p,(<2) | = (y,0x + "Cy,. 1) + m*y, = 0

= (1-x")y,., —2mxy,, —n(n=1)y, = xy, , —ny, +m’y, =0

= (1 - xz)yn+2 =2n+1)xy, , +(n —m?)y,. (2.54)
Putting x = 01in (2.5.1), (2.5.2) and (2.5.3), we get

10)=0, 3(0)=m, and y,(0)=0.
Putting x = 0 in (2.5.4), we have

Yua(0) = (n* = 11°),(0).

Putting » =1, 2, 3 . . . in the above equation we have
730y = (1 =m*) 3,(0)
= (l2 - mz)m

740y =(2*=m*) y,(0)

mz).O

(2*-
0
y5(0)=(3"=m*) y,(0)

= m(l2 —mz)(32 —mz).
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Therefore

0, if n 1s even
yn(O):{m(lz_mz)(32_mZ)W((n_z)Z_mz)’ if nis odd.

2.6 Summary

After studying this unit we have seen that we can derive a general formula of nth
order derivative of a function without computing intermediate derivatives or by
Leibnitz’s Rule. To derive a general formula of nth order derivative of a function,
it is better to differentiate again and again until it is clear.

2.7 Exercises

1. Find #" order derivative of the following functions :

2
-1

(1) e* sin x sin 2x (i) tan' "

(1i1)

Q=

a—Xx
a+x

(iv)

(v) sin x sin 2x sin 3x (vi) tan”' —}J_rjz

2. Use Leibnitz’s formula to find the n* derivative of the following functions :
(i) e‘log x (i) x* tan™ x

(iii) log(ax + x*)  (iv) x° sin x.
3. If y = ¢”sin™' x, then show that

(1 - xz)yn+2 -(2n+Dxy,,, — (n2 + mz)yn =0. Also find y,(0).

4. If y = tan™" x, then show that

(1 - xz)yn+2 +2(n+Dxy,,, +n (n + l)yn = 0. Also find y (0).

5. If y = (sin™ x)?, then show that

(l — xz)yn+2 - (21’1 + l)xyn+l o nZyn = 0. Also find y”(o)
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3.7 Summary
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3.1 Objectives

After going through this lesson the readers will learn :
e the definition of curvature.

e to derive the formula of radius of curvature.

e to find out the centre of curvature.

3.2 Introduction

In this chapter we will describe the nature of bending of a curve at a particular
point and its numerical measurement. The curvature measures how fast a curve is
changing direction at a given point.

3.3 Definitions

Suppose the tangents at two points P and O on a curve make angles y and y +
Ay with positive x-axis. Suppose that are AP = s, arc AQ = s + As so that are PQ
= As, A being fixed point on the curve from which the length of ares are measured.
We then construct the following definitions.

24
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The angle Ay between the tangents at P and Q is called the total curvature of
the arc PQ. AY

Fig. 3.1

: . A
The mean or average curvature of the arc PQ is defined as the ratio E\V

The curvature (k) at a point P of the curve is defined as the limiting value of
mean curvature when the arc As — 0 : that is

. Ay dy
k)at P=lim—===—~.
Curvature (k) at AT T ds

Thus the curvature is the rate fo change of direction of the curve with respect to
the arc length.

ds

1
Suppose that £ # 0 and P~ 7"~ E Now construct a circle of radius p and a

center ' so that the circle and the curve I" have the same tangent at P. The circle is
drawn in such a way that it lies on the same side of the tangent as the curve. This
circle has the same curvature as the given curve at P. We call this circle as the circle
of curvature at P; its centre C is the center of curvature for the curve at P and its
radius p, normal to curve at P is the radius of curvture of the curve at P. Thus the
reciprocal of the curvature at any point P is called the radius of curvature at P, and

. _1_ds
is denoted by P~ dy’

3.4 Formulae for the Radius of Curvature

3.4.1. For the Intrinsic Equation s = f(y).

The relation between the length of the arc (s) of a given curve, measured from
a given fixed point on the curve and the angle between the tangents at its end ()
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is called the intrinsic equation of the curve and the formula of radius of curvature for
this equation is

oo ds
dy
For example, the intrinsic equation of Catenary is s = ¢ tan Wy and

pzﬁzc sec” .
dys

3.4.2. For the Cartesian Equation (Explicit Function) y = f(x) or x = f(y).

In a rectangular Cartesian co-ordinates system, we have

d
tan‘P:ay:yl.
Therefore
d’y _d(dv)_ d _d dy
e dx(dx = (W)= gy ) g
_ 2 d\V ds
=sec’ Y. mn

_ zd_w[- ds _ }
=sec” . s s1ncedx—sec1|f.

Since sec v = (l+tan2\|f)15 = (14} )%,we have

3

ds _sec’y _ (IJFJGZ)5

=22 = h # 0.
Py Yy, o e (3.4.1)
de
Similarly, for the equation x = Ay),
3
232
_ (l+x1) j [x2 ?’—'O]

x2

e d’x .
where x, and x, denote dy and e respectively.

Note 3.4.1 Since p is always positive the root of numerator will be taken positive
when y, is positive and negative when y, is negative.
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Example 3.4.1 Find the radius of curvature of the parabola y* = 4ax at the point
(a, 2a).

Solution : Here )* = 4ax.

Differentiating w.r.t x, we obtain

2yy = 4a.
Again differentiating we have
2y7 +2yy,=0.
Thus, at (a, 2a), y, = 1 and J, = 21a

Hence the required radius of curvature at (a, 2a) is

() a2 i

b= y,  —1/2a

3.4.3. For the Cartesian Equation (Implicit Function) f(x, y) = 0.

For the implicit equation, we have

d
&=7(120)

ie, f+fydy 0.

Differentiating again, we have

2
d’ .
for 2t 2 g (L 4, L2 0 praking £, = £,) (G42)
) dy .
Putting the value of el (3.4.2), we get
dy Sl 2SS S
dx’ 1
d 2
Substituting these values of d—y and dJ; in (3.4.1), we obtain
x dx
3
2+ 2\2
- o+ 7 (3.4.3)
Sty =215 IS+ 1o

where denominator is not equal to zero.
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Example 3.4.2. Find the radius of curvature of the ellipse 9x° + 4)* = 36x at the
point (2, 3).
Solution : We have f(x,y)=9x"+4y’—36x.

Differentation f(x, y) partially w.r.t. x, we get f = 18x — 36.
Similarly, we obtain

f, =8y, f.=18, f =8 f =0.
Now at (2, 3),

f.=0, f,=24, f. =18, f, =8 f =0
Thus, using the formula (3.4.3), we get

(£+£)

Y S

3
[0+(24)’
18.(24)’-0+0 3
which is the required radius of curvature.

3.4.4. For the Parametric Equation x = f(t), y = ¢(¢).
Here

dy _dy vy

&od @ w0
Therefore
dy_d(y
dx?  de\ X
_d(y)\dr
di\ x' ) dx
_ x’)/”—y'x”i
er x!

Thus, using the formula (3.4.1), we get

()

xry” — yrxrr
er

p:
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3
xr2+ 2\2
L) o G4
xy'—y'x
Example 3.4.3 Find the radius of curvature of x = q(0 + sin 0), y = a(1 — cos 0) at
6=0.

Solution : We have

x=a(0+sinB), y =a(l-cos).
Differentiating w.rt. 6, we obtain

x' =a(l+cosB), y' =asinb.
Again differentiating w.r.t. 0, we obtain

x"=—asinB, )" =acosb
Now at 6 = 0, we have

¥'=2a, x"=0 )y'=0, y'=a

Thus, using the formula (3.4.4), we get the radius of curvature at 0 = 0 as

~ (x'2 +y'2)% ~ |:(26l)2 + O]% 4

xy"—yx" 2aa-0

3.4.5. For the Polar Equation r = f(0).

We know \V=6+(|):6+tan’1£, where 1, = dr

r do
Thus,
dy_,, 1 r-m
2 2
do 1+% 7
h
Aoai 2=
ain =3
g I’2+I”12
ds
R
Thus

pzﬁzﬁﬁz—(ﬂwz)z (3.4.5)
dy dody r’+27-rr
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Corollary 3.4.1 For the polar equation # = f(8), where % Z%

) 1
Since ¥ :;’ we have

r:i:_L@:_ﬂ r:_uu2_2’ul2
! a0 u2d6 uzj 2 u3 >
h du d du d \
where u and u, denote 4o 2 d62 respectively.
Thus
3
(u2+u12)2 ac
p_u3(u+u2)~ ( )

Example 3.4.4 Find the radius of curvature of the curve = a(1 — cos 0) at the point
(x 6).

Solution : We have » = a(1 — cos 0).

Differentiating w.r.t. 6, we get 7, = a sin 0. Again differentiating w.r.t. 6, we have
r, = a cos 9.

Thus the radius of curvature is

|w

(r2 +r12)% |:612(1—COSG)2 +d? sinZGJ2
o= _

rr+2r2 —rr,  a*(1-cosB)’ +2a*sin’ B —a(l - cosB).acosd

a(2 2COSG)2 Z@W

a’(3—3cos0) 3

3.4.6. For the Pedal Equation p = f(r).

We know the pedal equation as p = r sin ¢.
Differentiating w.r.t. r, we get

dp _ do [ d@}
o s1n<|)+rcos<|) tand = rdr



NSOU « CC-MT- 03 31

_,4q
—rds(6+(|))
dy
ods
Thus
_ds _ dr
dy dp

Example 3.4.5 Find the radius of curvature of the ellipse 0 =a’+b -1,

21,2
a 2, 52 2
Solution : We have I =a +b -1

. .- —2612192 — _2,,@
Differentiating w.rt. p, we get I3 dp
Therefore

p _ ri _ a2b2
dpp

3.4.7. For the Tangential Polar Equation p = f(y).
We have

dp _dpdr ds _dp dr _
dv drdsdy dr cosd).rdp—rcosd)

Thus,

2
p2+[dd—€vj =r’sin’¢+r’cos’ o =r".
Differentiating w.rt. p, we get
dp d’p dvy dr
2p+2 P AP AV _,,. dr
Preavay dp " dp
Thus

2

P=pt T (3.4.8)
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Example 3.4.6 Find the radius of curvature of the epicycloid p = a sin by.

Solution : We have p = a sin by.
Differentiating w.rt. y, we get

2
dd—{; =abcosy, Z\VIZ =—ab’sinby =-b’p.
Thus, the radius of curvature is
d’ p 2
p=p+dwz =p—bp=pl-5b°).

3.5 Radius of Curvature : Newton’s Approach

L. If a curve passes through the origin and the axis of x is tangent at the origin, then

gives the radius of curvature at the origin.

IL. If a curve passes through the origin and the axis of y is tangent at the origin, then

2

lim 2—
x—0 2x
y—0

gives the radius of curvature at the origin.
IIL. If a curve passes through the origin and ax + by = 0 be the tangent at the origin,

then
{2 2 2 2
a_+h lim XY

0
2 o0 ax+ by

gives the radius of curvature at the origin.

Example 3.5.1 Find the radius of curvature at the origin for the curve
¥ +y -2+ 6y =0.

Solution : Here y = 0, the x-axis is the tangent at the origin. Thus by Netwon’s

2
. . . . X .
formula, the radius of curvature is given by p= Llf(}z_’ ie, 2p=Ilim=—.
y—0 y—0
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Now dividing the given equation by y and making x — 0 and y — 0, we get
Op+0—-4p+6=0.
Therefore

3
p_27

which is the required radius of curvature.

3.6 Centre of Curvature

The co-ordinates C(x,y) of centre of curvature at a point P(x, y) of a curve
= f(x) is given by

goy 200 5o Q) (Lo
Vs Y2
Proof : We use the fact that the centre of curvature at P is the limit point of
intersection of the normal at P and the normal at a neighbouring point O when O —
P along the curve. The equation of the normal at P is

T =y +(X-x)=0, (3.6.2)

(3.6.1)

where the slope of the tangent at P(x, ¥)is y, ==-=&(x) and X, Y are the current

dy
dx
co-ordinate of any point on the normal.

The normal at a neighbouring point Q(x + A, y + k) is

Y —-y—-kdpx+h+(X—-x—-h)=0. (3.6.3)
At their point of intersection, the ordinate is given by,
¥ = {0+ 1)~ ()}~ kd(x +h)—h =0. (3.6.4)

Dividing by /4 and making # — 0, we get
F- y){lhimw} {11m }hmd)(x—i—h) 1-0.

or,  (¥=y)1'(x)-d(x)d(x)-1=0,

(l+y1)

or, y=y+——~
Y2

As (X,y)1s a point in (3.6.2), we get
V=) +(F-x)=0
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1+ -
or, u.y1 +(x-x)=0
2
1+y?
or f:x_yl( yl).
Y2
Example 3.6.1 Find the centre of curvature at any point (x, y) on the parabola
y’=4ax.
Solution : Here )° = 4ax. Differentiating w.r.t. x,
2yy, = 4a.
Thus,
y=2a_|a
1 y X :
Again differentiating we get.
.+ ¥ =0.
Thus,
Hence
1+y)= Q(HQ) :—\/E(Ha)
7(1e57)= | 2(1+2) -t
Thus,
1+y?
X= x—M: x+2(x+a)=3x+2a
2
J_/:erlerl2 :y_2\/;(x+a) :_2x\/;
Y2 \/5 \/5

3.7 Summary

In this chapter we have discussed the curvature of a smooth curve. We have also
derived several formula for determining the radius of curvature for a curve and centre
of curvature.
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3.8 Exercises :

1. Find the radius of curvature at any point (s, y) on the following curves:

(i) s=8asin’ %\u () s= alogtan(%Jr%j

(i) s=clogsecy (v) s=a(e™-1).
2. Find the radius of curvature at any point (x, y) on the following curves :

(i) e =sec(x/a) (i) xy = ¢

(111) x2/3 +y2/3 — a2/3 (IV) x3 + y3 — 3Clxy

(v) y = 4sin x — sin 2x (Vi) Jx++a=+a.
3. Find the radius of curvature at any point 7 on the following curves :
(1) x=a(cost+tsint), y=a(sint—1cosfi
(i) x=a(t+sint), y=a(l —cos?)
(i) x = a sin 241 + cos 2f), y = a cos 241 — cos 21)
(iv) x = af, y=2at
(v) x=ae'(sint —cosf), y=ael(sint+ cos ).
4. Find the radius of curvature at any point (r, 0) on the following curves :
(1) 7’ =a’cos20 (i) 7 =age™
(111) r2 cos 29 = a2 (IV) r = asinmd.
S. Find the radius of curvature at any point on the following curves :
(1) p = a(l + sin y) (i) p*+a*cos2y =0
(iii)) p = r sin o (iv) p*=ar
6. Find the radius of curvature at the origin on the following curves :
(1) y=x"—4x — 18 (i) 3x*+xy+y*—4x=0
(iii)) ¥*+ 6 +2x—y=0 (iv) x*+3* = 6a(x + y)
(V) 3x* =2+ Sxy + 2xy — 2)” + 4x = 0.
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7. Find the centre of curvature of the following curves :

(1) &y =x° (i) 2y = a(e’ + )
(i) y=x+2x*+x+ 1at (0, 1) (iv) y=sin*x at (0, 0)
(v) x*=4ay (vi) xy=x*+4at (2, 4).
8. Find the radius of curvature of the curve 7 21; at 0 = w.
+e cosB

9. Find the centre of curvature of the curve x* + 2x* + x + 1 at (0, 1).
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4.1 Objectives

We all have intuitive concepts of concavity and convexity. After reading this
lesson the students will learn :
o the definition of concavity and convexity.

e the criterion for convexity and concavity.
e the meaning of points of inflection.

e to determine the points of inflection.

4.2 Introduction

In this unit we shall discuss about the sense of concavity and convexity at a
special point of a curve y = f(x). This special point is called a point of inflection.

4.3 Concavity and Convexity w.r.t. to a Line and Points of
Inflection

Let P be a point on a plane curve. Let / be a straight line not passing through
P. Then the curve is

(1) concave at P w.r.t. the line / if a sufficiently small arc containing P lies within
the acute angle formed by / and the tangent to the curve at P.

37



38 NSOU « CC-MT- 03

(i) convex at P w.r.t. the line / if a sufficiently small arc containing P lies outside
the acute angle formed by / and the tangent to the curve at P.

On the other hand, if the curve is concave on one side of P and convex on other
side w.r.t. /, then evidently the curve crosses its tangent at P. This point P is called
a point of inflection.

fzﬁ(ﬂéﬁ

Fig. 4.1

4.4 Criterion of Concavity or Convexity w.r.t. x-axis

Let P (x, y) be a point of a curve y = f(x) and O(x+ Ax, y + Ay)be a neighbouring
point of P. Let PT be the tangent at P, and let the ordinate OM of O intersect PT at
R. The equation of PT is

Y —y=f()(X-x).
Since the abscissa X of R is x + Ax, its ordinate is
RM =Y = y+ Axf'(x).
Also the ordinate of Q is
OM = f(x+ Ax)

2
= £+ A0 + B e 0AY), 0<0 <1,
2!
[Using Taylor’s theorem]

3y

T .
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Therefore

(Ax)’
21

If /' (x) does not vanish and is continuous at x, ' (x + 6Ax) has the same sign

as that of /' (x) when |Ax| is sufficiently small. Hence OM — RM has the same sign

OM - RM = F"(x+0AY).

as f"(x) for sufficiently small values of |Ax|
Thus, if f(x) is positive, then OM — RM is positive for sufficiently small values

of |Ax| i.e., the small arc of the curve in a small neighborhood of P will be situated

outside the acute angle formed by the tangent at P to the x-axis if the curve lie in
the upper-side of x-axis.
Again if f'(x) 1s negative, then QM — RM is negative for sufficiently small values

of |Ax| i.e., the small arc of the curve in a small neighborhood of P will be situated

outside the acute angle formed by the tangent at P to the x-axis if the curve lie in
the lower-side of x-axis.

Combining this two situation we can say that the curve is convex at P to the
x-axis if yf(x) at P is positive.

Analogously, if yf"(x) at P is negative, then the curve at P is concave to the x-
axis.

Note 4.4.1. The curve at P is convex or concave w.r.t. the y-axis according as xf'(y)
is positive or negative at P.

Example 4.4.1 Prove that the curve y = e* is convex to the x-axis at every point.

Solution : Here

i 2e*
Z;J; = 4e™
Hence
y Z)?; =4e* >0, for all values of x.

Thus, the curve is convex to the x-axis at every point.
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4.5 Criterion for Points of Inflection

We have defined a point of inflection on the curve y = f(x) as a point where the
curve crosses its tangent. We have shown that such a point can only exist if f(x) =
0. The abscissa of the points of inflection are therefore the roots of the equation

f'(x)=0.

But the converse is not true.

From the previous discussion we see that if f"(x) = 0 and f"'(x) # 0.

(Ax)’
3!
This gives opposite sign for positive and negative value of Ax. Hence in order
that the abscissa x corresponds to a point of inflection.

f"(x)=0and f"(x)=0.

OM — RM = F7(x +0AX).

More general form :

Suppose that at P, f"(x)= f"(x)=... = f"P(x)=0 and f"(x)=0.
Then by Taylors theorem,

OM — RM = % £ (x+0AY),

If n is even, then the curve is convex at P to the the x-axis when yf™(x) at P is
positive and concave at P to the the x-axis when f(x) at P is negative.
If n is odd, then the point of inflection are the roots of the equation f™(x) = 0.

Example 4.5.1 Show that the curve y = x° has a point of inflection at x = 0.

2
Solution : Here % =3x” and % = 6x.

: d’ : :
When x < 0 (sufficiently near to zero) # remains negative so that the curve

2

dy
de
positive so that the curve is concave upwards there. Hence x = 0 is a point of
inflection.

becomes

is concave downwards there. But when x > 0 (sufficiently near to zero)
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Example 4.5.2 Examine the curve y = sin x regarding its concavity or convexity to
the x-axis, and determine its point of inflection, if any.

2
Solution : Here Z’x_y =cos x and # =—sinx.
dzy .2 . . . . .
Hence y T —sin” x which is negative for all values of x excepting those which

make sin x = 0, i.e., for x = km, k being any integer.
Thus the curve is concave w.r.t. x-axis at every point except at points where the
curve crosses the x-axis.

2

d’y _
dx?

Hence these points given by x = kr, where 0, crosses the x-axis are points

of inflection.

4.6 Summary

After reading this lesson we came to know a very important significance of
second derivatives. It’s change of values determines the concavity, convexity and
point of inflection of a curve at a point.

4.7 Exercises

1. Find the points of inflection, if any on the following curves.

OV Gy ) ey

(iii) x=3y* -4y’ +5 (iv) x—a)y =ax.
Y Y Y

2. Prove that the curve y= cos™ x is everywhere convex to the y-axis excepting
where it crosses the y-axis.

3. Show that the curve (y — a)® = @ — 2a’x + ax?, (a > 0) is concave to the x-
axis.

4. Show that the curve y = log x is convex everywhere to the y-axis.
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5.1 Objectives

In this chapter the students will learn the followings :

e definition of asymptote.
e type of asymptotes.
e the method for finding asymptotes of a curve.

5.2 Introduction

The concept that a curve may come arbitrary close to a line may introduce the
word ‘Asymptote’ which was introduced by Apollonius of Perga in his work on
conic sections. Asymptotes of a curve are very important to sketch its graph.

43
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5.3 Definition

A point P with co-ordinate (x, y) on an infinite branch of a curve is said to tend
to infinity (P — <o) along the curve if either x or y or both tend to & oo as P traverses
along the branch of the curve.

5.4 Asymptotes

A straight line is said to be a rectilinear asymptote of an infinite branch of a
curve if as a point P of the curve tends to infinity along the branch, the perpendicular
distance of P from the straight line tends to zero.

2 2
Example 5.4.1 For the hyperbola %—%ZL the straight lines y = + x are two

asymptotes as shown in the Fig. 5.1.

Fig. 5.1

5.5 Asymptotes Parallel to Axes

5.5.1. Asymptotes parallel to y-axis for the curve y = f(x) :
Theorem 5.5.1 A necessary and sufficient condition that the line x = a may be an

asymptote to the curve y = f(x) is that |f(x)| —>wasx—>a+0 orx > a— 0 or
X = a

Proof : First suppose that x — a — 0. Let P(x, y) be a point on an infinite branch

of the curve y = f(x). As |f(x)|—>00, ie, y—>+wor —oforx >a-0,it
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immediately follows that P 5 As x — a — 0, the perpendicular distance P7 of P

from the line x = a is |x—a| which tends to zero. Hence x = a is an asymptote.

Fig. 5.2

Similar arguments follows for the cases x - a + 0 or x — a.
Conversely, let x = a is an asymptote. Now asx > a+0orx >a—-0orx —

0, we must say | f (x)|—>00, otherwise P can not tend to o which is essential for

obtaining the asymptote.
In the same ideas we obtain the following :

5.5.2. Asymptotes parallel to x-axis for the curve x = g(y)
Theorem 5.5.2 A necessary and sufficient condition that the line y = 5 may be an

asymptote to the curve x = g(y) is that |g(y)| —>wasy—>b+0ory—>b-0ory—b.
Example 5.5.1 Find the asymptotes parallel to the axes of the following curves :

£ +1 t*

(i) y=f(x)=%, (i) y:f(x):xe%’ (i) ¥="7 V=
Solution : (i) Here

lim f(x)= lim

x—55+0 X540 X — 5

=+

11m f(x)— 11r5n0x 5=

Hence x = 5 is the asymptote parallel to y-axis of the given curve.
(i1) Here

1

hm f(x)— 11 =+oo.

5040 l
X

Hence the curve has a vertical symptote x = 0.
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(i) As 1 >14+0,x >0, y >0 and as t——1-0, x—>oo,y—>—%.

Hence Jy = —% is an asymptote parallel to x-axis.

5.5.3. Asymptotes parallel to the axes for the rational algebraic curve f(x, y) =0

Let the equation f(x, y) = 0, when arranged in descending powers of y be
represented by

S =3"0,(0) + ¥, (x) + 3", (x) + .+, (x) =0, (5.5.1)

where ¢,(x), ¢,(x), ¢,(x),.....,0,(x) are polynomials in x.
Rearranging (5.5.1), we get

¢0<x>+§¢l<x>+§¢2<x>+...+§¢n<x>= 0. (5.5.2)

If now there exists an asymptote parallel to y-axis, say x = A, (a finite real
number), then as x — A, y — o and so (5.5.2) gives

oM =0 (5.53)
i.e., A is a root of the equation
by(x) =0, (5.5.4)
where ¢ (x) is the coefficient of the highest degree terms in f{x, y) = 0.
If it so happens that A, A, . . . are the real roots of ¢, (x) = 0, then x = A,
x = A, ... are the asymptotes parallel to y-axis provided the infinite branches of
the curve corresponding to the asymptotes actually exist.
We now from algebra if A, A, . . . . are the real roots of ¢ (x) = 0, then ¢ (x)
= (x — A)x = A)(x —A) . ... Hencewe have the following rules :

I. The asymptotes parallel to y-axis are determined by equating to zero the real linear
factors in the coefficient of the highest power of y present in the equation Ax, y) = 0.

Note 5.5.1 No such vertical asymptotes exist if the coefficient of the highest power
of y is a constant or not resolvable into real linear factors.

In similar manner we have the following rule :

II. The asymptotes parallel to x-axis are determined by equating to zero the real
linear factors in the coefficient of the highest power of x present in the equation

Ax, y) = 0.
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Note 5.5.2 No such horizontal asymptotes exist if the coefficient of the highest power
of x is a constant or not resolvable into real linear factors.

Example 5.5.2 Find the asymptotes of the curve
Xy —-a* (x> +y) -’ (x+y)+a’ =0,
which are parallel to axes.

Solution : This equation is in algebraic form. Here the highest of x is x* and its
coeflicient is ()7 — @*). Hence the asymptotes parallel to x-axis are y = a, y = — a.
Similarly, we see that the asymptotes parallel to y-axis are x = a, x = — a.

Example 5.5.3 Find the asymptotes, if any, parallel to the co-ordinate axes to the
curve x’ —2x°y+xy’ +x-xy+2=0.

Solution : The coefficient of highest degree of x i.e., of x° is constant. Hence there
is no asymptote parallel to x-axis.

The highest degree term in y is y* and its coefficient is x. Hence the asymptote
parallel to y-axis is x = 0.

5.6 Oblique Asymptotes

Theorem 5.6.1 If an infinite branch of a curve possesses an asymptote y = mx + c,
(m and c being finite), then

m=limL; c= lim (y — mx)

fox” T e

and conversely.

Proof Let P(x, y) be a point on an infinite branch of a curve. The perpendicular
distance of P from the line y = mx + ¢ is

y—mx—c

V14 m?

If the line y =mx+c is an asymptote then d should tend to zero as P — oo,

d=

i.e.,d:%/im_zcﬁo as|x|%<><>’
ie., y—mx—c|—>0 as |x|—>00.
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Hence
c= ‘l%m(y — mx).
Again
) . .1

lim| £—m | = lim(y—mx Jdim—=c0=0.

Hw( X j \X\%(y ) e X
Therefore

m=lim l.
k> x

Conversely, if the given condition holds, them y — mx — ¢ — 0 as P — oo which
means that d — 0 as P — . Hence y = mx + ¢ is an asymptote.

Example 5.6.1 Examine the asymptotes of the curve Y :_x3icl +3x.

Solution : Since

lim y = lim (3—xl+3x):+oo

x—14+0 x>0\ X —

. . 3x
lim y = lim {(——+3x|=—,
x—1-0 x>1-0\ x —1

the curve has a vertical asymptote x = 1.
Moreover for the oblique asymptotes

m=1lim 2 == lim (i+3)=3,
o x el —1

¢ =lim(y—mx)==lim (3—x1+3x—3x)=3.

pae o\ X —

Therefore the straight line y = 3x + 3 is an oblique asymptote.

5.7 Asymptotes Non-parallel to y-axis of the Rational
Algebraic Curve f(x, y) =0

Let the equation of the curve f(x, y) = 0 be arranged in groups of homogeneous
terms as

flx,y)= (aox” +ax"y+ax"y 4+ any”)
+ (blx”’l +b, X"y +b X"y + bnynfl)

+ ..+l x+1y)+k, =0,
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which may be written as
n y n—1 y
= |+ = +..+ +
xd)n(xj X nl(xj xd)l( j ¢0( j > (571)

where 0, (%) denotes an algebraic polynomial in (%) of degree 7.

+

Dividing by x" and then make |[x| — oo, we suppose that ‘1‘1m—:m We then

obtain

d)n(m) = O?
which gives the slopes of asymptotes correponding to different branches of the curve.
To get ¢ corresponding to m, we put y — mx = k, where k — ¢ as x| — oo

l:m+£ in (5.7.1) we obtain
x x

ofe o fod

Putting

X

. +xd)l(m+§)+d)0(m+§)20. (5.7.2)

Expanding Taylor’s expansion, we have

{d) (m)+— <|>(m)+ <|>(m)+ }

{¢ A(m)y+2 £y, 1(m)+ <|> A(m)+ }

= . .=0 (5.7.3)
Arranging (5 7 3) we get

X", (m) +x"" (k¢ (m) + ¢, ,(m)}

e {"72¢;<m>+k¢;l<m>+¢nz<m>}

+...=0 (5.7.4)
Since ¢, (m)=0, dividing (5.7.4) by x" ' and making |x| — oo, we get

ct/ (m)+¢, (m)=0, [since k = c as |x| — oo] (5.7.5)
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or, €= —% provided ¢/ (m) = 0. 5.76)
Thus y= mx—%

is the asymptote corresponding to the slope m, provided ¢ (m)=0.

Note 5.7.1 If ¢/ (m)=0but ¢, ,(m)=0, then there is no asymptote corresponding to
the slope m.

Note 5.7.2 If ¢/ (m)=0=4¢, ,(m),then (5.7.5) becomes an identity and then dividing
(5.7.4) by x"~ 2 and making |[x| — oo, we have

%d)';(m)Jrcd);l(m)er)nz =0, [since — ¢ as|x| —> o] (5.7.7)

which gives two values of ¢, in general, provided ¢'(m)=0. Thus, we have two
parallel asymptotes.

Note 5.7.3 The cases explained in Note 5.7.1 and Note 5.7.2. be treated similar
manner for the next terms in the equation (5.7.4).

Remark 5.7.1 The polynomial ¢ (m) can be obtained by putting x = 1 and y = m in
the ™ degree homogeneous polymonial of f(x, y).

Example 5.7.1 Find the asymptotes of the curve xy? —y*—x*=0.

Solution : The coefficient of highest power of y is (x — 1). Hence x = 1 is a vertical
asymptote of the curve. The cofficient of highest power of x is constant. Hence there
are no horizontal asymptotes.

Putting x = 1 and y = m in highest degree (third degree) terms (x)* — x°) to get
¢y(m)=m’~1; ¢(m)=2m
d,(m)=0 gives m=1, —1.

Putting x = 1 and y = m in the terms of 2nd degree (— )*), we have

d)z(m) =—m”.
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1 .
Now for m=1,¢ = —d),z( ) =—. Hence y= XL is an asymptote of the curve.
o5 2 2
F m:—lc:—d)z(_l):—l. H S th tote of th
or ) 0.1 5 ence V > is another asymptote of the

curve.

Example 5.7.2 Find the asymptotes of the curve x*+x’y—xp> -y’ +x*—y* =2.

Solution : The coefficients of highest power of x and y are constants. Hence there
are no horizontal and vertical asymptotes.

Putting x = 1 and y = m in the highest degree (third degree) terms
(x3 +x7y—xy* —y3) to get
b, (m)=1+m—-m*—m’, oi(m)=1-2m—3m’
d,(m)=0 gives m=1, -1, —1.
Putting x = 1 and y = m in the terms of 2nd degree (x* — )?), we have
b,(m)=1-m".

¢, (1)

Now for m=1¢=~ 0. =0. Hence y = x is an asymptote of the curve.
3

For m = —1, since ¢,(—1)=0=¢,(-1),the value of ¢ can be obtained from

CHCD+ D+, =0

2

2
or 7.4+c.2+0 =0.

Thus, ¢ =10, -1.

Hence y = —x and y = —x —1 are two parallel asymptotes of the curve.

5.8 An Alternative Method of Finding Asymptotes of
Algebraic Curves

Let the equation of an rational algebraic curve of n™ degree be represented by
P,+0,,=0, (58.1)
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where P is homogeneous polynomials in x and y of degree n and O | contain the
terms of degree not higher thaan n — 1.

L. Let y — m x be a non-repeated factor of P . Then the equation (5.8.1) can be written
as

(y-mx)F_ +0 =0, (5.82)
where F/_is homogeneous polynomials in x and y of degree n — 1.

Clearly m, is a root of ¢,(m)=0. Hence there exist an asymptote y = m x + ¢,

provided we can determine the value of ¢,. Using art. 5.6 and the equation (5.8.2) we
obtain

¢, =lim(y—mx)=—lim %,
¢[00 |00 Ez—l

where to determine the limiting value, we use ‘}C‘lg}o% =m,. Thus, the asymptote under

this discussion is

y=mx—lim %

x>0 i

For each non-repeated linear factor of the #™ degree homogeneous terms we may
proceed in a similar manner.

I If the n* degree homogeneous terms in the equation of the curve contain (y — m,x)*
as a factor and (n — 1)™ degree homogeneous terms do not contain the factor y — m x,
then there is no asymptote corresponding to the slope m,.

IIL. On the other hand, we could write the equation of the curve in the form
(y=mx)’F, ,+(y-mx)P, ,+0,, =0, (5.8.3)

where /_ contain the terms of degree not higher than » — 3. Then on similar
arguments as in case I,

P, .0
—mx)* +(y—mx) lim =22+ lim =22 =0
(y-—mx)" +(y—m, )\x\ﬁw 7R

-2
will be the pair of parallel asymptotes.

IV. We can proceed exactly in a similar manner if the #™ degree terms contain
(y — mx)’ or higher power of (y — m x) as factor.
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V. If in I, we have the factor (ax + by + ¢) instead of (y — m x), then the asymptote
will be

in_O

n-1

ax+by+c+lim

o0 ’

where lim2=-4,
fomx b

Example 5.8.1 Find all the asymptotes of x*—2x*y+xy* +x* —xy+2=0.

Solution : The coefficient of highest power of y is x. Hence the asymptote parallel
to y-axis is x = 0.

The coefficient of highest power of x is constant. Hence there is no asymptote
parallel to x-axis.

Factorizing the terms of third degree, the given equation becomes

x(y—x) —x(y—x)+2=0.

Hence the parallel asymptotes will be given by

y-x)°—(y- x)l‘lm +11m2:O

©X Fow x

2

ie, (y-x'-(y-x)=0,

o, y—x=0 y-x-1=0.

2

Thus, the three asymptotes are x =0; y —x=0; y—x—-1=0.

5.9 Asymptotes by Inspection

If the equation of a curve be of the form
F+F =0,

where £ is a polynomial of degree n and /¥, is a polynomial of degree (n — 2) at
the most and if 7 can be broken up into » distinct linear factors so that when equated
to zero they represent n straight lines, no two of which are parallel, then all the
asymptotes of the curve are given by /= 0,

2 2
e.g., the hyperbola %—y—zl have asymptotes

b’ §

Q=
®|‘<
o
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5.10 Summary

Throughout this unit we have learnt the meaning of asymptotes of a curve. We
also studied several types of asymptotes and discussed the method to find out the
equation of asymptote of a curve.

5.11 Exercises

Find the asymptotes of the following curves :
(i) y’—x’y-2xp" =2x" =Txy+3y" +2x" +2x+2y+1=0
(i) 2%’ +3x’y—3xy°-2y°+3x* -3y +y =3

(i) ¥’ +3x’y—-4y’—x+y+3=0

(iv) (x—y+2)2x-3y+4)(4x—-5y+6)+5x—6y+7=0
V) y’=x(@ -x%)

(Vi) 4x’-3x’y—y’ +2x* —xy—-y°-1=0

(Vii) y(x—)) = y(x—3)~2=0

(viil) (x* =y} x> —9y*)+3xy—6x-5y+2=0

(x) (y+x+D(y+2x+2)(y+3x+3)(y—-x)+x>+°-8=0

(X) (x+y)Y(x+2y+2)=x+9y+2.
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Unit-6 1 Envelope

Structure

6.1 Objectives

6.2 Introduction

6.3 Family of Curves

6.4 Definitions

6.5 Envelopes of One Parameter Family of Curves
6.6 Envelope of Two Parameter Family of Curves
6.7 Summary

6.8 Exercises

6.9 References

6.1 Objectives

After going through this unit, the learners will be able to :

e understand the definition of envelopes.

e determine the envelopes of family of curves.

6.2 Introduction

A curve which touches each member of a given family of curves is called
envelope of that family. In this chapter we shall study the idea of envelope and its
determination.

6.3 Family of Curves

Let (x—o)®+y*> =a’, where a and o are fixed in a certain moment, but if we

allow o to take a series of values keeping a fixed, then we have a series of cricles
of equal radii a. A system of curves fromed in this way is called family of curves
and the quantity which takes a series of values is called a parameter. We write the
equation of a one parameter family of curves by a symbol

JCx.y,0)=0.

55
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We may think a two or three or more parameter family of curves. The equation
of a two parameter family of curves is of the form

f(x,y,0.B)=0,
where o and 3 are arbitrary parameters : e.g., (x—a)* +(y—p)° =1is a two parameter

family of circles of radii 1. Also (x—a)’+(y—B)* =c’ gives the three parameter

family of circles with center at any point of the plane and with any radius, i.e., the
family of all circles on the plane.

6.4 Definitions

Definition 6.4.1 A point P(a, b) is a singular point of a curve
f(x,y,0)=0 (ais fixed),
if it satisfies the curve as well as the two equations
g_ 0 and o _ 0.

ox oy

The point P is said to be ordinary point if at least one of the two partial derivatives
f.» [, is not zero at (a, b).

Definition 6.4.2 The characteristic points of a family of curves
fx, v, o) = 0 (o 1s arbitrary)
are those points of the family where the two equations

fy.=0 and L(x, y,0)=0
oo
simultaneously hold.

0 )
Note 6.4.1 If f{x, y, &) = 0 and %(x,y, a)=0 both hold for a point where f, = 0

and f, = 0 then the point is a singular point and therefore not a characteristic point.

Example 6.4.1 Find the characteristic points of the family of circles

(x—a)’ +y* =a’ (a is arbitrary).

Solution : Solving the equations

f(xa Y, a)E(x_a)2+y2_Cl2 =0



NSOU « CC-MT- 03 57

and %('xa ya OC)E—z(X—OL):OJ

we get the points (o, = a). It can be easily shown that these points do not satisfy 7,

=/J, = 0. Hence (o, + a)are the characteristic point of the family.

Definition 6.4.3 The envelope of a family of curves f(x, y, o) = 0 (o is arbitrary) is
the locus of their isolated characteristic points.

N

envelope

Fig. 6.1

Thus, envelope of a family of curves f(x, y, &) =0, (0 being parameter) is a curve
which touches every member of the family i.e., each point on the curve is touched
by some member of the family.

6.5 Envelopes of One Parameter Family of Curves

If there exists an envelope of a family of curves, its equation may be obtained
in either of the following ways :
I. Eliminate o between

f(x,y,0)=0 and %(x, y,0)=0. (6.5.1)

The elimination (an expression in x and y) is the envelope.

II. Solve for x and y in terms of o from the equation (6.5.1). It will give the
parametric representation of the envelope.

III. For an algebraic curve, the equation of envelope obtained by eliminating o
between

f(x,y,0)=0 and %(x, y, o) =0. (6.5.2)
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is exactly the condition that the relation f{x, y, ot) = O, considered as an equation in
o, has a repeated root. Thus if

f(xaya(x) = 14(')‘:7.)/)(xz +B(xay)a+c(xay) = O’
then the envelope is given by B> _44C =0

Example 6.5.1 Obtain the envelope of the family of ellipses %Jr(ai/ia)z:la o
being the parameter.
Solution : We have
2 2
L =1 (6.5.3)

o’ (a—-a) -

Differentiating w.r.t. o, we obtain

—2x L -=0.
o (a-a)
Thus,
x>y
o> (a-a)’
Therefore
x2 y2 x2 y2
ol _(@=0) o (@=o) _1 [py (6.5.3)]
o (a—o) a a
Hence

o= a%x%; (a—a)= a%y%.
Putting this values in (6.5.3), we obtain

2
X Y
Tt = =1
a’xh a/yé

2
i.e., x%+y% :a%.
This is the required envelope.

Example 6.5.2 Find the envelope of the system of parabolas Ax*+A’y =1 being

parameter.
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Solution : Since the equation of family is A’y +Ax*—1=0, the quadratic form of

parameter, the equation of envelope of the family is x*+4y=0.

6.6 Envelopes of Two Parameter Family of Curves

Let
S, y,a,B)=0 (6.6.1)
be the family of curves involving two parameters o and B connected by the relation
o (o, B) = 0. (6.6.2)

We can find out the envelope by two methods.

I. First we express [ in terms of o from the equation (6.6.2) and then substituting
it in the equation (6.6.1) to obtain the equation (6.6.1) in one parameter family of
curves. Hence as before the envelope of the family of curves will be determined.

I1. Differentiating both of (6.6.1) and (6.6.2) partially with respect to o (o0 being
regarded as independent variable whereas 3 is dependent variable) we obtain

of of dp o obdp _
£+%%—O and £+%%—O.

Eliminating % from the above equations we get
o o _o [
oo/ G0~ OB/ OB (6.63)

Now eliminating o and  from (6.6.1), (6.6.2) and (6.6.3) we get the required
envelope of the family of curves.

2 2
Example 6.6.1 Find the envelope of the family of ellipes %-ﬁ-;’/—z: I, where the
parameters are connected by a + b = ¢, ¢ being constant.
Solution : Let the family of ellipse be
X2y
=+==1 6.6.4
aZ b2 2 ( )

where parameters are connected by the relation

a + b =c, c being constant. (6.6.5)
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Differentiating (6.6.4) and (6.6.5) w.r.t. a, we get
Y2/ a)+ yz(—2/b3)% -0

db
1+=—=0.
and + I

Eliminating %, we obtain

Xy
Z B
. Xla> _y et _xat+yt et 1
ie., . - - P = [from (6.6.4) and (6.6.5)]

Therefore g =(cx*)” and b =(cy?)”. Hence from (6.6.5), we get
() + ()" =c
which is the required envelope.

Example 6.6.2 Find the envelope of the family of lines §+%=L where the
parameters are connected by a + b = ¢, ¢ being constant.

Solution : Let the family of lines be

x Y
—+=—=1
=l (6.6.6)
where parameters are connected by the relation
a + b = ¢, c being constant. (6.6.7)
From (6.6.7), we get b = ¢ — a. Then the family of curves becomes
x Y
RIS A |
=1, (6.6.8)

where a is only one parameter.
From (6.6.8), we get

x(c—a)+ya—a(c—a)=0
o, a+a(y-x—c)+ex=0,
which is a quadratic equation of the parameter a, Hence the required envelope is
(y—x—c)’ =4ex.
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6.7 Summary

In the unit we discuss the definition of envelope of a family of curves and the
method to work out the equation of envelope of the family of curves.

6.8 Exercises

Find the envelopes of the following families of curves :
(1) y=mx+am’ m being parameter

(i) (x—a)’+(y-a)’=2a

2

y2

(111) %er—zz I, where @” + b" = ¢", ¢ is constant
2 2
X b
(iv) 5+%=L where 7—2+W= 1,/, m are constants

(V) y=mx+a’m® +b

(vi) x cos a0 + y sin o0 = 4.
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7.2 Objectives

After reading this chapter, the learners will be able to :

e draw graph of a curve.
e know various properties of a curve.

7.1 Introduction

In this unit we study the systematic procedure to draw or sketch the graphs of
curves given by the equations which are either in Cartesian Co-ordinates system or
in Polar Co-ordinates system. With the knowledge of tangents, normals, curvature,
asymptotes, singular points, extreme points, symmetry of curves etc., we may obtain

a good idea to trace the shape of a curve.

7.3 Procedure of Curve Tracing in Cartesian Co-ordinate

System

To draw a curve we need the following observations :

L. Symmetry : A curve is symmetric w.r.t.

(1) the x-axis, if its equation contains only even power of y and hence remains

unchanged if y is replaced by —y.

(i1) the y-axis, if its equation contains only even power of x and hence remains

unchanged if x is replaced by —x.
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(iii) the line y = x, if its equation remains unchanged when x and y are interchanged.

(iv) the line y = —x, if its equation remains same when (x, y) is replaced by (-,
—X).

(v) the origin, if its equation remains unchanged when (x, y) is replaced by (—
X, =)).

II. Intercepts : To obtain the points where the curve intersects the co-ordinate axes

(1) put y = 0 in the equation to get x intercepts.
(i) put x = 0 in the equation to get y intercepts.

ITI. Passes through origin : The curve passes through the origin if its equation
satisfy x = 0 and y = O simultaneously. If the curve passes through the origin, write
down the equation of tangents at origin. If the origin is singular point, find the nature
of singularity, cusp of various species, node, or isolated. Also check the origin is
whether multiple point of higher order than two or not.

IV. Concavity, convexity or point of inflection : We determine the points where
the curve has concavity, convexity or point of inflection.

V. Extreme points : We determine the points where the curve has extermum. We
also determine the intervals where the curve increases or decreases. In fact, y increases

dy . .. : .
or decreases for those values of x where d_i is positive or negative respectively.

VI. Region of existence : By solving the equation of curve for one variable in terms
of other and thereby we can find out the set of values of one variable which make
the imaginary. In this way we can find the region of existence of the concerned curve
to be traced.

VII. Asymptotes : We determine the vertical or horizontal or oblique asymptotes if,
any, to the curves having infinite branches. Also we determine the points where these
meet the curve and the sides of the curves towards which this lie.

VIII. Periodicity : For trigonometric functions we check it is whether periodic or
not. It will enable us greatly to sketch the graph of the curve.

Example 7.3.1. Trace the curve y*(x—1)=x".
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Solution : The curve is symmetric with respect to x-axis. The intercepts are x = 0
and y = 0. The curve exists in the range —o < x <0and x >1and for all values of y.

For the branch y=x ﬁ, the point x = 3/2 gives the minimum point.

yAx-1)-*=0

Fig. 7.1

There is no point fo inflection. This branch is convex to the x-axis. The lines x

=1,y= x+l, y= —x—% are asymptotes. The origin is a cusp of first species. y =

2
0 is the cuspidal tangent. Thus, the graph of the given curve is shown in Fig. 7.1.

7.4 Procedure of Curve Tracing in Polar Coordinate System

We also observe the following characteristics in tracing a curve r = f(0) or f(r,
0) = 0.

I. The curve passes through the pole if » = 0 for some values of 6.

IL. If the values of » does not exist or becomes imaginary for some values of 6, say
0., 6, where 6, < 6 <8, then the curve has no portion between the lines 6 = 8, and
0=0,

I If a and b are respectively the minimum and maximum values of », then the
curve lies wholly within the circles » = a and r = b.

IV. Observe the variation of the values of r for increasing and decreasing values of
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. . . . .. ar .
0 from 0° in the anticlockwise and clockwise senses. In fact, if d_6> 0,  increases

) .. dar )
as 9 increases and if d_6> 0, 7 decreases as 0 increases.

V. When 6 is replaced by — 0, if it is observed that the equation remains unchanged,
we say that the curve is symmetric about the line 6 = 0. If 0 is replaced by © — 6,
and the equation remains unchanged, the curve is symmetric about the line 6 = g

Also the curve is symmetric about the pole if the equation of the curve does not
change when 0 is replaced by © + 6.

VL Let ¢ be the angle between the radius vector and the tangent to the curve at a
point (r, ). Then we know that
_,do
tang =r o
If ¢ = O for some values of 6, say 8, then the line 6 = 8, is a tangent to curve
at 8 = 0, and if ¢ = n/2 for some values of 6, say 6, then at the point 6 = 8, the
tangent is perpendicular to the line & = 6.,

Example 7.4.1 Trace the curve r = a sin 36, a > 0 (Rose-petal).

Solution : We observed the followings :

. _ o 2t 4n 5n

(I)F—Ofore—O, 37377-[) 373)"'

Here sin 36 is periodic function of period 2w, hence we consider only those
values of 6 ranges from O to 2w, whreas the remaining values of 0 yield no new

branches of the curve.

(i) We also observe that the curve passes through the pole.

do r
Here tan ¢p=r%2=—TI
(ii1) Here tan ¢p=r i ——
. T 2% 4n Sm
Hence ¢ = 0 for r = 0 and the corresponding values of 0 are O, 3730303

Thus 6=0,0= %, 0= 2?75, 0=m 0= 4?75, 0= S?TC are the tangents to the curve at pole.
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(iv) Replacing 6 by m — 6, it follows that the equation of the curve remains

. . ) T
unchanged and hence the curve is symmetric about the line 6 = 5

(v) As — 1 <sin 30 < 1, the maximum value fo 7 is a. Consequently, the curve

lies wholly within a circle of radius a.

(vi) Table of variation of the values of » and 0 :

.. T _T kg T T
0: 2 3 6 0 6 3 2
v a 0 —-a 0 a 0 —a

Thus r increases from O to a when 6 increases from 0 to 7/6; r then decreases
from a to 0 when 0 increases from 7/6 to 7/3 and 7 increases numerically from O to
a, when 0 increases from /3 to m/2, the portion of which lies in the third quadrant.

The curve being symmetric about the line 6 = w/2, we consider the table of
variations for  as 0 increases from — 7/2 to 7/2.

With all these facts which we trace the curve as given in Fig. 7.2.

Fig. 7.2

Note 7.4.1 The curve r = a sin n9, a > 0, n = an integer (rose-petals), traces is similar
loops as given in Fig. 7.2 lying wholly within a circle of radius a with center at the
origin and are symmetric about the pole. In case » be odd, there are n-loops and if
n be even, the number of loops are 2n.

The order in which loops occurs as 0 increases from O to 2m are mentioned in
the figure by numbers.
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In the following Fig. 7.3 we trace the curve » = a ain 20, a > 0.

Fig. 7.3

Example 7.4.2 Trace the curve > = a* cos 26 (Lemniscate of Bernouli).
Solution : Here the curve satisfies the following conditions :

(1) Replacing 6 by — 6 and ® — O, it is observed that the equation remains

unchanged. Hence the curve is symmetric about the intial line and the line
0 = n/2.

. T 3T 5S¢
- =+ 2% DN

(i) When r =0, © T T 1

(iii) Table of variations fo » and 0 :

. = _zT T =z
0 : 4 6 0 6 4 i
a a

(iv) As maximum of cos 20 is 1, maximum value of 7 is a and the curve lies
wholly within the circle fo radius a with center at the pole.

(v) Here cos 20 is positive for —%<9<% and %<9<% and we get real

values of 7 there at. But for 0 satistying % <B< %, cos 20 becomes negative

and as such » becomes imaginary.

) b T
Also r increases for 1 <0<0 and r decreases for 0<0< e
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Thus the curve has two similar loops and we trace the curve as given in the
Fig. 7.4.

v

0l TN

%

¥

Fig. 7.4

7.5 Some Well Known Curves

1. Cycloid : x = a(0 — sin 0), y = a(1 — cos 0).

Fig. 7.5

2. Astroid : x = a cos’ 0, y = a sin’ 0 (x%+y% :a%).

£33 4 421 w g2

Fig. 7.6



NSOU « CC-MT- 03 69

3. Cardioid : = a(1 — cos 9).

Y

=

r=all ~costl)

Fig. 7.7
4. Follium of Descartes : x> + )° = 3axy.
&Y

N,

\Q X

8’+]’-M

Fig. 7.8

5. Equiangular Spiral : r = ae® “'?,

l’ﬂﬁt"m-

Fig. 7.9
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7.6 Summary

In this unit we discuss the procedure to draw a graph of a given curve in Cartesian
or Polar co-ordinate system. We draw the graph of curves using their properties. We
sketched also some well known curves.

7.7 Exercises

Trace the following curves :

(i) x’+y’=3axy (Folium of Descartes)
(ii) (a2 + xz)y =a’x
(i) x°+y° =5a’x"y
(iv) x=a(t+sin?), y =a(l-cost) (Cycloid)
(v)y r=a+ bcos 9, (a<b)

(vi) y = cosh x/c

(vil) » = asin O tan 0.
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8.1 Objectives

After going through this unit, the learners will be able to :
e understand the L Hospital’s Rule.

o determine the limits of indeterminate forms.

8.1 Introduction

In this unit we investigated a very important application of mean value theorem.

i L) 200
=ay(x) - limy(x)
we face with the problem like 0/0 which is meaningless. Such a case is known as
Indeterminate form.

In the case > 1f both the limits }Cig;d)(x) and }}3} W(¥) are zero then

Other indeterminate forms are oo/oo, 0 Xoo, oo — oo, 0° 17 and «°. For evaluation
of indeterminate forms oo/ or 0/0 we shall use a particular device known as
L’Hospital’s Rule.

8.3 L’Hospital’s Rule

8.3.1. 0/0 form :

x
The quotient % of two functions f(x) and g(x) is undefined at x = a if g(a)

= 0. But if fla) = 0 = g(a), then the ratio is of the indeterminate form 0/0 and we can

71
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determine the limit of the ratio at x = a by the conception of derivatives. In

(x)
g(x)
this connection we state a basic theorem known as L’Hospital’s Rule.

* I Hospital’s rule : If two functions f(x) and g(x) are
(i) continuous in the closed interval [a, a + h],

(i1) derivable in the open interval (a, a + h) and

(i) lim f(x)=0= lim g(x), 4 > 0 is a suitably small number,
then,
fim L _ iy L

x—a+0 g(x) x—a+0 g (x) ?
provided the limit of the right hand side exists.

Proof : From Cauchy mean value theorem we obtain
JS)-f@ _ fi©)
gx)-gl@ g’

e, L2-L8as f@y=0=g(@

fim L6 _ ji £©.
Therefore nJ}O g(x) a0 g(c)
Again since a < ¢ <X, ¢ »>a + 0 whenx — a+ 0, we get
m L0 i LO gy SO
lim lim
x~>a+0 g(x) x—a+0 g (C) x—>a+0 g (x)

a<c<x<a+h

Note 8.3.1 It can be similarly shown that

SO _ iy L
xlgzno g(x) x~>a 0 g (x)
LS

w0 g(X)  xa g'(x)

') f(x)
Note 8.3.2 If LHO (%) does not exist, then we should not conclude that xggﬂo 2(%)

does not exist.
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Note 8.3.3 L’Hospital’s Rule also holds when a = oo
*Generalization of L’Hospital’s Rule : If also LIE(} f(x)=0= LIE(} g'(x),
then
fim L) i £ i /7).
x—a g(x) x—a g(x) x—a g (x)

provided the last limit exists.
We continue in this manner until one of the derivative g”(a) # 0.

log(1+x)

Example 8.3.1 Evaluate the limit lig(} ”

Solution : Here
hmf(x) imM [ fo m}
=0 g x) x—0 X 0
Thus, by L’Hospital’s Rule

0 S
xﬁO g(x) x>0 g(x)
- limL
=0l +x
= 1.
tanx—x

Example 8.3.2 Evaluate the limit lim
S0 X —sinx

Solution : Here

hmf( )—1 fanx - x [% form}.

x>0 g(X) x50 X—sinx

Thus, by L’Hospital’s Rule
PACI R (€))]

lim<—~ =Ilim
x>0 g(x) x>0 g(x)

i secix =1 [9 fom}
x-0 |—cosx | O

2
2sec” x tan x

=lim -
£0 sin x
=lim2sec’ x
x—0

=2
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8.3.2. oo/co form :

If two functions f{x) and g(x) are
(i) continuous in the closed interval [a, a + 4],

(i1) derivable in the open interval (a, a + h) and
(iii) LIE(} Slx)=c0 :Li{g 8(x), where 4 > 0 is a suitably small number,

then,

0 )
Mo g’

provided the limit of the right hand side exists.

. logx?
Example 8.3.3 Evaluate the limit hn(} logcol? x °
+>0 logcot” x

Solution : Here

2
lim £ — fiy 198X [ﬁ form}.
x>0 g(x) x>0 logeot”x Loo

Thus, by L’Hospital’s Rule
O o S

lim<£L=-, =

=0 g(x) w0 g'(x)

1
= 2x

=lim— 5
x50 2 cot x(—cosecx)

cot?x

_ _[im SinXcOS X [Q form}
x—0 X 0

2 s .2
. COS " X—SIn X
:—hm—
x—0 l

= -1
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8.3.3. o0 — oo from :

Let f{x) and g(x) be two functions such that lim f(x) = =1limg(x). To find

ngal{f (X)—g(0)}, we take

3 _1/g(x)-1/ f(x)
10— g =4S L

which is of the form 0/0 and can be evaluated by the method discussed in 8.3.1.

. 1 2
Example 8.3.4 Evaluate the limit lxlg(}{;_ @ +l)}

Solution : Here

lim {l 2 } [o0 — oo form]

0 | X x(e*+1)

. e —1 0

— lim —form
=0 x(e*+1) LO

= limL sing L’ Hospital’s Rule
=0 ¢* + 1+ xe” [u 8 P " ]

1

8.3.4. 0 X oo form :

Let f{x) and g(x) be two functions such that lim f(x) =0 and lim g(x) =

Xx—a X—>x

To find igma{f (¥)g(x)}, we take

F0g09 =

which is of the form 0/0 and can be evaluated by the method discussed in 8.3.1.

Example 8.3.5 Evaluate ljgll(l - X) tan%.

Solution : Here

linll(l —X)tan % [0x o0 form]
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_ 1-x 0
= lim — form

x>l Otﬂ O

2

. -1 s URT,

- lgll_ﬁcosec = [by L” Hospital’s Rule]
2 2

_ 2

=

8.3.5. 0%, o, 1™ forms :

The three exponential forms 0°, «°, 1*~ are dealt with by taking their logarithms
and each of the forms is reduced to the form 0 x o already discussed in 8.3.4.

1

Example 8.3.6 Find the limit lin(}(taﬂ)xz.
x—> X

Solution : Here the limit is of the form 1~.

tan x
X

tan x

Let y:( )xz. Then log yz%log( ) Thus

o g(tan x)
limlogy = lim——*~ 0 form
x—=0 x—0 x2 O ’

Using L’Hospital’s Rule we get
lirrollog y

¥ xsec’ x—tany
. 2
JimL20X X =lim—=——
x50 2x -0 x7sin 2x

xX-— lsin 2x 0
2 [6 form}

— lim 1—cos2x |:
0

0
- form} ' ) o1
50 2xsin 2 + 2> Cos 2x [using L’Hospital’s Rule]
i 2sin 2x ) ‘
= lim > )
x>0 28in 2x + 4x cos 2x + 4x cos 2x — 4x” sin 2x [using L"Hospital’s Rule]

_ sin 2x [O

im— — = form}
x-0 81N 2x + 4xcos2x — 2x~ sin 2x 0
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llm 2 COS 2x
x50 2.¢08 2x + 4 ¢cos 2x — 8x sin 2x — 4x sin 2x — 4x? cos 2x
[using L’Hospital’s Rule]

Thus, Lig}logy = % We know that lxiirglogy = log(lxigy), Therefore, log (lxlg(} Y ) = %

x—0 X

. 1 . nx fz 1
Hence limy = e’ or, hm(ta j = e
x—0

8.4 Summary

In this unit we have learnt a very important technique to evaluate the limits in
the indeterminate forms. We gave some examples to understand the technique.

8.5 Exercises

Evaluate the following limits :

i 2x
(l) lxlg(} xX—sinxy (11) xlg} log(l + X)
i 1. x+logx ] . {1 1
(ii) }g?o xlogx (iv) lxlg(} (; ~sin x)
lim 1 o i lim(x—sinx)
(v) i3 (vi) m\ =5
. [ef—e " —2log(l+x) s 1 [ log(1—x)
(Vll) lxlg(} [ xsinx (Vlll) lJ}LI} cos(nx) '
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9.1 Objectives

After studying this lesson the readers should be able to :
e understand the concepts related to business economics and life sciences with
the applications of calculus.

e apply the techniques of differentiation to solve business economics and life
science problems.

9.2 Introduction

Calculus is a very important part of our real life. But many of us ask how
calculus help us in real life. In this unit we are going to discuss how it is useful in
our real life. Calculus is used to determine the right time for buying and selling of
products. It helps economists to grow up their business economics.

Biologists also make use of calculus to determine the growth rate of bacteria,
modeling population growth and so on. In medical field calculus is also useful.

Calculus is required by architects, engineers to build roads, bridges, tunnels,
building etc. and without the use of calculus our real life is unsafe.

9.3 Definitions Related to Business Economics

Total Cost (TC) : Total cost is the combinations of fixed cost and variable cost of
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output. If the production increases, only variable cost will increase in direct proportion
but the fixed cost will remain unchanged within a relevant range.

Total Revenue (TR) : Total revenue is the product of price/ demand functions and
output.

Profit (P) : Profit are defined as the excess total revenue over total cost. Symbolically
it can be expressed as

P =1TR - 1C.
The rules for finding a maximum point tell us that P is maximized when the
derivative of the profit function is equal to zero and te second derivative is negtive.

If we denote the derivatives of the total revenue and total cost functions by d7R and
d1C, we have P will be maximum when d7R —d7C = 0.

Hence the derivative of the total revenue function must be equal to the derivative
of the total cost function for profit to be maximized. Hence

Profit maximizing output = d(proﬁtdf;mctlon).
2
Therefore in case of maximization, the conditions are %: 0 and Zx]; <0.

Similarly, we have

C d(total cost function
Cost minimizing output = ( 4 )

dx >
2
and the conditions of minimizing are %: 0 and ddxzc >0.

Merginal Cost (MC) : Marginal cost is the extra cost for producing one additional
unit when the total cost at certain level of output is known. Hence it is the rate of
change in total cost with respect to the level of output at the point where the total

dic

cost is known. Therefore we have MC = i

Marginal Production (MP) : Marginial production is the incremental production
i.e., the additional production added to the total production (TP), i.e.,

dTP
MP =—.
dx
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Marginal Revenue (MR) : Marginl revenue is defined as the change in the total
revenue for the sale of an extra unit. Hence it is the rate of change in total revenue
with respect to the quantity demanded at the point where total revenue is known.
Therefore we have

dTR
MR ==—"—
dx ’

where total revenue is the function of x, the quantity demanded.

Example 9.3.1 Let the profit function of a company is given by P = flx) = x —
0.00001x* where x is units sold. Find the optimal sales volume and the amount of
profit to be expected at that volume.

Solution : Here P = f{x) = x — 0.00001x*>. The profit will be maximum if dP _

dx
d*P 0
and 0 <0.
Now
flx—P —1-0.00002x.
Hence
dP
ar _ o
dx

= 1 -0.00002x =0
= x = 50000 units.

2
Also aa,’x]; =-0.00002 <0. Hence The profit will be optimum for the sales of

50000 units and the profit will be
P = 50000 — 0.00001.(50000)*

= 25000 currency units.

9.4 Applications in Life Sciences

9.4.1. Density Dependent (Logistic) Growth in a Population

Biologists have seen that the growth rate of a population depends not only on the
size of the population but also on how crowded it is. Constant growth is not sustainable.
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When individuals have to compete for resources, nesting sites, mates, or food, they
cannot invest time or energy in reproduction, leading to a decline in the rate of
growth of the population. Such population growth is called density depndent growth.

We suppose that the growth rate of the population is G, which depends on the
density of the population, N as follows :

K-N
N)=rN
)
Here N is the independent variable and G(N) is the function of interest. All other
quantities are constant :

e 7 > 0 is a constant, called the intrinsic growth rate.

e K > 0 is a constant, called carrying capacity. It represents the population
density that a given environment can sustain.

Example 9.4.1 (i) Find the population density N that leads to the maximal growth
rate G(N).

(i1) Find the value of the maximum growth in terms of 7 and K.
(1)) For what population size is the growth rate zero ?

Solution : We can rewrite G(N) as

K—-N I a2
G(N)—rN( Ve ) rN KN’

from which it is apparent that G(N) is a polynomial in powers of N, with constant
coefficients » and #/K.

(1) To find critical points of G(N), we find N such that G(N) = 0, and then test
for maxima :

K
‘Ny=r-2LN=0 -4
G(N)=r-2N S>N=2

Hence N = % is a critical point, but is it a maximum ? We check this as follows :
G"(N) = —2— <0.

Thus N = % is the maximum point. Therefore the population density with the

greatest growth rate is K/2.
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(i1) The maximal growth is give by
GK12)=rK/2—r/K(K/2) :%.

(i) To find out the population size at which the growth rate is zero, we solve
the equation

K K

There are two solution, one is N = 0 and other is N = K. The solution N = 0 is
biologically interesting in the sense that life can arise on its own. So no population
arises to logistic growth. The solution N = K means that the population is at its
carrying capacity.

9.4.2 Cell Size for Maximum Nutrient Accumulation Rate
The nutrient absorption and consumption rates, A(r) and C(r), of a simple spherical
cell of radius r are

G(N) = rN(u) —N-L N =0

A(r) = kS = 4k, Cry= k) = gnk2r3,

for k, k,> O constants,
The net rate of increase of nutrients, which is the difference of the two is

N() = AG) - C(r) = 4k’ — %nk2r3.

This quantity is the function of radius » of the cell.

Example 9.4.2 Determine the radius of the cell for which the net rate of increase of
nutrients N(r) is largest.

Solution : We know
N() = AG) - C(r) = 4k’ — %nk2r3.
Differentiating w.r.t.  we get

N'(r) = 8kur — dmk r’

To find the larget nutrients rate the condition of critical points is N'(r) = 0. Hence

k,
2 .. .
8k —Amkyr” =0=r=0, 2k—1~ To test the critical points for extereme we
2

differentiate again to have

N"(r) =8km—8mk,r.
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k
_2 M
Now at * i

2

N"(Z%} = 8/{175—875162.2:—1 =—8nk, <O.

2 2

Hence the net rate of increase of nutrients N(r) is largest for r=2-1.

k

2

9.5 Summary

Calculus was invented from the visions of master minds. It took little time to
break through the bridge of theoretical inquiry to practical skills of human activities.
The application of the novel methods of calculus enabled to determine the timing of
buying, selling the products and to help us to know how much units should be sold
to maximize profit. Calculus also determines the activities in our human body.

9.6 Exercises

1. If the total cost y of manufacturing x units of a production is given by
y = 20x + 5000, then

(1) What is the variable cost per unit ?

(i) What is the fixed cost ?
(i) What is the total cost of manufacturing 4000 units ?
(iv) What is the marginal cost of producing 2000 units ?

2. The total cost of a firm is C:%x3—5x2+28x+10 and market demand is

P = 2530 — 5x, where x is the no. of units of production. Find the profit maximizing
price.
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10.2 Objectives

After going through this chapter, the learners will be able to :
e derive the reduction formula of some standard integral problems.

e understand the technique of integration to derive the reduction formula.

10.1 Introduction

A Reduction formula is one that enables us to solve an integral problem by
reducing it to an easier integral problem, and then reducing that to the more easier
integral problem, and so on. Reduction formulae are mostly obtained by the process
of integration by parts.

10.3 Derivation of Reduction Formulae

10.3.1. Reduction Formula for Ix"e“xdx, nbeing a positive integer :

Let
I = I x"e“dx

e” 46‘”
=x"=—- " =—dx. [Int. by parts
€ [ [ by pare]
:xe _Ejixnfleaxdx.

a a

84



NSOU « CC-MT- 03 85

Thus,

Example 10.3.1 Find J.x4e“xdx.

Solution : Applying reduction formula, we have

xte™ 4 e® 3
L= a _513’ h a _5]2
xe™ 2 xe™ 1
=gl h=gh

-
Hence
4 ax 3 jax 2 jax ax ax
]4:x e _4x§ Jr12x3e _24x4e Jr24e5 ‘e
a a a a a

T

2
10.3.2. Reduction Formula for Isin"x dx and Jsin"x dx, n being a positive
0

integer greater than 1
Here

I = Isin” x dx= J.sin”’l X sinx dx
=sin"" x(—cos X) — J (n—1)sin" x cos x(—cos x)dx [Int. by parts]
=—sin"" xcosx + (n — l)jsin”’2 x(1—sin” x)dx

=—sin" ' xcosx+(n—-DI _,—(n-DI

Simplifying the above we get the reduction formula

s n-l
_sin” xcosx  n-1
I =- + I ..

n n
Furthermore, we take

sin” x dx

~
Il
O C— oA
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sin"'xcosx |° n—1
- + J,
n n

0

Thus, in this case we have the reduction formula as

-1
J =2="J

" n

S

Example 10.3.2 Find [sin’xdx.
0

Solution : Applying reduction formula, we have

2
and Jz_[smxdx —[cosx]gzl.
0

Hence

S

10.3.3. Reduction Formula for Icos"x dx and Jcos"x dx, nbeing a positive
0

integer greater than 1

Taking I, = Icos” dx = J.cos”’l x. cos x dx and proceeding as in the previous article,
we may find

n-1 : %
]n:cos xs1nx+n;l]m2 and J, Jcos xdx—n lJ
0

n

10.3.4. Reduction Formula for Isin”‘ x cos" x dx, m, n being positive integers

greater than 1
Let

I = Isin’" xcos” x dx = J.cos”’1 x(sin”x cos x)dx

s .l s ]
R L I(n —~1)cos”? x(~sin x).&dx
m+1 m+1

[Int. by parts, taking # = cos™'x, dv = sin"x cos x dx]
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_sin™xcos" ' x -l

cos” ? xsin™ xsin’ x dx
m+1 m+1

s mtl n—1
sin”" xcos” x , n—1 _ .
= + cos” 2xs1n"’x(l—cos2x) dx

m+1 m+1
_sin" xcos"'x  n-1 _n-1
m+1 m+1"""7% m+1"""

Simplifying we obtain

7 sinxcos"'x n-1

mn = m+n +m+n]'”’”‘2' (10.3.1)

In the similar manner, if we take
I, = Isin'” xcos”x dx = J.sin"’*1 x(cos” sin x)dx
integrating by parts, taking # =sin” "' x, dv = cos” x sin x dx, we obtain

2 .-l n+l
I, =0+ n”:;lq I, (10.3.2)

T

2
10.3.5. Reduction Formula for Jsin’"x cos"xdx, m, n being positive integers
0

greater than 1

Take
n
2
Jm,n :Jsinmxcos”xdx

0

| sin"'xcos"'x |° | n—1 n—1
m+n ., m+n " m+n” "

_ | sin" " xcos™ x 2+m—1 _m-1
m+n o mEn " m4p "
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Therefore

L]m,n = nl;l_i__}/l L]m,n—Z m _l L]m—Z,n' (1033)

Example 10.3.3 Find Isin4xcoszxdx.
Solution : Applying reduction formula, we have

c .3 3
sin” xcos’x . 3
]4,2 :_—+—

G 6]2’2 [from (10.3.2)]

sinxcos’x  1{ sinxcos’x 1

__sin’xcos’x _ sinxcos3x+%(sinxcosx+%]00) [from (10.3.1)]

6 8 2
Also
1, :Isinoxcosoxdx:x.
Therefore
. 3 3 . 3 .
]42:_s1n XCOS"x _SINXCOS'x  SINXcosx  x .
: 6 8 16 16

3
Example 10.3.4 Find |sin®xcos’ xdx,
0

solution : By (10.3.3), we get

Also

oA

I, =J sin” xcos” x dx = [x]}? = %
0

Therefore

gk
I,.= .
2048
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89

10.3.6. Reduction Formula for Isin’"xcos"x dx, where either m or n or both are

negative integers

Let
l,,= Isinm xcos” x dx.
We have from (10.3.1),
s m+l n—-1
sin” xcos” x -1
]m,n = + 1 mn—2"
m+n m+n
Changing n to n + 2,
;- sin”! xcos™" x n+l
mnt2 + m,n
: m+n+2 m+n+2 ™
and transposing,
s mtl nt+l
J —_SIn" xcos x+m+n+2 +120)
m,n n+1 n+1 mn+2(n )
Similarly, from (10.3.2), we can find
s m+l n+l
j —Sin" xcos x+m+n+2 1120
mn m+l m+l m+2n(m )
Example 10.3.5 Find j cos’ xdx

Solution : Applying (10.3.5), with m = -2, n = 4, we get

. -1 5
sinx) xcos' x 4
]72)4 - ( )—l +—_l]0’4.

Now applying (10.3.1) with m = 0, n = 4, we obtain

I ==

5

X inx X 3
cqs _4l 8 cos’ ]
-24 sinx

4 g

5 .
_ _cos x_Sinxcosgx_3(s1nxcosx+l]00)
sinx 2 2"

Also

]QO_szns ;Cdx [ete=x

(10.3.4)

(10.3.5)
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Therefore

4 5
J‘de = _COS X i xcos’ X — SSinXCOSX — X 4.
SIn” x Sin x 2 2
10.3.7. Reduction Formula for Itan"xdx and J tan"xdx, n being a positive

0

integer greater than 1
Let

I = Itan” xdx = J.tan”’2 xtan® xdx = J.tan”’2 x(sec” x —1)dx

= J.tanH xsec’ xdx—1

n-1
= ta’?_ lx —1, , [substituting tan x = z].
Thus,
tan” ' x
I = -1 ..
n n_l n—-2 (1036)

4 n-1 4
anj tan”xa’xz{tan x} -J
0 n—1 0
1
=——=J .
n_l n-2
Therefore
J = nl_l —J (10.3.7)

Example 10.3.6 Find J.tan“x dx.

Solution : Applying (10.3.6), we get

tan’ x tan’x [tanx
[,=B0x_ g an —(T—]O)
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where [, = Itano x dx=x
Therefore

3
1, =B X anx+x+e,

Example 10.3.7 Find | tan’x d.
0

Solution : Applying (10.3.7), we get

where J, = Etano xdx = [x]? = %

Thus
13

Jo=r—z+]-E-_2_T
6 4 15 4

cot” xdx, n being a positive

N\;,'—._MT_’

10.3.8. Reduction Formula for_[cot"xdx and

integer greater than 1

Proceeding similar as in the art. 10.3.7 and expressing cot”x =cot” >

x(cosec’x —1), we see that

n-1
J —_ot x g4 dJ =L _ 5
n n— n-2 an n n_l n-2

10.3.9. Reduction Formula for Isec"x dx, n being a positive integer greater than 1

Let

I = Isec” xdx = J.sec”’z xsec” xdx

=sec” *xtanx— I(n —2)sec”’ xsec x tanxtanxdx [Int. by parts]
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=sec” *xtanx —(n — Z)I sec”” x(sec” x —1)dx

=sec" *xtanx—(n-2)(I, 1, ),
and transposing

n—2
I = sec” " xtanx n_le.
n—1 n—1

10.3.10. Reduction Formula for Icosec" xdx, n being a positive integer greater
than 1

As in art. 10.3.9 we may find

I cosec" *xcotx p-—2

n

I ..
n—1 n—1""7

Example 10.3.8 Find Isec4 xdx.

Solution : Here

2
_sec”xtanx 2
L, === 3k

2
_sec xtanx+g(tanx+0)
3 3V 1

2
— 5ec xtanx );tan ad + %tan X +c.

10.3.11. Reduction formula for Ix’"(logx)"dx, n being a positive integer

Let

L, = Ixm(log x)"dx

nm

x +1 B il l xm+1
— In(logx) 'x'm+ldx [Int. by parts]

m

= (logx)”

x" n m 1
m+1 m+1-[x (logx)™ dx

= (logx)"
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m+1

X ___n g
m+1 m+1 ™"

= (logx)"
Thus, the reduction formula is
m+1

;] X (logx)" n
'”’" m+1 m+1 "

10.3.12. Reduction formula for Jcos’"xsinnx dx, m, n being a positive integer

Let

SN

= I cos” xsinnxdx

m
cos” xcosnx _m R .
=22 2P D cos” ! xsinxcosnxdyx [int.by parts]

n n

m
Xcosnx m .
— _LOS XCOSIXY M .o xsinnxcosxdx

n n
+ Icosm’lx sin(n—1)x dx
n
[since cos nx sin x = sin #x cos X — sin (n — 1)x]

m
X ne m m
_ _cos"xcosmx _m;  m;
n

m,n n m—1,n-1"
Thus, the reduction formula is

m
xcosnxy | m
J —_cos"xcosmx
m+n m+n

mn m—1,n-1"

10.4 Summary

In this unit we have learnt the reduction formula of several functions. These
fomula give us to find out the integrals easily.
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10.5 Exercises

1. Evaluate the following integrals :

(i) [xe'xdx (i) [x'(logx)dx
(iii) [sin®xdx (iv) [sin®xcos’ v
.5
V) I—(S:;Ils4§dx (vi) Itansxdx
(vii) Isec5xdx (viii) Icosec3xdx
(ix) Itan5xdx (x) Icot32xdx,

2. Find the value of the following ingegrals

h
H 2

(i) J sin’ x dx (ii) Jsin5 xcos® xdx
0 0

T
2

(iii) [ cos’ xsin3xdx
0
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11.1 Objectives

After going through this chapter, the readers will be able to :

e understand the formula of arc length.

e determine the length of an arc of a curve.

11.2 Introduction

In this unit, we use definite integral to find the arc length of a curve.

11.3 Length of an Arc of a Curve

Let the given arc AB of a curve y = f(x) between x = a and x = b be divided into
nparts by points P, P,...,P ., P,..., P  asshowninthe Fig. 11.1. Suppose
that the corredponding abscissae of these points are

X

17x

25 ¢y

and ordinates are

yl: yz: . ~;yr_1; yr: MR yn—l'
We draw chords 4P, P P,,...,P P ,...,P Bthrough consecutive points.

-1 r?

Then the sum of lengths of these chords is
AR +PP +...+P P+ ... +P B

95
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Lo

Fig. 11.1

When n becomes infinite, the length of each chord tends to zero. Hence the
limiting value of the sum of the length of chords will be the length of the given are
AB.

Now

2
A
length of chord £, 1 = (Ax,)’ +(Ay,) = 14{ A?j Ax.

Now if the curve be continuous and derivable at every point on [a, b], from the
mean value theorem of the differential calculus, there exists at least one point, say

Ay,
x =& on the are P P at which the slope of the tangent, f '(ir) is equal to 2.~

Thus the length of the chord P P becomes 1+{f”(§ )}*Ax, and, consequently,
by the fundamental theorem of integration, the total length (s) of the are AB is

5= }ggﬁ\/u{f'(&,)}zmr = [ I+ (1),

where a, b are respectively the abscissae of 4, B.

I. Therefore the length of the arc of the courve y = f(x) between the points whose
abscissae are a and b is given by

j;w/l+{f’(x)}2dx or j; l+(g—£)2dx.
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IL If the curve be given in the form x = f(y), the length of the arc between two points
(a, ¢) and (b, d), may similarly be given by

‘!.w/l+{f’(y)}2dy or ‘[‘/1+(Z;) dy.

IIL If a curve be given in the parametric from x = f{7) and y = ¢(¢) and if 7, and 7,
be the corresponding points of @ and b respectively, then the length of the arc of the
curve be derived from 7/ as

(%) () e

IV. If the polar equation of the curve be r = £(0), then as x = r cos 6 = £(0) cos 6,
y =rsin O = f(0) sin 0, the length of the arc between two points whose vectorial
angles are 6, and 6, is given by

j V@Y +{r®)yds or j p +(de)2d9

V. If the pedal equation of a curve be p = f(r), then the length of an arc of the curve
from » = r, to r = r, may similarly be given by

J‘ rdr ds _ — sech = 1 _ r
dr coso \/FZ —p’

Example 11.3.1 Find the length of the perimeter of the circle x* + ) = 25.

Solution : Using the formula I and Fig. 11.2, we see that

the perimeter of the circle = 4 x the perimeter of the circle in the first
quadrant

(Y
_4j0 l+(a)dx

5
5
—af 2 _ux
'[0 V25— x?

5
:2O[sin1 ﬂ =10% |

0
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Fig. 11.2
Example 11.3.2 Determine the length of one arch of the cycloid
x =a(0 —sinB), y=a(l — cosB).
Solution : Referring to Fig. 11.3 and applying formula III, we see that the length

of on arch of the cycloid

o 2 2
dx dy
= )+ L) a
JO (de) +(de) o
= _[02“2a sin%de = 8a.

Y

X

M D
Fig. 11.3

Example 11.3.3. Determine the perimeter of the cardioid » = a(1 — cos0).
Solution : Referring to Fig. 11.4 and applying formula IV, we see that the
total length of the cardioid

T d]’ 2
_ 2
_2j0,/r +(%) do

= 2aj \/(l—cose)2 +sin’ @ d0
0
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_ T 0 0
= 4aj0 sin 561’9 = 8a.

r = g{l - cos #)

Fig. 11.4

11.4 Summary

In this unit we see that the formula of arc length comes from the approximating
the curve by straight lines connecting successive points on the curve using Pythagorean
theorem. An integral fromula is developed to compute the arc length of a curve.

11.5 Exercises

1. Find the length of the followings :

(1) y = log(1 — x*) between x = 0 and xZ%.
(i) @* = x* from x = 0 to x = Sa.
(i) r =6*, 0 =0and g=1/5.

(iv) x = % sin B, y = ¢° cos; 6 = 0 and 9=%.

(v) the perimeter of the astroid x* + 37 =4

2. Find the length of the loop of the curve 9ay® = (x —2a)(x — 5a)*.

3. Find the length of the arc of the parabola x* = 4y from the vertex to the point where
x =2
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12.1 Objectives

After reading this text, the students should be able to :
e find the volume of solid by revolving a curve around a line.

e determine the area of surface of revolution.

12.2 Introduction

In this unit we shall discuss a very important process to find out the volume of
solid and area of surface of revolution. The method of definite integration enabled
us to find these. The process of finding the area of plane figure will be extended to
determine the volume of solid and area of surface.

12.3 Volume of Solid of Revolution

Let } be the volume formed when an area ABCD in Fig. 12.1, under the curve
y = f(x) between A(x = a) and B(x = b) is revolved about the x-axis. We divide the
interval [a, b] into n parts by means of the arbitrary set of points

X

X X ., X

29 s N PRI

X

n—1-
Let
Ax, Ax,... . Ax,. .. Ax,

101
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be the length of respective sub-intervals into which [a, 5] is subdivided. As the entire
area about the x-axis being perpendicular to it, a general infinitesimal strip of area
PORS, of base Ax_likewise revolves and generates an infinitesimal disc of volume
AV (say). The entire volume can now be thought of as composed of the set of discs
generated by the revolution of the various strips of the area ABCD.

1

Fig. 12.1

Next let Y, and Z denote respectively the least and greatest value of y = f(x)

in Ax. Then since volume = face area < thickness, we have

1y’ Ax, <AV, < y*Ax

By addition and nothing that »_" ¥, =¥, we have

Zn:ny_for <y < Zn:ny_for.

r=1 r=1
Now if the manner of subdivision of [a, b] be such that the greatest of Ax — 0
as n — oo, both sums approach the same limit. Hence

V= limzn:nyfor = limzn:n{ FED) Ax,
e r=1 e r=1

in which y = f(§) is the ordinate of an arbitrary point x = &, in Ax. Applying the
fundamental theorem to the last sum

Vznfyzdxznl{f(x)}zdx.

I. Thus the volume generated by revolving an area bounded by the curve y = f(x)
between x = a and x = b about the x-axis is expressed by the integral
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V=nfyde=n]{f(0)} dx
II. If however the curve be expressed by x = A7), y = 0(?)
v =n|yde=n[{o0)} f@)at,

where 7, ¢, are values of 7 that correspond to x = a and x = b respectively.

III. If again the curve x = ¢(y) bounded by y = ¢ and y = d be revolved about the
y-axis, the volume is given by

v =n[xdy=n[{o0)} dy.

Example 12.3.1 Find the volume of a sphere of radius a.

Solution : Let the equation of the circle in Fig. 12.2 be x* + ) = @*>. The center is
at the origin and radius OA4 = a. Let the quadrant OAB be rotated about OX. Then
a hemisphere will be created.

1Y

Fig. 12.2
Thus, the volume of sphere will be
v :275_[ yidx
0

= 2n[ (@ — x*)dx = gna?

0
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2

2
Example 12.3.2 Find the solid formed by the rotation of an ellipse x—2+ Y—1.

F =
Solution :
(i) About the major axis :

Referring to Fig 12.3 and rotating about x-axis, we see that the volume obtained
by the rotation of the upper half of the ellipse

= 2 X volume obtained by the rotation of the quadrant OAB
=2X J ny dx
0

442
= 2n %(a2 _x%)dy = %nabz.
0

Fig. 12.3

(i1) About the minor axis :
The rotation being about y-axis, the volume of the whole ellipsoid

:2xfm2dy
0

L 2
4
=2n| L (* - y*)dx = Zra’h.
| 4r " =y e =3 ma
Example 12.3.3 Find the volume of the solid generated by revolving one arch of the
cycloid x = a(® — sin 0), y = a(1l — cos Q) about its base.
Solution : Referring to Fig 12.4 and applying Rule II we find the required volume
= 2 x volume generated by half of the arch
=2 XJ na’(1—cos0)’dd
0
= 2na | 8sin® £ a0
na 6[ sin” >

=51°a’.
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Fig. 12.4

Example 12.4 Find the volume of the solid generated by revolving the cardioid
r = a(l — cosB) about the initial line.
Solution : Referring to Fig 12.5 the required volume by rule 1 is 7/ydx.
Now changing the variables from x and y to » and 0, we observed that
x =7 cosB = a(l — cosB) cosh, thereby dx = a(— sinB + 2sin® cosO)dd
y = r sinB = a(l — cosB) sinb.
and the volume becomes

Q
TCJ a’(1—cos8)’ sin’ B.asinB(2cos® —1)dO

1
= ma’ [ (1-2))(1- 2*)(1-22)dz [putting cos® = z]

-1
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12.4 Area of Surface of Revolution

When an arc of a plane curve is revolved about an axis in its plane, a surface of
revolution is generated. The area of such a surface is defined and calculated as
follows.

We can derive the formula of the area of surface from the formula of arc length.
Let’s look at rotating the continuous function y = f(x) in the interval [a, ] about the
X-axis.

Let the generating arc be the portion DC of the curve y = f(x) between x = a and
x = b and let the axis of revolution be the x-axis. We divide the interval [a, /] into
n parts by means of the arbitrary set of points

Xy, Xy X, X0 X,
and let
Ax, Ax,,. . Ax,,.. Ax,
be the length of respective sub-intervals into which [a, b] is subdivided. Let the arc
DC be divided into » parts by means of the arbitrary set of points

PP, PP, P

1o 20 9% po Lot po

the corresponding ordinates being

yl: yza"'nyr—lﬂ yr:"'nyn—lﬂ

Fig. 12.6

We next draw chords through consecutive points
DPE, PP, .,P_ P, P C

141 i L dyg

and consider a typical one P P corresponding to Ax and Ay (=y —y ) revolving
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about the x-axis. This chord generates and infinitesimal frustum of a cone, whose
surface are AS (say) is given by
AS = m x sum of the radii of the two bases x slant height

= Tc(yr—l + yr) X R’—IR’ = Tc(yr—l + yr) V (A'xr)2 + (Ayr)2

Yoty Ay Y
=t T 4| 2| Ax
ndo [ij r

»

Now if the curve be continuous and has a derivative at every point, then by the
mean value theorem fo the differential calculus, there exists at least one point on the

arc P_ P, at which the slope of the tangent f'(€,) is equal to the slope of the secant

¥

A
ﬁ. Moreover %(J/H +Y,) is just the average height, or height at the middle point

of the chord P_P. and from the continuity of the curve y = f(x), there must exist at

r

least one point between F_, and P say the point x=m, at which the ordinate is
equal to the average height.

Hence

AS, =2mf (n WI+{f'E)} Ax,.

Defining the area of the entire surface to be the limit of the sum of this typical
areas when n — oo in such a way that the length of each chord approaches zero,

we have
§ = m3S, =lm2ny fn)|1+{/€)) Ax,
= 2n[ FOONI+{ (0} dx
b dy 2
= 2nfy 1+(§) dy
or briefly,

¢ d
S=2nj.yasdx,

in which y and ds are to be replaced by their equals in terms of x.
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Cor. 1. In the case of the curve x= (), y = d()

S = 271:_[ ydsdz_znj ( ) ( )dz

Cor. 2. When the axis of revolution is the y-axis the corresponding formula will be
(taking y = ¢ and y = d)

S = 2nj x 1+(ay) dy = 2nj

Cor. 3. The area may also be found out in terms of polar coordinates when an
equation is given in the polar form by the substitution x = r cos® and y = r sinf.

Example 12.4.1 Find the surface of a sphere generated by the circle x* + y* = a*about
the x-axis.

Solution : To find out the area of surface of sphere we consider to Fig 12.7 and apply

) dy  x dy P x> _a
the result of art. 12.4. Since x*>+y* =a?, &y and IJ{EJ —1+y2 e

Therefore

S = 2 x surface area generated by arc AB

p 2
2x2nf y 1+(%) dix
0

= 41:J adx = 4na’.
0

{a. G A

Fig. 12.7
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Example 12.4.2 Find the area of the surface generated by revolving about y-axis that
part of the astroid x = a cos’0, y = a sin’0, that lies in the first quadrant.

Solution : Using Cor. 1, of art. 12.4, with

dx _ dy _
70 —3acos’Bsinb, 0 =3asin’HcosO

we have from Fig 12.8,

‘Z“J (el () e

275_[ 3a+/cos* Osin? @+ sin B cos? 6. a cos® 04O
0

w2
I

%
67ca2j sinBcos* 6d0 = gmz
0

Fig. 12.8

Example 12.4.3 What is the area of the entire surface formed when the cardioid
r = a(l + cosB) is revolved about the initial line ?

Solution : Using Cor. 3 of art. 12.4, with

ds _ |2 (dr\ _ [=2 R 6
0\ +(d6) —\/a (1+cosB)” +a”sin 6—2acos2,

we have from Fig. 12.9,

—27‘[J yds de
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= 275_[ a(l+cos0)sin6.2a cos%de
0

0 to=32rs

1emet [ sinenct 8
=16na JO s1n2cos 2 5

L f ]
A roafl + el
Pty
»
$ 2
Oleg=s 2o #m

Fig. 12.9

12.5 Summary

In this unit we have learnt how a solid is formed by revolution of arc of a curve
about a line and determined the formula of volume and the area of surface of that
solid.

12.6 Exercises

1. Find the volume of solid generated by revolving the following curve :
1) y= Jx between the lines x = 1 and x = 4 about x-axis,
(i) y=5x—x”between the lines x = 0 and x = 5 about x-axis,
(iii) y* =4ax between the lines x = 0 and x = 2a about x-axis,

(iv) x*—y* =a® between the lines x = 0 and x = 2a about x-axis,

(v) xy = 2 between the lines y = 1 and y = 4 about y-axis.
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2. Find the volume of the solid generated by the revolution of the upper half of
the loop of the curve y* = X*(2 — x).

3. Find the volume of the solid generated by the revolution of the loop of the
curve y*(a + x) = x*(a — x) about the x-axis.
4. Find the area of surface generated by revolving the following curve :

(i) y = x* between the lines x = 0 and x = V2 about y-axis,

(i1) = 2a cos O about the initial line,
(iii) an arc of y = sin x about x-axis,

(iv) 2y = x + 1 between the lines x = 1 and x = 3 about x-axis.

5. Find the area of surface generated by revolving the parabola y* = 4ax bounded
by its latus rectum about x-axis.
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13.1 Objectives

This unit gives
e Various types of functions and their classification
e Sequence of real number and its convergence
e Concept of limit of a real function

e Various properties of limit of a function such as algebric operation on limits,
sandwich property, etc.

13.2 Introduction

The limit of a function is a fundamental concept in analysis concerning the
behaviour of that function near a particular point. Although implicit in the development
of calculus of the 17th & 18th centuries, the modern idea of the limit of a function
goes back to Bolzano who, in 1817, introduced the basic of the epsilon-delta technique
to define limit of functions. The motion of a limit has many applications in modern
Calculus. In particular, the many definitions of continuity employ the limit. It also
appears in the definition of the derivative.
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13.3 Pre requisites

(or Recapitulation of prior elementary ideas that are needed to introduce the concept
of limit):

A. Functions
(i) Let A and B be two non-void subsets R & f:4— B is a rule of

correspondence that assigns to each x € A, a uniquely determined ye€ B or y= f (x) :

The set of values of x for which / can be defined is known as Domain of f,
denoted by D, and the corresponding collection of y’s (as mentioned above) is known
as Range set of f* generally denoted by R .

A few examples of f, D, and R, :

2
i f(x)z [logc 5x4x}

5x —x?

f can be defined for those x for which 21 and this gives | < x<4

so D, =[1,4]

(i) /(x)= (x—ij

1-x

f can be defined only when x—lizo = l<x<eo & D;=(1, o)
—x

3
(ii)) £ (x)=cos™ ; Here we must have -1 < ———— <1
4+2sinx 4+2sinx

& for this D, E[—%+2kn,%+2kn} where k=0,+1,+2 ...
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Note that D, may be a closed and bounded interval, may be an open interval

(bounded or unbounded), union of intervals and so on.

(Readers are requested to verify the validity of D, as mentioned in above

examples and as well as to look for other functions and their domain).

[
(i) Consider the function f:[-1, 1]— R defined by f(x)=1 x~ x#0
0, x=0

2

Here D is an interval [-1, 1] but R, ={-1,0,1} which is not an interval.

(i) Consider the function f:(~1, 1)— R defined by f(x)= Vxe(-11)

2 +1

1 1
Re=|—=,1 —<x<1
f (2 } or 5 X :
Note that in D,, —1 and +1 are not included but 1 is included as right hand end

point in R .
We are interested to learn the reason for such differences of nature of D & R ..

Equal functions : f, g : D— R are same (or equal) when f(x)=g(x) for

each xe D.

2

X
Note that x and — are not same.
X

Operations on Functions : Let f and g be two functions having domain
D;(cR) and D, (c R) respectively. If DD, #06,then f+g, fg canbe defined

on DD, by

() (ftg)x=f(x)tg(x) Vxe D, D, and
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(&)(x)=7(x) g(x) VxeD,ND,

Again deleting those points of D, (if any) for which g(x)=0, we can define

\‘\

~
=

—

(ij(x)=T here x e D, D, \{x:g(x)=0}.

S——’

Composition of functions : Let / and g be two functions such that
xeD;= f(x)eD,. Inother words R, < D, . Then we can define
(g-/)(x)= [ (¥)]¥reD,

go f is called the composite of two functions f and g.

Similarly, we can define (f o g)(x) with appropriate restrictions.

In general (f o g)(x)# (g° f)(x). For example, f(x)=x’ g(x)=sinx

Then (g f)(x) = g (f(x)) =sin>* & ( * £)(x) = f (g(x)) = f(sinx) =sin’x

Injective (one-one), Surjective (onto) and Bijective functions :
Let f:D— R where DcR.

Iffor x,yeD, f(x)=f(y)= x=y, fis called injective or one-one function

, xR is not Injective.

f(x)=3x+4, xeR is Injective but g(x)=|x
Let f:D— E where D,Ec R, obviously f(D)c E. Butif f(D)=E, we

say that fis surjective or onto function. f:[1,2]—[2,3] defined by f(x)=x+1 is
onto function.

But f:[L 2]—>[2, 4], f(x)=x+1 isnot so,

7 7 5
Ee[z, 4] and E=x+1:>x=56£[l, 2],

fis bijective if it is both injective and surjective.
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Invertible functions : Let f: X — Y where X,Y c R be such that for each
yeY, there exists a single value of x such that f(x)=y. Then this correspondence

defines a function x=g(y). We say that f is invertible and x = g(y)is the inverse
function. Note that if / be bijective, then fis invertible.

For example, if y =log,, (x+\/x2+l), a>0,a#1, then

1

X = E(Cly —Cl_y) or sinh(ylna)

Increasing function & Decreasing function :

Let f:D — R where D c R . If for each pair x, ye D,
x>y= f(x)2 f(y) or f(x)> f(y), we say that fis increasing function.

Butif x>y = f(x)< f(») orf(x) < f(y), we say that fis decreasing function.

f(x)=sinx is increasing in [O, g} but is decreasing in |:ETE:|

Periodic function :

A function f: D — R(D < R) is periodic if there exists a number p such that
f(x+p):f(x)‘v’xeD.

The smallest positive p for which f(x+ p)= f(x)Vx holds, is called the period
of f.
Bounded and unbounded functions :

f:D—R(DcR) is said to be bounded above if there exists A € R such that
f(x)<AVxe D, we say that fis bounded above (by A). If there exists e R such

that f(x)>uVxe D, we say that f is bounded below (by p). If £ be both bounded
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above & bounded below, then fis bounded on D (= D). In other words, If there exists

K €R such that |f(x)| <K forall xe D, we say that fis bounded on D. For future

course of discussion the following concepts are useful.

Let f:D— R(D cR) be bounded above.

Then A(€R) is said to be the least upper bound or supremum of fin D if 34 e R

such that (i) f(x)<AVxe D and (i) for any €>0,3ye D such that f(y)>A-e
(or in other words, no real < }, is an upper bound of /) this ) = sup £ If f be bounded

above, then sup f (e R) exists.
If fis unbounded above we say that sup f =

Let f:D— R be bounded below. Then u(e R) is greatest lower bound or
infimum of f'in D if

(i) f(x)zp forall xe D & (ii) if for any € >0,3 y e Dsuch that f(y)<u+e,
then W = inf f (in other words, no real > L is lower bound of /). Then u = inf £, If f be
bounded below, then inf / (€ R) exists.

If f be unbounded below, we write inf f = —eo

Sup f—inf £ 1s known as oscillation of function f on D.

13.4 Sequences in R

(1) 4 function f:N — R is known as a sequence (note that N is the set of natural

numbers).
Examples : {(—1)"} {%} {i::j}{nz}n etc.

Symbolically, {Ctn}n (n %Ctn). Note that the range set of {(—1)n}n is the set

{-1,1} where as the range sets of the next three are infinite sets.
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A sequence {a,, }n is bounded if its range set is bounded.

n 3n+4

n

Range sets of {(—l)n} , {l} ; {4n+3} are bounded but range set of {n2 } is

not bounded.

(ii) Note that N is unbounded above, as there is no real A€ R for which
n<h VneN.
So an interesting question is that when n becomes arbitrary large without any

bound, then what will be the fate of {a,} ?

Consider the above examples : As » becomes larger and larger, 1 becomes
n

1
smaller & smaller we say that, the difference between - and O decreases steadily.

1
Neither - coincides with zero nor it goes to the left side of 0. We say 1 — 0 (tends
n

2

to zero) as n — . But note that as n becomes arbitrarily large. n° increases more

rapidly & we say that #°> — co as 1 —» oo In case of {(—l)n} , it is either +1 or —1.

n

Limit of a sequence in R : A sequence {Ctn}n is said to converge to a limit

I(e R) if for arbitrary g > 0, there exists natural number 2 (e N) such that |an -1 | <g

forall n=2m .

lim a, = if for all G> 0 there exists me N such that a,>G Vn>m. We
n—>0

say that {Ctn}n diverges to oo.
o .. 1 . .
To explain this definition, we take @, =— as mentioned earlier. We have seen
n

that leo as 1 —> .
n
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7
let €=——_ Then
1000

0l< ! ,ifn>@ :1429
1000 7 7

so m = 143 & for this <

1
—-0
n

7
, =143
00

n

3439

8 8 3439 7
Let us change € =—— Then 0]< if n> =429—
3439 8 8

1
—-0
n

So m =430 & then <

8 if n=430
9

These two simple examples exhibit the dependence of m on the arbitrary positive
value of ¢ .

We state the following results without proof at this stage :

(a) A Convergent sequence in R is necessarily bounded but a bounded sequence
may not be convergent (EX. {(—1)n} ) .

(b) Limit of a sequence, if exists, is unique.
(c) Cauchy's general principle of convergence : A necessary & sufficient condition

for the convergence of {Ctn}n is that given €>0, there exists natural number

m (e N) such that <e Vn=m, peN.

an+p —d,

(d) Sandwich rule : Let a, <5, <c, for all #>m (or for all n) and {a, }n, {c, }n

both converge to same limit /(¢ R). Then lim b, exists & =/.
H—>0

(ii1) Monotonic sequences in [R

A sequence {a,} in IR is said to be monotonic increasing if a,,, 2 a, for all n,
n

+1

butif a,,, <a, foralln, {Ctn }n is said to be monotonic decreasing sequence in R .
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We state the following results without proof :

(a) A monotonic increasing sequence {Ctn}n in R is convergent if and only if

{Ctn}n is bounded above and a, —>supa,. If {Ctn}n be unbounded above, then

Iim a, =< ({j oo
Lm d, (diverges to o)

(b) A monotonic decreasing sequence in R is convergent if and only if {an }n is

bounded below and and a, > infa,. If {Ctn}n be unbounded below, then

lim a, = —o (diverges to —°)
n—>00

(iv) The following results are easily deducible following definition and basic

results :

If lim a, =/(€R), lim b, =m(cR), then

n—>0 n—>®

lim (a,+b,),=1<m, lim (a,b,)=Im,

n—>0 n—>0

n—>w0 m

lim [a—”j _ ! provided b, #0 Vn and m#=0.

(¢) Accumulation point (or limit point) of a set
Let S(cR) beasetand EcR. & is said to be an accumulation point (or limit

point) of § if there exists a sequence of distinct elements {xn }n of § such that x, > &

as n—>oo. ‘0’ 1s limit point of S:{—:neN}. 1 is limit point of T{l+l:neN}
n n
etc. Note that 0¢ S, 1¢ 7.

Note that a finite set has no accumulation point. The set [/ = {nz; ne N} has no

accumulation point in [R .
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(D) Neighbourhood of a point & Interior point of a set :

(i) Let xe R. By a & -neighbourhood of x, we mean the interval (x—3§, x+38)

where 8> 0. This is denoted by N (x,8) or Nj(x).

The set N(x,8)—{x}is called the deleted §-neighbourhood (or & —nbd) of x,

denoted by N’(x,8) or Nj(x). U(cR) isnbd of x€ R if 3 an open interval I such

that xe/ c U for example, (l—l, l+l) is a neighbourhood of 1. The set R (of
n n

all real numbers) is a neighbourhood of each of its points. The situation is different in

case of O, the set of rational numbers for if £ € O, then every (i -0, §+6) contains

rational as well as irrational points also. So ( is not a neighbourhood of its points.

(ii) Let D cR . We say that xe D is interior point of D if there exists a

neighbourhood of x, say (x—8, x+8), which is contained in D.
For example consider [a,b]={x:a<x<b}

Let a<c<b. wetake 0<d<min{c—a,b—c} &so (¢-8,c+8)c(a,b),s0c
is interior point of the set but a, b are not interior points of it.

Accumulation point can also be defined as follows :

Let SCc Rand&eR. If every deleted neighbourhood of &, N’(£,8)NS =0,

then & is accumulation point of S.

This can be shown that N’(£,8)S is an infinite set. On the basis of this

approach, it obviously follows that a finite set (C R) has no accumulation point.

On the basis of these pre-requisites, we are now in a position to introduce the
concept of limit of a function.
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13.5 Limit of function

Let f:D(cR)— R and p be an accumulation point of D.

(A) Sequential approach : lim f(x):l(e R) if for every sequence {xn}

b
X—>p #

x,eD foralln, x;#x, if i# j, x, # p, converging to p, the sequences { f (x )}n

converge to same limit /(e R).

If on the otherhand, { Vi (xn)}n converge to different limits for different {x,, }n s

we say that the limit does not exist.
To explain the matter, let us consider the following examples :

Example :

" - .1 2 2
(i) lim sin— : Note that the sequences s — and {———— both converge
x>0 X 2nm) (2n+)m]

’ ; T :
to zero. But {smn Tt}n converges to zero whereas {sm (mt + 5)} 18 not convergent,

n

(n even and n odd give different limits). So by above definition, llr% sin— does not
Xx—> X

exist.

(2) lim 1 sinl
x—0 X X

.1
For x, :%n(ﬁo),—sm—ao but for y, -1

SO (2043 ]

1 1
li =lim| 2n+— in| 2n+— [T =00
,,flf(y") nl_rg( n 2)75 s1n( n 2)75
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o1 1 )
So lim —sin— does not exist.
x—0 x X

(B) (e -8 approach) let £ >0 be any number. If corresponding to such ¢, there

exists 0 >0 such that ‘f(x) —l‘ <& whenever x € N'(p,8)ND. we say that lim £ (x)
xX—>p
exists and =/ (e R).

Here xeN'(p, 8)N\D can be written as 0<|x—p|<8 or p-8<x<p,
p<x<p+d,xeD.

(C) The two definitions stated in (A) and (B) are equivalent :

Proof : Let lim f(x)=/(eR) in the sense of ¢ —§ definition.

x>p
Then for arbitrary ¢ > 0, there exists § > (0 such that
‘f(x)—l‘ < & wherever 0<|x—p|<8 (i)
As p is accumulation point of D, so there exists a sequence

x4, (xn eD Vn, x;#x; if i# j, x,# p for all n) which converges to p.

Hence corresponding to above ¢ > 0, there exists natural number m such that

O<|xn—p|<6 forall n=>2m (2)

Combining (1) & (2),

f(xn)—l‘< e forall n>m
Note that m depends on ¢ (as m depends on § & § depends on ¢).

So lim f(x,)=1/(e k) and {f(xn)}n converges to /(€ R).

n—>c0

Next let lim f(x)=1/(e R) following sequential criterion.
x—=p
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If possible let lim f(x)=1/ does not hold in the sense of €-8 definition.

xX—p
Then for some number ¢ > 0, the corresponding & does not exist. That indicates,

however small 8>0 may be, there exists always at least x’(# p) for which
0<|x'— p| <5 nonetheless |f(x")—/|z¢.

Let us consider a decreasing positive termed sequence {Bn }n converging to zero
. . 1 ,
(in particular, 6, =— for all neN). Then for every 9,, x,, can be found such that
n

0<

X;, —p| <9, nonetheless |f(x;)—l‘ 2e. 8, — 0= x, — p by Sandwich rule. By

assumption, { f (x;)}n converges to /. But | f (x;)—l |>€.

Thus we arrive at a contradiction. So €—0 definition follows from that of
sequential approach. Thus the two definitions are equivalent.

(D) One sided limits
(1) Let p be an accumulation point of D from the left (i.e.

x, = p,x,<pVn,x,eD etc) or f has been defined in some left-deleted

neighbourhood of p. If for arbitrary €> 0, there exists §> (0 such that ‘ f (x)—l‘ <E

whenever p—8<x<p, we say that lim f(x) (or lim f(x)j exists and

x—p— x—=>p-0
=/ (€ R). This is commonly known as left hand limit of f(x)as x— p.
(i) Let p be an accumulation point of D from the right (i.e x, — p, x, > p Vn,

x, €D etc.) or f has been defined in some right deleted neighbourhood of p. If for

arbitrary €> 0, there exists 8>0 such that |f(x) —12| < ewhenever p<x< p+35,

we say that xl—i>r2+f(x) (or lim f(x)j exists and =/, (e R). This is commonly

x—>p+0

known as right hand limit of f(x)as x— p.
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(E) In this connection, the following result is useful in determining the existence
of limit. Let f: D — R where D cR and let p be (both sided) accumulation point
of D (or f has been defined in both sided deleted neighbourhood of p).

Then lim f(x)=/(cR) if and only if lim f(x)= lim f(x)=1/

xX—=>p x—p— x—p+0

Proof : let lim f(x)=/(eR)

X—>p

Following ¢ —§ definition, corresponding to arbitrary g > (, there exists §> 0

such that | f(x)—/|< & whenever 0 <|x—p|<8,xeD
= |f(x)-I| <& whenever p—8<x<p aswellas p<x<p+3.

= lim f(x)=l= lim f(x)

X—p— x—=p+

Converse let lim f(x)=/= lim f(x)
x—p+

X—=p—

Let €>0 be any number. Corresponding to ¢, there exists 0, >0,5, >0 such

that | f(x)—1/|< & whenever p—38, <x<p & |f(x)-I|<& whenever p<x< p+38,

Let =min{3,,8,}. Thenfor 0<|x—p|<3d, | f(x)-I|<e=>lim f(x)=/
x—=p

3x+7, x<1
2x+11 x>1

Examples (i) f (x) = {

Here lim f(x)=10, lim f(x)=13 & so lim f(x) does not exist.
x—1- x—l+ x—1

Tx+3, x<2

8x+1, x>2

@ f<x>={
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Here xlglzl_ F(x)=17, lim f(x)=17

x—2+

Let €>0 be any number. Corresponding to ¢, there exists 6, >0, 5, >0 such

. € . .
that [7x+3-17|<e ie. |x-2|< - whenever 2—-06;, <x<2 &s0 §, =% is admissible

€
& [Bx+1-17|<¢ ie. lx—2|< g Whenever 2<x< 2+8, &s0 8, =§ is admissible.
Taking &=min {5,,8,}, we get lim f(x)=17
x=2

(F) Cauchy Criterion for the existence of limit

Let f:D — R where D c R and p be an accumulation point of D.

A necessary and sufficient condition for the existence of lim f(x) is that given
xX—>p

€ > 0, there exists a deleted neighbourhood of p, N’ ( p,8) such that
|7 (x)- 7 (y)|< & whenever x,y e N’ (p,8)N D

Proof : Let lim f(x)=1/(eR)

x—=p
Let ¢ > 0 be any number. Corresponding to ¢, there exists a deleted neighbouhood

N’(p,8) such that |f(x)—l‘<% whenever xe N’ (p,8)ND

If moreover y e N’(p,8)N D,

f(y)-1< % As aresult,

17 (x)=f ()| <|f(x)=1|+|f (¥)-1| <& holds.

Converse : Let for given €> 0, there exists a deleted neighbourhood N’(p,8)

such that ‘f(x)—f(y)‘ <& whenever x,y e N’(p,8)ND
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Let p be accumulation point of ID. So there exists {xn }n (xn eDV,,x #x; if

i%j, x, # p) which converges to p. Hence corresponding to above 8(> 0), there

exists me N such that x, e N’(p,8)N\D forall n>m.

f(xn)—f(xk)‘<8 forall n, k>m.

Therefore,

So by Cauchy’s general principle of convergence of a sequence, { fx )} is

convergent and so lim f (x) exists.
x—p

1, if xis rational

Dlustration : Let f:(0,1) — R be defined by f(x)= {—l \f v is irrational

Let a<(0,1). Note that for any 8 >0, N’(a,8)((0,1) contains both rational as
well as irrational points. If such rational be x & such irrational be vy,

then ’f(x)—f(y)‘ = ‘1—(—1)’ =2 ¢ arbitrary £ >0.

So by Cauchy Criterion, )lcl_fgf (x) does not exist.

(G) Infinite limits and Limit at infinity

(i) Infinite limits :

Let /:D— R and p be an accumulation point of D(<R). Then f(x) is said to

be tend to oo as x — p, if given any (5 > 0 (as large as we please), there exists § >0
such that

f(x)>G whenever xe N’'(p,8)ND.
If we opt for sequential approach, if for {xn }n (xn eDVn,x;#x;ifi# j,x, # p)

converges to p, {f (Xn)}n diverges to oo, we say that liin f(x)=e0
x=p

|
IMustration ;: im —=c
x0T X
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i 1
For any G>071>G 1fx<5(%0asG%oo).
x

If for given (G > 0 (as large as we please), there exists § >0 such that f(x)< -G
whenever xe N’(p, 8)( D, we say that li_r)n S (x)=—
x—p
(i) Limit at infinity
Let f:D — R where D is unbounded above.

If for given ¢ >, there exists (G > 0 such that

‘f(x)—l‘<8 whenever x (G, )D,
We say that )lcflf(x) =I(eR) ex~gr°1°; =0.
Next let f: D — R where D is unbounded below.

If for given ¢ >, there exists (G > 0 such that

‘f(x) —l‘ < & whenever x e (-, G), we say that xli_}rif(x) =l(eR)

: 1Y
Hlustration (1) lgn (1+ ;j =e,xeR
X Lol

To solve this, we will assume the very standard limit of sequence

lim (1+ljn _e(cR).

H—oo n
We can take x >1. There exists natural number » such that

n<x<n+l

n+l x n
:>(l+lj >(l+l) >(l+—l j
n X n+l1
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lim l+l n+1—lim l+l n(l+l) =¢
n—>00 n n—>00 n n and

n+l
. LY (g
11m(1+—) = 1m%=
n—eo n+1 noe 14
lx
So, lim (l+—) =e
X—yoo X

. 1Y
(2) lim (l+;) =e

X—y—o0

We take x=—y and So y — o and x — —oo

x -y y y-1
1 1
(1+1) = l—l 2| =1 — Jl+——=|—¢€ as y—>eo.
X y y—1 y—1 y—1
In this connection, we state the following result :

Let f: (a, oo) — R, Then )lcfolof(x) exists if and only if for every g >0, there

exists X (>a) such that |f(x)—f(y)|< eVx,y>X.

(iii) Infinite limits at infinity
Let f/:D— R where D(cR) is unbounded above.
Let G > 0 be any number, as large as we please.

Corresponding to G, there exists K (e R) suchthat f(x)>G forall x> K , we say

that lim f(x)=co.

X—>00

Let D be unbounded below, if corresponding to G > 0 (as large as we please), there

exists K (e R) such that f(x)>G forall x <K, we say that lim Sf(x)=co.
X—>—o0

Butif f(x)<-G forall x< K, wesay lim f(x)=—co.

X——00
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Example : limlog, x=00, a>1
X—>o0

Let G > 0 be any arbitrary number. If we take a® =M , then

x>M =log, x> . Hence ii_r)rolologax =,
(H) Some standard limits :

b lim S0y
(l) x=0 X B

Gy tim 12821 ¥)

=log,e where a>0,a#1
x—0

X

. at-1
Gii) limZ—=Ina,a>0
x—0 X

n n
—d n—1

. . X
(iv) lim
x—=a X—d

(I) Algebra of limits :
Let g, f: D —> Rwhen D c R and p be an accumulation point of D.

Let lim f(x) =l(e ]R), lim g(x) =m(e ]R).
xX—p x—op

Then (i) lim{f(x)tg(x)}=/tm
x=>p
(i lim {7 (x)g (x)} = m
. I
(iii) hmm=; where g(x)#0 and m#0.

Proof: (i) Let ¢ > 0 be any number. Corresponding to €, there exists 8, >0, 6, >0

such that |/ (x)—/] <§ whenever 0<|x— p|<8&;, xe D and g (x)-m| <§ whenever
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0<|x-p|<d,,xeD.
Let & =min {8, 8,}. So for 0<|x— p|<8, xe D both hold.
Hence [ (x)% ()} ~{1 £ | ()~ || (s)-m| <
whenever 0<|x— p|<8, xe D

= lim {f(x)ig(x)} =/tm=lim f(x)i lim g(x)
x—op x—op xX—p

Note : (1) This result can be generalised for finite number of functions.

(2) The converse of the result is not true, in general

1,if x is rational 0, if xis rational
g(x)=

Let /(9=

ch e an ch e e
0, if x is irrational 1,1f x is irrational

Let pe R . Every deleted nbd of p contains both rational (say a) and irrational b

(say) points. Then in case of both fand g, | f (a) —f(b)| or |g(a) —g(b)‘ =1¢ arb e.

So neither lim f(x)nor lim g(x) exists. But f(x)+g(x)=1 and

x—=p x—=p

1im{f(x)+g(x)} =1

x=p

(ii) To establish it we will first show that as )lcg)n g(x) exists, so there exists a
deleted neighbourhood of p, in which g is bounded. ’

There exists 8 >0 such that |g(x)—m|<1 where O<|x—p|<&, xeD
(or xe N’(p,8)ND)

= |g(x)| <l+|m| in N’(p,8)ND

= g is bounded in N’(p,8,)ND
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| (x) g (x) = tm] =g (x){ £ (x) =1} + (g (x) = m)| < |g (x)|L £ (x) =]+ il g () = m

As lim g(x) exists, so there exists 8, >0 such that |g (x)| < A for some L € R" in
x—p

N'(p,8)ND .. (1)

Let € >0 be any number, corresponding to ¢, there exists 8, >0, 83 > 0 such that

|f(x)—l|<% whenever xe N'(p,8,)ND...(2)

and ’g(x)—m’< whenever xe N’(p,8;)ND...(3)

2(71+1)

Let =min{3,8,,8;}. Thenin N’(p,8)ND, by (1), (2), (3)

€ €
‘f(x)g(x)—lm‘<kﬁ+|l|m

:>|f(x)g(x)—lm|<8 in N’(p,8)ND

X—p X—p X—p

= lim £(x)g(x) = Im = (lim f(x)) (lim f (g))

Note : (1) This result can be generalised for finite number of functions.

| . 1
(2) limsin— does not exist but lim xsin—=20
x—0 X x—0 X

Let e> O be any number S | X | < € Whenever X e N,(O, 6) ﬂDf Where

xsinl—O
X
5=5(¢).

(3) If g(x) be bounded on D and lim f(x) =0, then lim f(x)g(x)exists =0.

X—=p X—=p
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/
(ii1) ? -

mIf () =1+ 111]g (x) - m]
i [m||g (x)

()

As lim g(x)=m(#0), there exists &, >0 such that

X—>p

’g(x)—m‘<@ whenever xe N'(p, §,)ND ... (2)

D‘g(x)‘>@ whenever xe N'(p, §,)ND

Let € >0 be any number.

As lim f(x)=1, corresponding to &, there exits 8, >0 such that

X—>p

|f(x)—l’<# whenever xe N'(p, 8,)ND ... (3)

As lim g(x)=m, corresponding to &, there exists 55 >0 such that
X—>p

2
‘g(x)—m‘<% whenever xe N'(p, 8;)ND ... (4)

Let 5=min{5,, §,, 83}. So whenever xe N'(p, 8)ND, (2), (3) (4) hold.

8.|m|2 .\ |l|.8|m|2
4 4(|l|+ 1)

2

prf

1.

g(x) m

Recalling 1.
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= ) <& whenever xe N'(p, §)ND
glx) m

B
m L) L AN
x—>p g(x) m lim g(x)

X—>p

) .1 N ) ) )
Note : Neither lim — nor lim sin— exists, but hmxsml exists & = 0.
x=0Xx x—0 X x—0 X

So the Converse of (iii) is not, in general, true.

- (ex—l)tanzx . tanx—sinx
Ilustration : Evaluate (1) lim ) hm——

x—0 x3 x—0 X
. (s
Simnf x—-—
6

®) il_i% (\/5 —2cos x)
6

lim e’ -1 (sinsz( 1 )2
M 750 x U x ) \cosx

C e =1 .. (sinx) .. 1 As all exi
=1lim lim lim — |=1 (As all exist)
=0 X x—0 X x>0\ cos” x

So limit is 1.

2sin? X
__sinx(I-cosx) . |sinx 1 5,
(2) lim 3 =lim : :

x—0 X" Ccosx x>0 X COsx X

2
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X
- sin —
TS LG RN g
x>0 x cosx | X 2 2 2
2

T T
(3) (Method of substitution) Put ¥ — e ! and so X — 5 =t—0,

Given limit = lim sin’ = lim sin
0 T 0 1
= \/§—ZCOS(Z+6J - 3+\/§cosl+s1nl

1 1 1
281N — COS — COS—
= lim 12 21 -=lim Z2 =1
t—>0\/— .2 . =0 .
3| 2sin“ — |+ 2sin —CcoS — 381N —+ COS —
[ 2} 2 2 2 2

(J) Neighbourhood properties :
(a) Let f:D—R,DcR and p be an accumulation point of D. Let
lim f(x) =/(€R). Then

(1) fis bounded in some deleted nbd of p

(i) If / be greater than some real number K, then there exists a deleted nbd of p
in which f(x)> K .

(1i1) If / be less than some real number LI, then there exists a deleted nbd of pin
which f(x)<u.

Proof : (i) Proved earlier in I(ii)

(i) Let 0 <e</—- K . Corresponding to this €, then exists § > 0 such that

|f(x)-I|<e forall xe N'(p,8)ND
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=l-e< f(x)<l+eVxe N'(p,5ND

Considering the above choice of €, f(x)> K in N'(p,d)(1 D

(iii) As in (ii), taking O<e<u—/.

(b) Let f,g:D — R where D(c R)& p be an accumulation point of D.

Let lim /()= (€ R), limg() = BEe R).

If A < B, then there exists a deleted neighbourhood of p in which f(x) < g(x).

Proof : Let A<C < B.

As }Ci_fgf(x) =4, there exists § >0 such that |f(x)—4|<C—-4 for all
xeN'(p,3)ND.

As }Ci_rgg(x) =B, there exists 3,>0 such that |g(x)-B|<B-C for all
xeN'(p,d3,)ND.

Let 3=min{3,8,}. Soin N'(p,8)N D, both hold.

In N'(p,3)ND, f(x)<C-A+A=C=B-(B-C)<g(x) holds.
(c) Sandwich property :
Let f,g,h: D — R where D(CR). Let f(x)<g(x)<h(x) forall xe D &letp

be an accumulation point of D. Given that }Cl_ff;f (x)=1, £i_r>r;h(x) =l(leR).
Then limg(x)=1.
x>p

Proof : Let ¢>(0 be any number. Corresponding to this g, there exists

3,>0,8,>0 suchthat | f(x)-/|<e in N(p,3)ND &|h(x)—I|<einN'(p.8,)ND .
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Let 8=min{3,8,}. Soin N'(p,8)ND,

I-e< f(x)< g(x)<h(x)<l+e=|g(x)—I|<e in N'(p,8)ND

So limg(x) =/,

(d) f,g:D— R where D(C R), p be accumulation point of D and

let lim f()=/(€ ), limg(x) =m(ER) It f(x)<g(x) in D, then /< m.

m
10 ~

Proof : If possible let />m& let o<e< corresponding to such g, there

exists 3,8, > such that | f(x)-1|< e in N'(p,8)ND &|g(x)—m|<einN'(p,8,)ND.

If § =min{3,,8,}, thenin N'(p,8)N D, both hold.

In N'(p,8)N\D, I-e< f(x)<g(x)<m+e=1-m<2e=>10e <2 — absurd

as ¢>0.

Sol<m.

[You can take f(x)=1-x, g(x)=1+x where x>0. f(x)<g(x) forallx and

lim f(x)zlz lim g(x),]

x—0+ x—0+

K. Infinitesimal :

(a) f:D—>R(DcR) is said to be infinitesimal as x > a if lim f(x)=0.

Xx—>a
(b)If f,g:D — R are infinitesimals, then f + g, fg are also so.
() If f:D—R be infinitesimal as x —a and g:D — R be bounded, then fg

is infinitesimal.

(d) Wesay f = 0( g) (or fis of little —oh of g over D) if



NSOU ¢ CC-MT- 08 33

F(x)=a(x)g(x) where a(x) is infinitesimal.
(e) We say f = O(g) (or fis of big —oh of g over D) if f(x) = B(x)g(x)
where B(x) is bounded on D.

(f) The functions f and g are of same order over D(c R), if f :O(g) and

g=0(f) simultaneously.

13.6 Exercise |

1. Find the limits (if exist)

x3 x2
lim -
@ 52374 3x+2

2x% +|x
(b) limﬂ
x—0 X
) 1 ) 1 ) 1 1
© li“(— *3} li“[—lj and li“{[—ﬂ—l}
V(3x)-3

RN

(e) Apply Cauchy’s principle for the existence of limit to evaluate lim Tr_x .
x—>0]—x
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2. Choose the correct one : lim m
x—0 [x]

(a) the limit exists and is 1

(b) the limit does not exist.

(c)ifat x=0, f (O) =0, the limit will exist

(d)ifat x=0, f(O) =1, the limit will exist.

NSOU e CC-MT- 08
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13.7 Definition of Continuity

I. (a) A function f:D—)R(DCR) is said to be continuous at pe D if
given any ¢ >(, there exists §>( such that

|f(x)—f(p)|<e or f(x)eN(f(p), 8) whenever xe N(p,8)ND.

If f is not continuous at p, then f is discontinuous at p.

(b) Let f/:D—>R(DcR) and peD.

(1) If p is an isolated point of D (i.e. not a limit point of D), then f is
continuous at p (ii) if p be limit point of D i.e. pe D\ D" (' is the collection of

limit points of D) and if lim f(x)=f(p), then fis continuous at p.
x—p
(c) Continuity in an interval [a, 5] or in {x:a<x<b}.
£ is continuous in [a, b] if (i) xl_i)zr}rof(x):f(a) (ii) xgrbllof(x) = f(b) and

(il}) if a<c<b, then lim f(x)= lim f(x)=7(c)

x—c+0

x, for xe{l—l:neN}

Examples. 1. Let f(x)= n

I, forx=1

be defined on S:{l—l| neN}U{l},
n
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The only accumulation point of S is 1 and all other points of § are its isolated

points. Here lin} f(x)=f(1)=1= f is continuous at 1, f is also continuous at the
x—>

: : 1 : :
isolated points 1-—:n e N. Hence f is continuous on S.
n

2. Let f(x)=

(1 ) , x#1. Find the points of discontinuity of
-Xx

y=f[f(7(x)].

x=1 is a point of discontinuity of f (x)

If x=1, f[f(x)]= = _l,x¢0:>x:0 is a point of

discontinuity of f [ f (x)}

If x20, x#1, y= =Xx 1s continuous everywhere.

X1
x

So points of discontinuity of the given composite function are x=0, x=1.

(3) Let E:{l—l‘neN]}U[l, 2] and f:E —>R be defined by f(x)=x".
n

Each l—l is isolated point of £ and so by definition, f is continuous at all such
n

points.

Let pell, 2]. Then pe ENE' (' derived set of E) and then x? — p? or

F(x)= f(p). So fis continuous at p.
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Thus f is continuous on F.
(Continuation of definiton (d)) f:D — R where D(c R) and pe DND".

f1s continuous at p if for every sequence

{xn}n(anD Vn, x; #x; 1f i# ], xn:tp) converging to p, {f(xn)}

n

converges to f ( p) .

Examples (1) Let A={xeR|x>0} and let f:4—R be defined by

0, if x 1s irrational

2

/(%)= l, it x=" where mneN and (m,n)=1
n n

To examine the continuity of £ in A.

We require the following lemma :

Let 7 be any irrational number between 0 and 1.

Let p, g, n be any positive integers such that p <g<m and » is fixed. Then
there exists a neighbourhood of 7 which has the property that no rational number of

P
the form g belongs to it.

. P
Proof of lemma : Let d be the least of the differences ' — | for all p, ¢ such

that p<g<mn.Let § be chosen so that 0 <§ <4 . Then (i—6, i+6), a nbd of i,
which has the property stated above.

Let us now examine the continuity of f.

Let b be any irrational number and let ¢ >0.

Now there exists 71, € N such that n,e >1 (known as Archimedean property of

real numbers). By above lemma, §>(Q can be chosen so small that the nbd

(b—38, b+38) contains no rational number with denominator <.
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If then follows that for |x—b| <&, xe A, we have

|f(x)—f(b)| = |f(x)| <Les fis continuous at irrational point .
Ty

Let ae€ A be any rational point. Let {xn}n be any sequence of irrational

numbers in A that converges to a. Then ylll_?gof (xn) =0 where as f (a) >0. Hence

f is discontinuous at all rational points.

(2) (Dirichlet’s function) f:R — R be defined by

1, if x be rational

0, if x be irrational

f(x)={

Applying sequential approach, it can be shown that f is discontinuous
everywhere.

(3) Let f (x)={X7 if x is rational

1—x, if x is irrational

To investigate the continuity of f on R .

Let ¢ >0 be any number.

. x—%, if x is rational
o)
2 1 . ..
l-x——|=|x——|, if x is irrational
2 2
1 1 1
So f(x)—f E = x‘z <€ whenever x‘a <5(:8).

. . 1
f is continuous at x = 5
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1 . . —
Next let x;ﬁz and x is rational. Let {xn}n be a sequence of irrationals such

that limx,=x.So f(x,)=1-x,>1-x as n—>w.

H—>0

1 C .
As x:tz, so x#1—x and f is discontinuous on Q—{%}.

Next let x be irrational number and let {y,,}n be a sequence of rational

numbers such that lgnyn:x. Here f(y,)=»y,—>x as n—>w. But f(x)=1-x.

So lim f(y,)# f (lim yn) = f is discontinuous at all irrational points.
n—>w n—>w

. . 1
Consequently f is continuous only at x = 5

Classification of discontinuities :

Let f be not continuous at p(e Df). This discontinuity of f at p may be due to
different reasons which may be classified into two types / kinds.

Definition : (a) Let f be defined in both-sided neighbourhood of point
pleDy).

Let xl—i>r2+ f (x) and xl_i)r;}_ f (x) both exist finitely but are unequal, then x = p
is known as jump discontinuity of f.

f(p+o)-f(p-o) is known as height of the jump. If f has jump discontiuity
on the right at a, the height of jump is f(a+o)—f(a) and similarly at b, it is

F(b)-f(b-o0), if it is left discontinuous at b.
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Example : let:[0,1] >R be defined by

0, if x=0
1
——x, if O<x<l
2 2
) 1
j(x%: }/: if xZE
3
——x, if —<x<l1
2
1, if x=1

1 1 1 1 1
O+)===f(0), f| =—0|=0, f|=+0|=1s0 f|=—0|=f|=+0
/( )2f()f[2 j f[z j f[z jf[z j

f (1—0):%7&1 so, O, %, 1 are points of jump discontinuity of f.

If f(p-0), f(p+0) both exist and are equal but = 1 (p),

then p is removable discontinuity of f (i.e lim f(x)= f( p)]
xX—>p
S5x+7, x<2
Example : f(x)=4 13, x=2
4x+9, x>2
f(2-0) =17 = f(2+0) but f(2)=13

x=2 is removable discontinuity. These two types of discontinuity are known
as discontinuity of first kind or ordinary discontinuity.
(b) (1) If f 1s defined in both sided nbd of p including p and at least one of

f(p-0) & f(p+0) fails to exist finitely though f is bounded in some deleted
neighbourhood of p, then p is discontinutiy of second kind with finite oscillation.
sin l, x#0

Example : f(x)=9 «x
0 x=0

2
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Neither lirg f(x) nor lim £(x) exists & but f is bounded in nbd of 0.
x>0+ Xl
(ii) f is unbounded in every nbd p and lim f(x) or lim f(x) is
x—>P+0 x—>p-0

+00 or —oo. Such a discontinuity is known as infinte discontinuity.

1
Example : f(x) =1 x’
2

13.8 Neighbourhood properties

Let f:D—R where D(C R) and p be an accumulation point of D as well

as an element of . Let f be continuous at p.
Then the following results hold :
(1) There exists a neighbourhood of p in which f is bounded.

(i) If f(p)=0, there exists a neighbourhood of p in which F(x)& f(p)

have the same sign.
(iii) If in every neighbourhood of p, f (x) assumes both positive & negative

values, then f(p)=0

The first two properties follow from the neighbourhood properties for the
existence of limit.

For (i) if f(p)>0, by (ii) there exists nbd of p in which f(x)>0 for all
xe N(p,é) ND. But f(x) have both signs in every nbd of p & so f(p)}O.

By similar logic, f(p) 0. Hence f(p)=0.

|x
The converse of (iii) is not true. For example, f(x) L B2

O =

x=0

b
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Continuity of some special types of functions
(1) Let f:D —R be monotone function (increasing or decreasing). Then at

every point ¢ of D, both f(c+0) & f(c—O) exist. So if ¢ be any point of

discontinuity, then that discontinuity is of first kind. In other words a monotone
function can not have any discontinuity of second kind (for proof, see Apendix).

(i) Polynomial function ayx”+ax""+ +a, x+a, (@, eR Vi ay#0) is

. . . X . .
continuous on R . Rational functions M are continuous for all xe R for which

q(x)

sinx and cosx are continuous an R . tanx & secx are continuous for all

the functions can be defined.

T
X # (2n+1)5 and cotx, cosec x are continuous for all x #nmn (n is integer in both

cases)

(i) a*,a >0, is continuous for all xeR. logx, x>0 is continuous for all

x>0,
(iv) For even positive integer n, the function g:x — 1y is continuous for all
X€E [O,oo) and for an odd positive integer n, g is continuous for all x e (—00, 00).
(v) Limit of composite function :
Let f:(a,b) >R be continuous at c¢e(a,b). Suppose that g:I—>(a,b)

where / is an open interval and x, /. If lim g(x) exists and is equal to c. then
X=X,

lim f(g(x))=/(c).

XX,

Proof : Continuity of f at ¢ implies that for each pre-assigned € >0, there

exists & >0 such that ‘f(y)—f(C)‘<8 whenever |y—c|<8, (ye(a, b)) ...... (1)

As lim g(x) =c, so corresponding to above &, we can find n>0 such that
X=X,

|g(x)—c|<6 for O<|x—x|<n ... )
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By (1) and (2) for O<|x—xo|<n, we have |f(g(x))—f(c)‘<8, O<|x—xo|<n

Hence lim f(g(x)) = f(c) follows.

XX,

Corollary : Let /, J be open intervals, g:/ —.J be continuous at x, /. If

f:J—>R is continuous at g(xo)eJ then fog:/ — R is continuous at x,. In
other words, the composition of two continuous functions is continuous.
Note : Continuity of f at ¢ in (v) is needed.

Let f,g:R—>R be defined by
3,y=1
=7 =1 for all x.
/() {4jy¢1g(x)

Note that as y%l,f(y)%4 & g(x)%lasxeo

For all x, f(g(x)):f(l):3 & so it is not true that f(g(x))—>4 asx—0

Ilustration :
(1)

To evaluate lim [ I+x j (1=x)

x=I\ 2+ x

1+x 1- \/;
Let X)= , X)=

f( ) 2+x g( ) 1—-x

lim f(x) 22 (f is continuous at x =1) & lim g(x)=Iim L
x—l1 3 ¥l 11 l+\/; 2

I g(x) (2 %
Hence lim [/ (x)] _[Ej

¥ lim g(x) In f(x)
(Note that 111’1} |:f(X):|g( ) = ex_>1 = eBlnA = AB if
X—>

lim f(x)=A>0 and Lig}g(x):B)

x—l1
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(vi) Piecewise Continuous function :
Let f:[a,b] >R be such that it is continuous in [a, b] except for a finite
number of points, at each of which f has jump discontinuity. Then f is said to be

piecewise continuous function in [a, b]

Mlustration : Let f:[0,3]—> R be defined by f(x)=[x]

0, 0<x<l
L, 1<x<2

2, 2<x<3
3, x=3

Then f(x) =

Note that f has jump discontinuity at 1, 2, 3 only & is continuous in (0, 1),
(1, 2) and (2, 3)

Example : Let f(x) =[x], xeR"
Then f is not continuous at any point of 7 but is continuous on R*\7.

() Let CeZ.

Note that C—l—>C as n— . f{C—lj:C—l for all <7 . But
n n

f(C):C. So 7115130 f(C—%jif[}li_fi}o (C—%ﬂﬁf is not continuous at any
point of 7, .

(i) Let CeR"\Z

We take O<e<min{C—[C],[C]+l—C}

Let lim x, =C. So corresponding to above €, In, €7 such that
H—>0

|xn —c| <& whenever n>n,
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Above choice of & implies [C]<x, <[C]+1 for all n2n,
Then f(x):[xn]:[C] for all n>n,

Therefore f (xn)% f (C ) as n — oo. Hence the result follows.

Examples of piecewise continuous functions
(1) f(x) =x- [x], xXe [0,4]

2n
. 5
(i) f(x):ig}o );2”:17 xe[-2,2]

2x+1 05 x<1

i £ 5, x=1
x)=
(iit) 3x+2,1<x<2
7 x=2

2

13.9 Properties of functions continuous in a closed and
bounded interval |a, b]

Theorem (1) : Let f:[a,b] >R be continuous in the closed and bounded
interval [a, b] & f(a)f(b)<0. Then there exists at least one point ¢ < (a,b)

such that f(c)=0.

[To prove this, we require the following result, known as Nested interval
property

If{[an, b”]}n be a sequence of closed and bounded intervals such that each is

contained in the preceeding. Then [ [an, bn]¢¢

If more over lim (b,—a,)=0 then if pe[a,,b,], p is unique.]

n—>0


Mampi Howlader
Typewriter
13.9
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Also lim a,=p=1m b,
H—>w n—>w

Proof : We assume that f(a)<0, f(5)>0
For the sake of convenience, let [a,b]=[a, ] =1,

a +b

Let us bisect /, at ¢, = , A f (cl): 0 the result is proved

If f(¢)#0, either f(c;)>0 or f(¢)<0
If f(cl)>0 we take [a, ¢ ]as/, so that f(al)f(cl)<0
& if f(c)<0, we take [¢;, b ]asI,. I, =[a,,b,]

a, +b,

Let us bisect [ay,b,] at ¢, = If f(c,)=0 the result is proved.

Otherwise, we assume that sub-interval as [as, by] =15 for which f(a3)f(b;)<0
This process is continued indefinitely & we get a sequence {]n}n of closed &
bounded intervals [a,, b,] for which

@) 1,,c!, forall neN

=0

(i) tim |1,|= lim (b, -a,)= lim b-a

n—ow n—>0 n—ow 2n—1

Also f(a,) f(b,)<Ofor all neN

By Nested interval property, D]n ={c} Also lim a, =c = lim,

H—>co n—yco

By construction, f (an) <Oand f (bn) >0 forall n

By continuity of f, lim f(a,)<0 & lim f(b,)=0
n—><0 n—>0
:>f(1iman)so &f(limbn)zo

n—>co n—yeo

:>f(c)£0 & f(c)ZO :>f(c):O
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Note : This theorem is due to B. P. J. N Bolzano (1781-1848)

Theorem (2) : Let f:[a,b] >R be continuous in [a,b] and f(a)= f(b).
If k be any real number such that f(a)<k < f(b)then there exists ¢ < (a,b) such
that f(c)=k.

Proof : Let ¢:[a,b] >R be defined by ¢ (x)=/(x)—k

Continuity of fin [a, b]= continuity of ¢ in[a, b]

0(a) 6 (b)={/(a)-k}{/(5) -k} <0

Then by Bolzano’s theorem, there exists ce(a,b) such that
d(c)=0ief(c)=k

Note : (i) This property is known as Intermediate value (1.V.) property of f in
[a, b]

(i) I. V. property does not hold in case of functions defined on a set.
Let S=[0,1]U[2,3] & f:S >R be defined by f(x)=x

3
f is continuous on § but f does not attain the value 5 on S.

(i) Continunity of f in[a, b]= validity of I V property by f on [a, b]

but the converse is not true

Example : f:[0,1] >R be defined by f(x)= %, xZ%
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f assumes every value between f (O) &f (l), f 1s not continuous in [O,l] & so

the validity of 1. V property by a function in a closed & bounded interval does not
characterise the continuity of the function. In this connection, we state the following
two important results :

(1) Let f: [a,b] >R obey the Intermediate value property in [a,b] & let f
be monotonic in [a, b]. Then f is continuous on [a, b].

(2) Let f be stictly monotonic function in the interval [a,5]. If f([a,b]), the
range set is an interval, then f is continous on [a, b].

Theorem (3) : Let f:[a,b] >R be continuous and assume each value

between f(a)and f(b) just once. Then £ is strictly monotonic in [a, b].

Proof : Let f(a)<f(b). We propose to show that f is strictly increasing
function.

Let a<x; <b. As f(x) assumes each value between f(a) and f(b) just
once, so f(x)=f(a) or, f(x)=£(b) is not possible. ............ (1)

If f(x)<f(a) (<f (b)), then by 1. V. property f(x) must assume the value
f(a) for some xe(x,b). As a result f(x)=f(a), once at x=a & for some
xe(x;,b). This contradicts the hypothesis that f(x) assumes each value between
f(a) & f(b) just once. So f(x)<f(a) is not possible. ............ )

By similar logic, f(x,)> f(b) is not possible. .............. 3)

In that case, f(x) assumes the value f(b)at least twice — once at b &
another in (a, x;) by 1. V. property.

By (1), 2) & 3), f(a) <f(x) <f(b)

This leads to the conclusion that if a<x <x, <b then

fla)<f(x)</(x)<f(b)
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= f is strictly monotonic increasing in [a, b]
If at the outset, we assume that f (a) > f (b), then arguing in a similar way f
is strictly monotonic decreasing in [a, b].

X2 _cosx

Examples : f:[0,2] >R be defined by f(x)= lim -

noe I+ x
Show that f(0) f(2) <Obut f(x) is never zero in (0,2). Explain why.
When 0 <x <1, in -0 & when l<x<?2, xzn NS

Here f(0)=-1. When O<x<1, f(x)=-cosx

2 C0sx

1 . 2n
f(l):_[l_COSI]. When 1< xSZJ f(x): Iim —x:x2
2 n—>o0 1
1+ P
X
_17 x:O
—COoS X, O<x<«l

So f(x)= %(l—cosl), x=1

xz, l<x<2

So f(0) f(2)=-4<0, but f(x) is never zero in (0,2). The reason is that f

is not continuous in [0, 2] & I V. Property is not applicable.
(2) Let f: [o, ﬂ >R be defined by

10g(2+x), 0<x<l

f(x): %(log3—sinl), x=1

—sin x, l<x£%
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Here f(0) f[gj =(log2)(~1)<0 but f(x) is never zero in (O, %) The

reason is f (x) is not continuous in [O, gj & so 1. V. property is not applicable

here.

(3) Let f: [O, 1] — R be continuous function and assume only rational values

in the entire interval. If f(x)=5atx= %, show that f(x)=5 everywhere.

If possible, let there exist ¢ €[0,1], ¢ ;t% and f(c) =KeR.

If K5, then by I. V. property of continuous function, f (x) must assume
every value between K & 5. Between K & 5, there are rational as well as irrational

points also. But f(x) assumes rational values only. So f(x) =5 throughout [0,1].

(4) Let f:[0,1]—>R be continuous function and f(0)= f(1). Show that

. 1
there exists y €[0,1], such that \x—y\=5 and f(x)=f(»).
. . . l
Let us consider the function & 075 —> R defined by

1
Continuity of fin [0,1]= continuity of g in {Oa 5}

«0e(3)=(1(3)-r0] [70-1(3)]<o

. . . 1
By Bolzano’s theorem on continuous function, there exists ¢ e (O, Ej such that
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g(c):0:>f£c+%j:f(c) we get x, y€[0,1], |x—y|:% for which

f(x)=1(»).

(5) (Fixed point property) Let f :[a, b] —[a, b] be continuous function. Show
that for some &¢e[a, ], f(£)=& holds.

If f(a)=aor f(b)=b, the result is established.

We take f(a)>a, f(b)<b. (as f:[a,b]—>[a,b])

Let g:[a,b]—> R be defined by g(x)=f(x)-x

Continuity of fin [a,5]= continuity of g in [a, 8].

g(a)g(b) ={f(a)-a}{f(b)-b}<0. So by Bolzano’s theorem, there exists

Ec (a, b) such that g(i) =0 or f(i) =£.
Notes : (i) The condition of continuity of f can not be dropped

f:[O, 1]—>R be defined by f(x): . .
Lx L
2 2 2
(i1) The result may fail if the interval be not closed and bounded :

1+x

(a) f:[0,1) >R be defined by f(x):T

(b) f:[l,)— R be defined by f(x):x+%

(ii1) f must be defined on some interval (C R)
f:S—R be defined by f(x)=-x where xeS(E [-2,-1] U4, 2])

Also f:R —R be defined by f(x):x2+l
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Exercise :

1. Show that x.2" =1 has a solution in [0,1].

2. Let f:[a,b] >R be continuous function & the equation f(x)=0 have
finite number of roots in [a, 5] & arranging them in the ascending order, these are

A<X <Xy <..<X,<X.<..X, <b
Prove that in each of (x,_;,x,) f(x) must have the same sign.

3. If f:[a, b]—)R be a continuous function &f(x) be always a rational

number, then f (x) is a constant function.

. x? —2x, when x is rational
4. Examine for the continuity of J/ ./ (x)=

3x—6, when x is irrational

5. Does the equation sin x—x+1=0 have a root ?

3
. I
6. Does the equation f(x)= 7 sin tx + 3 take on the value 2% within the

interval [-2,2]?
7. Show that there exists x e (O, gj such that x =cosx

Theroem (4) : Let f:[a,b] >R be continuous in [a,b]. Then fis bounded
in [a,b] & attains its bounds in [a, b].
Proof : If possible let f be not bounded in [a, b]. So corresponding to ne N,

there exists x, €[a,b] such that |/ (x,)|=7.

All such x,’s are in [a,b]. So we get a sequence {x,} in [a,b] Hence
{x,} is bounded in [a,b].

By Bolzano-Weierstrass theorem on subsequence, there exists a convergent sub



54 NSOU e CC-MT- 08

n

sequence {x }n (say) of {xn}n, which converges to l(e R). This le[a, b] as
[a,b] is closed. Due to continuity of ./, {f(xrn)}n should converge to f(x).
Every convergent sequence is necessarily bounded. So {f (xrn )}n is bounded. But

by construction, 2rn, & as {Fn}n is strictly increasing sequence of natural

/(%)

>2n

numbers, so 7, >n. Conequenctly,

/()
This contradicts {f (xrn )}n is bounded.

This £ is bounded on [a, b]

Let M =sup f, m=inf f
[a. 5] [a. 2]

If possible, let there be no point x in [a,b] at which f(x)=M . So
f(x)<Min [a, b].

We construct ¢:[a,b] >R defined by ¢(x)= for all x€[a,b].

1
M =1 (x)
Continuity of f in [a,5]= Continuity of ¢in[a,b]. So ¢ is bounded in [a,b].
Let G >0 be any number, as large as we please.

As M =sup f, there exists at least one point &&[a, b] such that

[a. 5]
&)= -—
G
1
= ——>G = ¢(&)>G. This contradicts the fact that ¢is bounded in
[a. 2]

So there exists a point in [a, 5] at which f(x)=M .
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Similarly, it can be shown that there exists a point in [a, b]at which f(x)=m
holds.

Corollaries : (i) If f:[a,5] >R be a non-constant continuous function, then

f (x) assumes every value between its infimum & supremum.

By above theorem, there are points ¢, ne[a, b] such that f(i):M,
f(n) =m. By 1. V. property of continuous function, applied to f in [i, n] (or
[n, i]) the result follows.

(i1) Let ](C R) be a closed and bounded interval & let f:/ — R be non
constant continuous function in 1.

Then the set f(]): {f(x) X€ ]} is a closed & bounded interval.

If M =sup f, m:[ing]f, then me(x)SM forall xel
[a.5] a

= f(1) c[mM] .1

Let & be any element of [m, M]. Then by Corollany 1, there exists ¢ €/ such

that f(c)=ke f(I)

So [m,M]c f(I) ... (2)

By (1) and (2), f(I)=[m,M]

Note : The result fails if the condition of continuity be dropped.
|x 0
f:I=[-L1] >R be defined by f(x)=1 x’ X

X
0, x=0

2

7 (I) is not an interval.
2. The continuous image of an open interval may not be open.

1
x’+1

Let f:(-1,1)— R be defined by f(x)=
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Here f(I)=(%,1] which is not open interval
3. The continuous image of an unbounded closed interval may not be closed.

Let f:1=[0,00)— R be defined by f(x):x2+1

Here f (1)=(0,1] which is not closed.
Example (1) : Let f:[a,b] >R be continuous in [a, b]

Let x, x,,.....x, € [a, b]. Show that there exists a point & in [a, 5] such that

As fis continuous in [a, b], there are points o, B€[a,b] such that

f(oc)gf(x)gf(B) for all xe[a, b]

n

=nf(a)<D f(x;)<nf(B)

i=1

= 7)< /() </ 9)

I =

By LV. property of continuous functions, there exists & e [a, b] such that

&= ()

(2) Let f,g:R—>R are continuous on R . Show that
A={xeR|f(x)>g(x)}. B={xeR|f(<g®}, C={reR|f(x)#g(x)}
are open sets in R whereas D ={xeR|f(x)=g(x)} is a closed set in R.

Let ¢(x)=f(x)-g(x), xeR. As f, g are continuous, so ¢(x) is continuous
in R.

@) A:{xeR|(|)(x)>O}
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Casel: If (I)(x)SOinR. Then 4=¢ & So A4 is open set in R .

Case II : If (I)(x)>0 in R. So A=R & R being open set, 4 is open set
in R .

CaseIIl : Let ACR.

Let pe A4, So ¢ ( p) >0 & by neighbourhood property of continuous function,

there exists 8>0 such that xeN(p,8)= ¢(x)>0

Thus N(p, 6) c A & so p is interior point of 4. This is true for all pe 4.
Consequently A is open set in R.
Arguing in a similar way, B is open set in R .

Set C =AU B so C is union of two open sets in R & so C is open set in R .
D is the complement of open set C & hence D is closed.

(3) Let / (C R) be a given open interval. Let f:/ — R be continuous on /.

Let o be an arbitrary real constant.

Then ][f<oc]z{xe]:f(x)<oc} and J[f>oc]:{x e]:f(x)>oc} are
open sets.

If f (x) =afor all x, / and J are void sets & so are open sets in R .

Next let I[f(x)<oc}¢¢

1
So there exists pel ie. f(p)<o. Let 0<8<E[0ﬁ—f(17)} :

Continuity of f at p = corresponding to above chosen g, there exists & >0
such that |f(x)—f (p)|<e whenever xe N (p,8)N1..(1)

By hypothesis, 7 is open set & p is interior point of /. By definition of interior
point, there exists r,0<r <8, such that N(p,r)c1..(2)

1

By (1) & @), f(x)<f(p)+e<f(p)+5(a=F(p))
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:>f(x)<oc where xeN(p,r)ﬁN(P,V)Cl[f<0‘]

= [[f <a] is an open set in R .
Following similar argument, J[f > o] is also open set in R .

(iv) Let f, g:[0,1]—>[0,%0) be continuous functions satisfying

sup f(x) =sup g (x)
[0.1] [0.1]

Show that there exists ¢ €[0,1] such that f(c)=g(c)

Continuity of £, in [0, 1] = boundedness & their attainment of bounds in [0,1].

Let M =sup f(x)=sup g (x)
[0.1] [0.1]

If both f & g attain M at the same point, the result is established.
Otherwise : Let f(£)=M and g(n)=M for some & nel0,1],

So g(&)<M, f(n)<M

We construct h:[0,1] >R by h(x)=f(x)—g(x). Then 4 is continuous in
[0, 1] & by above A(E)= f(E)-g(£)=M —g(€)>0 and

h(n)=7(n)-g(n)=/(n)-M <0.So h(E)h(n) <0

— By Bolzano’s theorem, there exists ¢ (£, n)<(0,1) such that A(c)=

& (
(

or in other words, f(c)=g(c).
Continuity of Inverse function :

Theorem : Let f:[a,b] >R be strictly monotonic and continuous on the
closed and bounded interval [a, b]. Then there exists an inverse function
g:f[a, b]—)R such that (i) g is strictly monotonic in f[a, b] and (i1) g is

continuous in f [a, 5]
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Proof : Let f be strictly increasing in [a, b] ..... (D)
Continuity of f'in [a, 5]= boundedness of fin [a, b] & attainment of bounds

in [a, b]. So sup f =7 (b), inf f=7(a) .
[a.5] [a.2]

Therefore, here f([a,b])=] f (a), f (b)]... (1)

As f is strictly increasing, so for any distinct pair of points x, x, €[a, 5],
F(x)# f(x)<=x#x,. Sofis injective. ... (2)

Consequently by (1) & (2) f is bijective. So /7~ =g exists where
g: f([a.b]) >[a,b]. where f(x)=y=>x=g(y),xe[a,b],ye f[a,b]

Let y, , € f[(a,b)]. So there are x;, x, €[a, b] such that

n=rf(x).y=1(x)

f being strictly increasing in [a, b], V<V = X< X,
As a result, y, <y, = g(yl) < g(yz) — g is strictly increasing in f ([a, b])

Let y, be any point between f(a) and f(b) & x, be the corresponding
value of x.

Let £>0 be arbitrary number such that x,—¢, x,+€ are in [a,b]. Let
g(yo-m)=x—¢ and g(y,+m,)Ex,+€ such that m;,m, >0 exist by above.
Let n be such that 0<mn<min{n;, n,}. Then

|x—x0|<8 whenever |y—y0|<n,n depends on g.

So g(y) is continuous at y,. and this is true for all y, € [f (a), f(b)}
Hence the result follows :

Note (i) Continuity of Inverse function is preserved only when the domain is
closed and bounded.

Let 4 :[O, 1)U[2,3] and f:4—>R be defined by
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X, xe[O,l)
x—1,xe[2,3]

f(x){

f_l( ) x,x<[0,1)
x)= IR ] _
x+1, xe[l,2] = f 1 discontinuous at x = 1.

Theorem : If f:[a,b] >R be continuous, injective function, then f is strictly
monotone function.

If possible, let f be not strictly monotone function in [a, b] though f is
continuous & injective in [a, b]. So we say that there are three points

p.q.r €[a,b] where p<gq<r nonetheless f(q) does not lie between f(p) and
/(). Consequently, either f (r) lies between f(p) and f(q) or f(p) lies
between f(g) and f(r). For definiteness, let f(p) be between f(g) and
().

By hypothesis, f is continuous in [¢, 7] <[a, b]. By 1. V. property, there exists

se(q,r) such that f(s)=/f(p).

So p<s but f ( p) =f (s) This contradicts the injectivity of f.

Similarly if we assume that f (r) lies between f ( p) and f (q), we would
arrive at same type of contradiction. So f is strictly monotone.

Corollary : A continuous function f :[a, 5] —R is injective if and only if f is
strictly monotone in [a, b].

Example : Assume that 7:R — R satisfies f(f(x)) = f? (x)=-x for all

xeR.
Then f can not be continuous.
First we propose to show that f is injective.

f(xl):f(xz)ﬁfz(xl):fz(xz)ﬁ—xl =X ==X
If f be continuous then it would be either strictly increasing or strictly

decreasing. In both cases, fZwould be increasing.
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For if p<q, then f(p )</ (¢) (in case fis increasing) & f(p)>f(g) (in
case f is decreasing). In the first case, f ( f ( p)) <f ( f (q)) & in the second case
f(f(p))<f(f(q)). So in any case, f>(p)<f(q)

—>-—p<—q absurd as p<gq

So f can not be continuous.

Exercise :
2x—1,if x€(0,1) }

1. Let f;[Ql]—)R be defined by f(x):{o s g

2

Choose the correct answer :

(a) f 1s unbounded function (b) f is bounded function and attains its bounds
there in (c) f is bounded function but does not attain its bounds.

2" +1, for-1<x<0

—_— X —_—
2 Let f(x)— 2%, forx=0
2% -1, for 0<x<1

Choose the correct answer :
(a) f is bounded in [-1,1]

(b) f is unbounded in [-1,1]
(c) f is continuous in [-1,1]

(d) f has jump discontinuity in [—1,1]
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13.10 Summary

In this unit, we have defined the terms continuity and discontinuity and given
various examples. We have studied various types of discontinuities and their properties.
We have explained the most important properties of functions continuous in a closed
and bounded interval [a, b], such as, Intermediate value property, Fixed point property.
We have also shown the relation between continuity and monotonicity. We have further
study the maximum-minimum property. We have introduced the notion of uniform
continuity and shown that in a closed and bounded interval [a, b] this concept is same
with the concept of continuity. We also studied the uniform continuity on an open
interval (a, b), and give an important non-uniform continuity criteria. We have also
shown that every uniformly continuous function maps cauchy sequence into a cauchy
sequence.

13.11 Exercise

1. Prove or disprove : If f:S—>R, g:7—>R(S,7cR) are uniformly

continuous and f(S) <7, then the composite function go f:S— R is uniformly

continuous on §.

2. Show that e* cosl is not uniformly continuous on (O,l).
x

(Hints : You can consider the sequences { 1 } & ! )
2nm ), (2n+l)n .,

3. Let f(x)= Jx, x€[0,2]
Choose the correct answer(s) :

(1) f 1s Lipschitz function in [O, 2]

(i) f is not Lipschitz function in [0, 2]
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(iii) f is uniformly continuous in [0, 2]

(iv) f is not uniformly continuous in [O, 2]

4. Correct or justify : xsin®x is uniformly continuous on R .
5. Let f:[0,1]] >R be defined by f(x)= X €08 —, x %0

2x’
0,x=0

Examine whether f is uniformly continuous on [O, l].

6. Let f:[a,b] >R be continuous on [a,b] and let the equation f(x)=0
have finite number of roots in [a,5]. Arrange them in the ascending order.

a<x <x <.<x,_,<x,<..<x, <b

Prove that in each of the intervals (a;,x),(x, x,), (x._;,x,)(x,,5) the

function f(x) retains the same sign.
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Structure

13.0. Objectives

13.1. Introduction

13.2. Differentiation of Functions

13.3 Algebra of differentiable functions
13.4. Theorem (Rolle’s theorem)

13.5 Taylor's Theorem

13.6. Summary

13.7. Excercise

13.0 Objectives

This unit gives
e The concept of differentiation of a function
e Algebric operation of differentiable function
e Rolle’s theorem and some application

e Expansion of a differentiable function in series form

13.1 Introduction

The problem of finding tangent lines and the seemingly unrelated problem of
finding maximum or minimum values were first seen to have a connection by Fermat
in the 1630s. And the relation between tangent lines to curve and the velocity of a
moving particle was discovered in the late 1660s by Isaac Newton. Newton’s theory
of ‘fluxions’ which was based on an intuitive idea of limit. But the vital observation,
made by Newton and, independently, by Gottfried Leibniz in the 1680s, was that areas
under curves could be calculated by reversing the differentiation process. In this chapter
we will develop the theory of differentiation.
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13.2 Differentiation of Functions

The derivative : Let f:D —>R(D - R) be a given function, ¢ be a point of
f(x)=7(c)

X—C

D as well as an accumulation point of D. So the function x — is

defined on D—{c}.

it fim ZL0 =27 (0)

X—>C X—C

exists finitely and be = L(e R) then we say that f'is derivable

at c, f'(c) exists and = L

If f:[a,b]—> R then f’(a) isin fact Rf’(a)= lim A

x—a+ X—a

provided the

- f(b
limit exists and f'(b) is in fact Lf'(b)= li_g)l_%, provided it exists.

If ¢ be interior point of [a, b], then f '(c) exists provided

o w =1f'(e) exists, lim, W = Rf'(e) exists and
1f"(c)= Rf*(c) (€ R)
S(x)=1(c)

Notes : If lim

does not exist finitely, we say that /' does not exist
X—cC xX—C

at c.

2. f:D —R is said to be differentiable on a set D, c D, if the restriction of
J to Dyis differentiable at every point of D,,.

Result : 1. Let f:D — R be differentiable at pe D(1D’, then there exists

§>0 and a constant A >0 such that

|f(x)—f(p)|£M|x—p| for every xe DnN(p,§)
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Proof : By hypothesis lim M exists & = f'(p)

Let ¢>0 be given, corresponding to this g, there exists §>( such that

‘f(x)—f(p)
x=p

— f'(p)|<e whenever xeN'(p,8)nD

<e+ f'(p)| =M (say), M is a positive constant,

j‘ﬂx)—f(p)
X-p

Hence |f(x)—f(p)|<M|x—p,xeN(p,é)mD

Note : Instead of ¢ in above, you can choose any fixed positive number

€
Corollary : If we take 0= Ve then from above result

€ €
- M— -
‘f(x) f(P)‘< 3, Wherever |x p|<M

— fis continuous at p
So derivability at a point — continuity at that point
Note : converse is not true.

xsinl x#0
f(x)= x’
0,x=0

o1 . )
As 11_% Sln; does not exist so f'does not exist at x = 0.
X

But f is continuous at x = 0.
Examples :

1. Let f:(a,b) >R be differentiable at xe(a,b). Let {o,} &{B,} be

sequences such that a<a, <x<B,<b, o, =>x,B, > x

S(B,)-f (o) = 7'(x)

n n

Then show that lim

H—>0
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Let &,=+2"%  Then 0<A, <1

Bn -,

L) 1(00) g, (/BT

Bn_an Bn_x

o, —X

+(1—7~n){M—f'(x)}

By hypothesis, f '(x) exists & so the expressions within the brackets both tend

to zero as #—> 0, {A,} &{1-1,} are both bounded.

Hence lim f(Bn) - f(ocn)

H—>00 Bn -a,

exists & is equal to f'(x).
Note : If x<a, <f3,, the result may fail

1
Let B, = ;(n eN) and let {Otn}n be a sequence such that f3,,, <o, <,

Let f:[-L1]>R be a piecewise linear function such that

f[lj:%jf(an):o,f(x)zo for -1 <x <0
n

n

We choose o, nearer to B, Let a, _1 l+ 1
2\n n+l

1
= -0
Then tim 2B =/ (%) i 02 _2m)
n—w Bn_an n—)ool_l l L h
n 2[11 n+lj

But f'(0)=0 & so the conclusion mentioned in the problem, fails.
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2. If the function x/(x) has a derivative at a given point x, =0 and if f(x)
is continuous there, show that f (x) has a derivative there.

xf (x) = xo.f (%) ()=, {M} (1)

X —X, x—x, |

By hypothesis, xf(x) has a derivative at x, =0 and f(x) is continuous at x .

So as x —>x,, LHS. of (1) e%(xf(x)) *=1, — 7 (x)

Hence lim M

X—Xg X — xO

exists and is equal to

L4 ()

0

- —f(xo)}

o1
xo‘sm—B,x;tO
x

3. f:(-L1) >R be defined by f(x)=
0,x=0

Show that (i) if o =1, >0, /' does not exist at x = 0 but if oo >1, >0, " exists
at x=0.

(i) if 0<P<oa—1, f"is continuous at O
(i) if O<a—1<B, f’ is discontinuous at O.

M:x“_1 sinL x#0
x—0 P’

o N o1 :

() if a=1LB>0,x* ! sin— = s1nLB. As lim sin—(B>0) does not exist.
xB X x—0 xB

so in this case, f’ does not exist at x = 0.

(i) Let o >1,3>0

Let € >0 be any number.
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o-l _: 1
X SN —
p

1
< |_)C|0L—1 <€ whereVer |x — O| < 6 — S%OL—I)
X

‘f<x>—f<o>_o
x—0

So limw exists i.e. f'(O) exists.

x—0

So for 0<B<a—1, f'(0)=0

.1 - 1
if x#0, f'(x)=0ax""sin——Px*" P cos —

xP xP
|
As a>1,B>0,Iim x*" sin—=0
x—0 xB
. _a-l-p 1
and as ao—1-f>0, lim x cos—B:O
x—0 X

Hence lim f'(x)=/'(0)& /' is continuous at x = 0.
x=0
(iif) Let 0<a—1<B

. - 1 )
Then a.—1-B<0, lim x“ P cos—¢ does not exist
x—0 X

Hence f' is discontinuous at 0. (Nature of this discontinuity is that of second
kind)
4. Consider a polynomial f(x) with real coefficients having the property that

f [ g(x)} = g[ f (x)} for every polynomial f(x) with real coefficients.
Show that f(x) = x
Let us take g(x) =x+h,heR

So f(x+h)=f(x)+h as f[g(x)} = g[f(x)} by hypothesis.
f(x+h)—f(x)
h

= lim
h—0

Let g(x)=0, then f|:g(0):|:g|:f(0):|:>O:O-i-}\.:}f(x):x

=1= f(x)=x+XA where A is real constant.



NSOU « CC-MT- 08 79

5.If f:R—>R be differentiable at ¢ R, show that

£(e)=lim {n{f[c%j—f(c)ﬂ

Hence show that if f is the derivative of a function g, then f is the limit of a
sequence of continuous functions.

f(c+h)—f(c)_ ,
27 o)

As f'(c ists, so lim
S f( ) exists, lm

1
I LY [Hj_f ©)
lim —=0, so replacing h by — lim d
n—w p} i n—eo %

=f'()

So the first part follows.
By hypothesis, g is derivable & so g is continuous function.

1 .
We define g, (x)= g(x+—j & so these g ’s are continuous.
n

Also n[gn—g] are continuous.

By hypothesis, f is derivative of g, it follows that

f =1Ilim n{gn —g}: lim n{g[erlj—g(x)}
1—>c0 n—>cwo n

So fis the limit of a sequence of continuous functions.
Sign of the derivative at a point.

Theorem : Let f:/ — R and let ¢ be an interior point of interval /.
Let f'(c) exist and f'(¢)#0

(a) If f '(c)> 0, there exists a neighbourhood of ‘¢’ in which f is increasing

function. In other words, there exists §>( such that

F(x)> f(c) for all xe(c,c+8)nI and

f(x)<f(c) for all x in (0—6, c)m]
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(b) If 1 '(c)<0, there exists a neighbourhood of ‘¢’ in which f is decreasing

function. In other words, there exists & >0 such that
f(x) < f(c) for all xe (c, c+6)m[
f(x) >f(c) for all xe(c—é, c)m]

Proof : Let Qg2 211 | be any number.

Corresponding to such g, there exists 6 >0 such that

S ] L)
2

X—c

whenever 0<|x—c|<8(xel)

Case I: Let f'(c¢)>0. Then § ) (xx ({( ) 2(0)

whenever c-d<x<c, c<x<c+90

If c-8<x<c, f(x)—f(c)<%<0:>f(x)<f(c) in c-8<x<c

If c<x<c+6,f(x)—f(c)>%>0:>f(x)>f(c) in c<x<c+$
Consequently, f is increasing in the neighbourhood of c.

/'(e)

Case I : Let f'(¢)<0. Then €=~ 5 sowe have

31(0)_S()-1(0) 1)
c 2

,O<|x—c|<6,
2 xX—

If c—6<x<c,f(x)—f(c)>%>0

= f(x)> f(c)in c-d<x<c
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3(x—c) f'(c)
2

If c<x<c+8, f(x)-f(c)< <0

= f(x)<f(c) in c<x<c+8
So f is decreasing in the §— neighbourhood of c.

Note : If f'(c)=0, no conclusion can be drawn.
Let f(x)=x", then f’(x)=3x* and f'(0)=0

In 0 <x <0+8 & in 0-8<x<0, f(x)-f(0)<0
So f is increasing in N'(0,8) D,

Let f(x)=x. Then f’(x)=2x& f/(0)=0

F(x)-7(0)>0 inboth 0-8<x<0 & 0<x<0+3

f(x) is neither increasing nor decreasing in any § -neighbourhood of 0.

13.3 Algebra of differentiable functions

Let f and g are two functions differentiable at c(e Dy ng), then

1) of (x) is differentiable at ¢ where aeR
(i) f+g are differentiable at ¢ & (f+g) (c)=f'(c)+g’(c)
(iii) f g is differentiable at ¢ & (fg) (c)= 7 (c)g'(c)+ /' (c)g(c)

(iv) if g(c) ;to’i is differentiable at ¢ and
g

H (o)=L ()1 ()¢ (<)
g {e()f

(v) | f | is differentiable at ¢, f(c)#0
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Proof : Deduction of (i) and (ii) are simple and follow straight way from the
definition of derivative.

(i) (fg)(z)__c(fg)c =f (x){—g(x)z:f(c)} +g(c){—f (’2:({ (C)}
Existence of f', g’atc = }61{)1}: w =f'(¢), }CILI}: w =g'(c)

Due to continuity of f, g at c,

fim SR~ (f)(€) _ fe)g'(c)+g(e)f(c)

X—cC xX—C
(iv) Given g(c) #0, due to continuity of g at ¢, there exists nbd of ¢

or, interval / having ¢ as its interior point such that g(x) #0 in /

Let xeD(ijml
g

@(’“)‘@c 1 {g(c).f(x):f(C)_f(c).g(x):g(c)}

e g(95()
By hypothesis, lim w = f'(c), lim w — g'(c)

Due to continuity of g at ¢, lim g(x)=g(c)
X—>C
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As the limit of RHS as x —>¢ exists finitely, so the limit lim 1(x)-171(e)

X—>C X—C

exists finitely.

Note The condition f (c) #0 1is required. otherwise the result may fail.

For example, f(x) = x and ¢ = 0.
Derivative of composite function (Chain Rule)

Theorem : If f is differentiable at ¢ and g is differentiable at f(c), then the
composite function go f is differentiable at ¢ and

(g2/) (€)=£'(£(c)) S ()
Note that ¢ is interior point of domain of go f .

Let us consider the function #4: Dg —> R as follows :

S s

v
g'(f(c)). y=f(c)

Then li?z )h(y) :g'(f(c)) :h(f (c)) & so h is continuous at f(c).
y—f(c

g(y)

h(y)=

Again g(y)-g(f(c))=(y-f(c))h(y) for all yeD, (by construction of /)
Hence for x€ D, ,

(g2 1)(x)=(g=F)e)=h(f () (x)=7 ()

:>forxeDgof &x#c

(= N80 ) FEI=1(0

X—C X—C

Continuity of f at ¢ & continuity of A at f(c)= he f is continuous at c.

As x—)c,RHS—)h(f(c))



84 NSOU e CC-MT- 08

So lim
X—>C

(gof)(x)—(gOf)(C) exists and is h(f(c))f'(c)

— go f 1s differentiable at ¢ and
(g2/) ()=g'(/(e).S"(c)
Derivative of inverse function
Let f be strictly monotone and continuous in an interval / (C R)

and let x, be an interior point of / at which f has a derivative f '(xo) #0.

Then 7' has a derivative at this point y, = f (xo), equal to %N(xo)
Proof : Here domain of f7' is an interval J (say).
By hypothesis, x, i1s an interior point of /. By definition of interior point, there

exists points p, gl such that p <x, <g and then f (xo) is interior point of the
closed interval J, = [f(p), f(q)] as f is strictly monotone.

fis continuous on [p, g] <1, the interval J; = J (by 1.V. property of continuous

function), so y, =f (xo) is interior point of .J.

Now lim {f_l (y)_f_l (yo)}: lim f_l (y)_f_l (yO) .
¥, Y=Y, Y=Y f(f_1 (J/))_f(f_l (yo ))

Due to continuity of f - f ! is continuous at Y, so that
. -1 -1

im /7 (y) =/ (00) =x

Y=

Following substitution rule for composite function

ST ) X=X
yh—>nylo{ Y=Y }_xlgyo{f(x)—f(%)}

since f'(x,)#0, we get
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lim X=X, _ 1 _ 1
x>, f(x)—f(xo) lim f(X) f(xo) f'(xo)
x—>x0 X — xO
consequenctly, lim f_l(y)—f_l(yo) _ 1
=% y=Yo 1" (%)

Note : Alternative proofs of the last two results follow from concept of
differentiability, discussed subsequently.

Diffentiability and differential
f(x) is said to be differentiable at a point of its domain if

f(x+Ax)—f(x):A.Ax+8.Ax where A is independent of Ax and € >0 as

Ax >0,
Let f be differentiable at x

f(x+Ax)—f(x)
Ax

From above definition, =A+e

Taking Ax — 0, RHS — A so lim J(x+Ax) -/ (x)

Jlim e exists & (: f'(x)) =4

So differentiabity at a point of its domain — existence of first order derivative
at that point.

Ax)—
Converse let f'(x) exist. so lim f(x+Ax)-/(x)

Jlim e exists & = f'(x)

Let f(x+Ax)—f(x)

e ~f'(x)=¢ & so € >0 as Ax >0

= f(x+Ax)- f(x)=f'(x)Ax+e Ax where £ >0 as Ax —>0

= f is differentiable at x and hence differentiability <> existence of derivative
at that point.

Note : 1. This result is of importance in the sense that the result differes for

functions 7 R?* >R
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2.1f y=f(x) & y+Ay= f(x+Ax), then
Ay = f(x+Ax)- f(x)=f"(x).Ax+e Ax where £ >0 as Ax —>0
Ay 1s increment of y for the increment Ax of x.

f'(x). Axis known as the differential of y, denoted by dy.
This dy # Ay but dx=Ax (taking f(x)=x, it is evident)

Y
y O (x+Ax, y+AY)
T
Y Iy
P(x,y)
i v
O M X

P(x, y) and O(x+Ax, y+Ay) are two neighbouring points on the curve.

d , IN ,
tan\p=£y=f(x)=m:>TN=f(x)Ax
=dy=1N
So dy=71TN but Ay=PN
& So dy# Ay

Alternative proof for diffentiability of composite function and Chain Rule.

Let f be differentiable at x(e Df) & g be differentiable at 1 (x) (e Dg).

Here we assume that the composite function go f can be defined in the sense
that (go f)(x)= g(f(x)), xeDy.

Here Ay = f(x+Ax)— f(x) = f'(x)Ar+e.Ax where £ —0 as Ax — 0 (taking
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Taking x = g(?)

Ax=g(t+At)—g(t) = g (At + 1. At where 1 — 0 as Ar —> 0 - (1)
Ay=(f"(x)+e)(g (1) At +nAr) where n—>0 as At >0........ ()

Ay = (f’(x)+8)(g’(l)Al+nAt)
:f'(x)g'(l)Al+(f'(x).n+8.g'(l)+8n)At (3)

As At — 0,= Ax— 0 due to the continuity of g.

As Ax — 0,8 — 0. Consequently, f'(x)m+e. j(f)+en—0 as At >0
Recalling (3), Ay:f'(x)g'(l)lerr.Al(r:f'(x).nJrs. g'(l)+8n)
where t—>0 as Ar >0

b _dy &

dt dx dt
Note Similarly the differentiability of inverse function can be discussed.

=y is a differentiable function of 7 and

Theorem (Darboux Theorem) : Let f :[a,b] >R be derivable in the closed
and bounded interval [a, b] and f '(a) f'(h) <0 . Then there exists at least one point
ce(a, b) such that f'(¢)=0.

Proof : Let f'(a)>0, f'(b)<0

£, being derivable in [a, b] is continuous in [a, b]. So fis bounded in [a, b] and

attains its bounds in [a, b]. So there are points c¢,de[a,b] such that

sup f =M = f(c) and [inglf:m:f(d).

[a.5]

As f'(a)>0, So f(x) is increasing in some neighbourhood of a and hence there
exists 8 >0 that f(x)> f(a) in a<x<a+3.

If c=a, then f(x)>M in a<x<a+8 which is absurd. So c=a.

As f'(b)<0, f(x) is decreasing in some neighbourhood of b & so there exists

n>0 such that f(x)> f(b) in b-n<x<b.
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If c=b, then f(x)>M in b—n<x<b which is also absurd. So c¢=b.

So ce(a,b). By hypothesis, /'(c) exists. We propose to show that f'(c)=0.

If possible, let f'(c) > 0. Then there exists & >0 such that f(x)> f(c)(= M) in
(c,c+8) (<=[a,b]) this is absurd, so f’(c)$ 0.

If possible, let f'(c)<O0. Then there exists ' >0 such that f(x)> f(c)(=M)
in (c-n'’,c)(<[a,b]) & this is absurd, so f'(c)£0. Hence f'(c)=0.

Corollaries (1) : Let f:[a,b]— R be derivable in [a, b] & f'(a)= f'(b). If
k be any number between f’(a) and f'(b), then there exists at least one point
ce(a,b) such that f'(c)=+k.

Let us construct ¢:[a,b] >R defined by o(x)=f(x)-Ax.

Derivability of f in [a,5] = derivability of ¢ in [a,5],¢'(x)= f'(x)-k

@'(a)o'(b)=(/f"(a)~k)(s'(b) - k) <0

So by Darboux Theorem, there exists ¢<(a,b) for which ¢'(c)=0 i.e.
f(c)=k.

(2) If f be derivable in a closed and bounded interval /, then the range set of f’
on / is either a singleton or an interval.

If two distinct members p;, p, €J, there exists distinct elements x,x, €/
such that f'(x,-):p,- fori=1,2 Let x; <x,. So [xl, xz]c].
If p, <p<p,, by Darboux's theorem on derivative, there exists ¢ € (x;, x,)

such that f'(c) =p.So peJ. Butp is arbitrary point between p, & p,. This

shows that if p;, p,,€ J, then every element between p, & p, belongs to J. So Jis

an interval in R .
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(3) Let f:[a, b]—> R be derivable on [a, b]. Then f’ can not have any jump

discontinuity on [a, b]

Let ce (a, b). We propose to show that

(i) if lim f(x) exists, then it is f'(c), c<(a,b]

X—>C—

(ii) if lim f(x) exists, then it is f'(d), d €[a,b)

x—>d+

(i) Let a<c<b & lim f'(x)=/(€R). We have to show that I=f"(c)

X—>Cc—

Let /< f'(c). Let 0<e< f'(c)-1.

As lim f'(x)=1, corresponding to above chosen &>0, there exists §>0
x—c—0

such that

f"(x)—I|<& whenever xe(c—8,¢)[a,b]
So if pe(c—38,¢)n[a,b], then I-e< f'(p)<l+e<f'(c) (by above &)
So by Darboux theorem, there exists point &< (p, ¢) such that f'(§)=/+e .
Now Ee(p,c)=>Ee(c-8,¢)n[a,b] & so by above f'(§)<I+e. Thus we
arrive at a contradiction. So /£ f'(c).

If possible let /> f'(c). We choose & such that 0<g</- f'(c)

lim0 f'(x)=1= Corresponding to above g, there exists n>0 such that
X—>C—

I-g<f'(x)</+e whenever xe(c-n,c)n[a,b].

Let ge(c—n,c)[a,b]. Then f'(c)<l-e<f'(q).

Again by Darboux theorem on derivative. there exists point t in (g, c¢)
such that f'(t)=/-¢.

But 1e(q,¢)=>1e(c—n,c)[a,b] and hence f'(7)>/-¢.
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We arrive at a contradiction. So /# f'(c).
As a result lim0 F'(x)=f"(c), a<c<b
x—>c—

Similarly it can be shown that lim f'(x) exists = f'(c)

x—c+0

So a derived function on an interval [a,5](cR) can have a discontinuity of

second kind only

(3) Let f '(x) exist and be monotone on an open interval (a, ). Then f' is

continuous on (a, b).

If possible, let f' have a discontinuity at some point ¢ e (a, b).

¢ is interior point of (a, b) & we have a closed sub interval [oc, B] of (a, b)
which contains ¢ in its interior.
By hypothesis f’ is monotone in [oc, B] & so the discontinuity at ¢ must be a

jump discontinuity. But a derived function can not have any jump discontinuity . So
f' is continuous on (a, b).

13.4 Theorem (Rolle’s theorem)

Let f:[a,b] >R be
(1) continuous in [a, b] (i) derivable in (a, b) (i) f(a) = f(b).
Then there exists at least one point ¢ e (a, b) such that f '(c) =0.

Proof : Continuity of f in [a, b] ensures the boundedness of f in [a, b] &

attainment of bounds in [a, b]. Let M =sup f and m= [ingl f.
[a.5] a.

There are points ¢,d €[a, b] such that f(c) = M, f(d) = m.

Case I : Let M =m. Then f(x) is constant function in [a, 5] & so f'(x)=0 in
(a, b).


Mampi Howlader
Typewriter
1
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Case Il : Let M =m. As f(a) = f(b), So at least one of M and m is different
from f(a) and f(b). So c#a,c=b (if M be different from f(a) and f(b))

Hence ce(a,b) & by hypothesis (i) f'(c) exists.

If f'(c)>0, there exists §>0 such that f(x)> f(c) in c<x<c+8& where
(c,c+8)c(a,b). So f(x)>M in (c,c+8) which is absurd. So f’(¢)#0.

If f'(c) <0, then there exists n>0 such that f(x)> f(c) in (c-m,¢)c(a,b).

Again f(x)>M in (c—mn,¢) which is absurd. thus f'(c)+#0.

Consequence f'(c)=0.
Note : The above theorem gives a set of sufficient conditions for the vanishing

of f' at an interior point of D,. The conditions are not necessary. For example,

, I<x <2
x—-1 2-x

3
f'(x)=0 at x=7 but f does not obey the conditions of Rolle's theorem in

[1, 2].
Geometrical interpretation of Rolle's Theorem

If the two end points of the graph of y = f (x) be on the same horizontal line (i.e.
on a line parallel to x-axis) and if the graph be continuous throughout the interval and
if the curve has a tangent at every point on it except possibly the two end points, then
there must exist at least one point on the curve at which the tangent is parallel to x-
axis.

Examples :

(1) Let f,g, h:[a,b] >R be continuous in [a, b] and be derivable in (a, b),

then show that there exists ¢ (a, b) for which
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S
Let us construct F:[a,b] >R as F(x)=|f(a) g(a) h(a)
S

Continuity of f, g, h in [a, b] = continuity of F in [a, b].

f(x) g'(x) H(x)
F'(x)=|f(a) gla) h(a)
f(b) g(b) h)

Also F(a) = 0 = F(b). So F(x) satisfies all the conditions of Rolle’s Theorem in

exists in (a, b), as f', g',h' exist in (a, b)

[a, b]. Therefore by Rolle’s theorem, there exists ce(a,b) s.t. F'(c)=0

Hence the result follows.

(2) Let f, g be differentiable on the inerval /. Let a,be/ and a<b and

f(a) = 0 =f(b). Show that there exists ¢ (a,b) such that
f'(e)+f(e)g'(¢)=0
We construct the function 4:[a,b] >R as h(x)=f (x).eg(x)

Continuity of f & g in [a,b]= continuity of 4 in [a, b].

H(x)=f'(x) es¥) + f(x) eg(x).g'(x) exists in (a, b) as f, g, are derivable in
(a, b)

h(a)=0=h(b) by given condition. So by Rolle’s theorem, there exists
ce(a,b) such that #'(c)=0= es) ' (e)+f(e)g’(e)}=0.
As 29 20, so f'(e)+ f(c)g’(c)=0 for some ¢ (a,b)

Particular Case f'(c)+2f(c)=0(LeR) under the same set of conditions
mentioned above.

(3) x*+2x*—6x+2=0 has
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(A) 4 real roots (B) exactly two real roots (C) no real root (D) one pair of equal
roots.

f(0)=2,f(1)=-1, f(2) = 14. f (x) is continuous function &
F(0) f(1)<0, £(1)f(2)<0.

By Bolzano’s theorem on continuous function, f (x) must vanish at least once in
(0, 1) & at least once in (1, 2).

If possible, let it have more than two real roots. Then by Rolle’s Theorem,

f'(x) must vanish at least twice & f”(x) must vanish at least once. But
f"(x):12x2 +4>0 for all x. (B) is true.

(4) If a<c<b and f"(x) exists finitely in [a, b], then there exists & (a, b)
such that

f(a) . 7(b) N £(e) 1,
(a-b)(a—c) (b-c)(b—-a) (c—a)(c—b) S/ (k)

Let us construct the function ¢ :[a, b]—> R as follows.

. :m a+(x—c)(x—a) Jr(x—a)(x—b) e £lx
b()= D) ) o) ) Lol )

Continuity of f in [a, b]:> Continuity of ¢ in [a, b].

o 2x—(b+c) 2x—(a+c) 2x—(a+b) .
Y= @’ Y oayi—a)’ P emayemp)’ )
& as f'(x) exists in (a, ), ¢ exists in (a, b). Also ¢p(a)=(b)=¢(c)=0

Given that a < ¢ < b, so ¢’ satisfies the conditions of Rolle’s theorem in both
[a, c] & [c, b].

By Rolle’s theorem, there exists &, e(a,c)& &, e(c, b) such that
¢'(&)=0=¢'(&,)

As f"(x) exists in (a, b)
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niN_ a)+ B +—2 c)—f"(x
0" (+)- @ o O s 1077

exists in (él,iz). Applying Rolle’s theorem to ¢’ in [&1, ﬁz], there exists
ke (il, iz) c (a, b) such that (I)"(k) =0

/(a) N f(b) N f(¢) 1,
(a-b)(a—c) (b—c)(b—a) (c-a)(c—b) S/ (k).

BS)let f,g: [a, b] — R be such that each is derivable in (a, b), each is continuous

—

at a & b. Then there exists ¢ €(a, b) such that

/') g(®)-g(a)} =g (){/ (b)- /(a)}

We construct /:[a,b] >R as follows :

h(x) = f(x){g(b)—g(a)}—g(x){f(b) —f(a)} for all xe [a, b]

Continuity of f & g in [a, b]= Continuity of / in [a, b].

h'(x) = f'(x){g(b) —g(a)}—g'(x){f(b)—f(a)} exists in (a, b) as f', g’ exist
in (a, b).

h(a)=71(a)g(b)-1(b)g(a), h(b)=-1(b)g(a)+f(a)2(b)

and so h(a)=h(b)

So A satisfies all the conditions of Rolle’s theorem in [a, b]. By Rolle’s theorem,

there exists ¢ €(a,b) such that #'(c)=0.

= f'(e){g(®)-2(a)}=g'(){/ (6)- (@)}
(6) Show that between any two real roots of e” sin x =1, there is at least one real

root of e* cos x+1=0.

Let f(x)=e"sinx—1 and a, b be two real roots of f(x) = 0
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Let g(x)=¢ " —sinx, a<x<b.

g is continuous in [a, b] and g'(x)=—-e"—cosx exists in (a, b)

Also g(a) = g(b) =0 by above hypothesis.

g satisfies all the conditions of Rolle’s theorem in [a, b] & so by Rolle’s theorem,
there exists ¢ €(a,b) such that g'(c)=0 i e. ¢*+cosc=0 or 1+e°cosc=0.

= ¢ is root of € cosx+1=0

(7) Let f:[a,b] >R be continuous in [a, b], differentiable in (a,b) and be

nowhere zero in (a, b). Show that there exists 0 € (a, b) such that

S0 1 L]
f(6) a-6 b-0

We construct g:[a,5]—>R as follows :

g(x)=(x-a)(x-5) f(x) for all xe[a,b]

Continuity of £ in [a, b]= continuity of g in [a, 5]

g (x)=(x=b)f(x)+(x—a) f(x)+(x-a)(x-b) f'(x) exists in (a, b) as
flexists in (a, b). Also g(a)=0=g(b). Applying Rolle's theorem to g in [a, 5],
there exists at least one 0 €(a,b) such that g'(6)=0.

=(0-b)7(8)+(6—-a)f(8)+(6—a)(6-5)f'(6)=0

f(6) 1 1

T /(8) a6 5o

(8) Show that the equation xlogx=3—x has at least one root in (1, 3).

Let f:[1,3] >R be defined as follows : f(x)=(x-3)logx.
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-3
7 is continuous in [L 3], f'(x)=logx+ xx

exists in (1,3)& f(1)=0=f(3)
Applying Rolle's theorem to fin [1, 3], there exists ¢ €(1,3) such that f'(c)=0

:>logc+l—§:0 ie cis root of xlogx+x=3
c

(9) If f, g exist in [a,b] & g'(x)#0 in (a,b), show that there exists
ce(a, b)

f(e)=f(a) _ f'(e)

such that =

g(b)-g(c) &(c)

We construct /:[a,b] >R as follows :

h(x) = £ (x)g(x) - £ (a)g (x)- g (b) f (x) for all xe[a,b]
Existence of £, g' in [a,b]= continuity & derivability of / in [a, 5]
Also h(a)=-g(b)f(a)=h(b). Applying Rolle’s theorem to # in [a, b], there
exists ¢ (a,b) such that
H(c)=0=7"(c)g(c)+/(c)g'(c)-f(a)g'(c)-g(b) f'(c) =0
f'(e) _ f(e)-f(a)

T g(e) —g(c)re(d)

EXERCISE
1. If f’,g’ are continuous in [a—h, a+h], derivable in (a—h, a+h),

g”(x)#0, show that there exists d € (a—h,a+h) such that

fla+h)-2f(a)+ fla—h) f"(d)

g(a+h)—2g(a)+g(a—h) g”(d)
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2.Let f,g:[a,b]— R be continuous in [a, b]. Assume that g, g’ are nowhere
zero in [a, b] & (a, b) respectively..

fla)_ f(b) fle)_ fle)
g(a)

Let B M Show that there exists ¢ (a, b) such that g(c) - g’(c)

3. Let éo % =0 where C, € R for all £. Show that the equation

Co+Crx+....... +C,x" =0 has at least one root in (0,1)

4. Let u(x),v(x),u’(x),v'(x) are all continuous on R and v —y’v#0 in R.
Prove that between any two real roots of u(x)= 0, there lies one root of v(x)=0.

5. Examine whether the equation x* —3x+k =0, k € R, has two distinct roots in
(0, 1).

6. Correct or justify the statement : Rolle’s Theorem is not applicable to |x|
in any interval [a,b]cR.

7. Using Rolle's theorem, show that the derivative f’(x) of the function

xsin X, if x>0

F)=1"

0 ifx=0

vanishes on an infinite set of points of the interval (0,1).
8. Let f, g:[a,b] > R be continuous in [a, b], f”, g” existin (a,b), f& g
vanish at end points a and b, g"(x)#0 in (a, b).

If a<c<b &g(c)#0, show that there exists &< (a, b) such that
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(Hints : Contruct F:[a,b] >R as F(x)=f(c)g(x)-g(c)f(x) for all
xela,b])

9. let f:R—R be differentiable upto any number of times and let

for some neN, f(0)=f"(0)=..=f"=0

Show that ) (x)=0 for some xe(0,1)

10. Show that each of the equations

(i) sin (cos x) = x (ii) cos (sinx)= x has exactly one root in (0.7

Lagrange’s Mean value theroem or first mean value theorem of Differential
calculus.

Let f:[a,b]— R be (i) continuous in [a, b] (i) derivable in (@, b). Then there
exists at least one point ce(a,b) such that f(b)— f(a)=(b—a) f'(c).

Proof : We construct F:[a,b]— R as follows.

F(x)= f(x)+ Ax where the constant A is to be determined from the functional
relation F (b)=F(a)

Continuity of fin [a, b]= continuity of F in [a, b] &

derivability of f in (a,b)= derivability of F in (a, ). By construction,
F(b)="r(a)

So F satisfies all the conditions of Rolle’s theorem in [a, b]. Hence by Rolle’s

theorem, there exists ¢ e (a, b) such that F’(c)=0.
So F'(c)=f"(c)+A=0—> A=~ f"(c) & F(b)=F(a) :—A:w
f(6)-f(a)

b—a

Note : 1. Conditions stated above are sufficient but not necessary.

Therefore

-/)
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Consider the function f:[0,3] > R defined by

0, OSx<l
2
1 1 3
X)=9x+—, —<x<—
f() 27 2 2
gx+l, z<x£3

3 2

f does not sastisty the conditions stated above but

f(3)—f(0):1:f,(§j

3-0 4

2. Geometrical Interpretation : If the graph of a function be a continuous
curve having tangent at every point on it except possibly the two end points, then
there is at least one point on the curve at which the tangent is parallel to the chord
joining the end points.

Examples : (i) Let f have the property that |f/“(x)|<1 for all x in (0,1) and let

. 1 .
f be continuous at x=0,1. Show tht the sequence { f (—)} is convergent.
n

n

We note that LMV theorem is applicable to f in any interval C R
Let € >0 be given. By Archimedean property of R, there exists natural number
K such that Ke>2. Let m,ne N be such that m, n >K.

1 1 1 1
By L M V theorem, there exists at least one point ¢ € (—, —j (or,c € (—, —D
m n
1 1
m n
1 1
m n

Such that S (e )| <

T 1
o ;‘ (by hypothesis)

HiER
m n

2
<—<e¢g for m n,>K
K
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= { f (l)} is cauchy sequence in R & so { f (l)} is convergent

n n

sequence in R . Hence { f (1)} has a limit in R
n

2. Find real solutions of 2" +5" =3" + 47

The equation can be written as 5 — 4" =3 - 27

We consider the function f (t):tx in (i) [4, 5] () [2, 3]

f is continuous in both the intervals & is derivable in both, Applying L M V
theorem to #* in both [4, 5] and [2, 3], we see that there are points 7 €(4,5) &
1, €(2,3) so that

5* -4 =xt" & 3 —2% =y,

x—1

_ _ ! .

Therefore x4, = xt,"! = [Z—lj =1=x-1=0 as 7, 7, belong to different
2

sub intervals & so 7, #1,
Hence, x =1
Hence x=0,1 are only solutions.
3. f:[0,2] >R is differentiable & f(0)=0, f(1)=2, f(2)=1. Show that
there exists ce(0,2) such that f’(c)=0
Applying LMV theorem to fin [0, 1], there exists &< (O, l) such that
SM)-1(0)=0-0 1) =/(§)=2
Applying LMV theorem to fin [1,2], there exists ne(1,2) such that
f@2)-r()=2-1)f ()= (n)=1-2=-1
So f '(i) I’ (n) <0. By Intermediate value theorem on derivative. there exists

ce (i,n) c (O, 2) such that f* (c) =0
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4. If ¢” (x)=0 for all xe(a,b), show that

¢(x1‘;x2)< {q) x1 + 0 xz)}

for every pair of points x;, x, in (a,b)

x1+x2

Let x, >x & so % < <X

o)+ 0(03)-20( 12| =do () -0 (21| o 1572 ) g ()]

= (x2 - xl) {4"(&) — ¢’ (ﬂ)} for some

N | —

X +x X +x
&E(xla 1 2 Zj&ne ( . 2 2 ,xzj by L M V theorem ... (1)
Again by hypothesis, ¢”(x) exists, so by applying L M V theorem to ¢’ in

[€,n], there exists ce (&, m)
¢’ (i) -4’ (n) - (i —n) ¢ (C) >0 by hypothesis ...... (2)

By (1) & (2), ¢ ( > j< {o(x)+0 0}

Note : Converse is not true. f (x)=|x| fulfils the given result but |x| is not
derivable at O.

5. Let f be a function such that f (x)>0 for all x & f’(x) be continuous at

every real x. If f”(r)2/f (¢r) for all 7, show that

VS 2/ + for all x>1

By hypothesis, ¢ (x)=,/f (x) is derivable for all x>1. By L M V theorem

there exists & (1, x) such that
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0() -4 () =(+-1) &' (2)
= 7 () T 1= (1) Q%z;u—l)(asf'(r)z 7 )

2

6. On the curve y = x?, find the point at which the tangent line is parallel to the
chord joining the points A4 (-1,-1) and B (2,8)
Let us refer to the geometrical interpretation of L M V theorem.

By L M V theorem, there exists &< (—1,2) such that

F(2)-f(-1)=(2+1) f' (&) for some Ee(-1,2)

(taking £ (x)=x" in [-1,2])

—9=3E23=E==+1. Here -1 is not interior point of [~1,2] or—1g(~1,2)

So &=1 i.e (1, 1) is the point at which the tangent is paralled to AB.

7. Apply mean value theorem to find derivative of a function, assuming that the
derivatives which occur are continuous.

Let I { f (x)} be the composite function

Mean value theorem is applicable to f(x) and there exists &e(x,x+ h)or

(x + h, x) for which

f(x+h)=f(x)+hf"(§)=u+k say that u=f (x)&k=h f' (&)

Mean value theorem 1is applicable to F(u) and there exists
ne(u,u+k)or(u+k,u) for which F(u +k):F(u)+kF’(n)

As h—0, E—x Also k=h f’(§)— 0. Further as k — 0, N —u . Therefore

. F{f(erm)}-F{f (x)} _ F(utk) - F (u)
h—0 h h—0 h

F’
z}lii)% h(n) =}li£)% F (&) F'(n) exists & is
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S () F ()= f (x) 7 { f (x)}
8. If / be continuous at ¢ and lim f’(x) exists finitely, then show that f* is

X—C

also continuous at c.
Let lim f*(x)=/(eR)
X—C
Hence there exists an interval (c, c+h],h>0 at every point of which f exists

& so fis continuous in (c, c+h]. Given that fis continuous at c¢. So f is continuous

in [c,c+h] & f’ existsin (c,c+h). By L M V theorem, there exists
E,c<E<x<c+h
such that f (x) - f(c)=(x—c) 1 (&)

As limf,(x):l, SO

Jim @)= fim €)== fim O <y )=

Similarly, considering [c—h, ¢) & arguing as in the previous case, Lf’(c)=1
so, J~ (c)=1= }Clg}: J7(x)=1"(¢c) & therefore f’ is continuous at c.
Increasing & decreasing nature of function in an interval :

Result : If f (x)is continuous in [a,b] and f’(x)>0(or<0) in (a,b), then

S (x) is increasing (or decreasing) function in [a,b]. If f*(x)=0 in (a,b), f (x)
is constant in the interval.

Proof : We choose x;, x, so that a<x; <x,<b. Applying L M V theorem to f
in [xl, xz]
there exists ﬁe(xl, x2) such that f (xz) - f (xl): (xy =) (&)

So f1(©)>0= f(x)> f(x)
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(f©)<0= f(x,) < f(x))
It is true for every pair of points x;, x,of [a, b]. So if f’(x)>0 for all x. fis
increasing in [a,b] & if f’(x)<0 for all x, f is decreasing in [a, b]
If f/(x)=0 then f(x)=f(x,) & so f(x) is constant in [a, ]

+x 2x

1
Examples : 1. If 0<x <1, 2x<log
I-x 1-x

1+
Let f(x)=logl—x—2x,OSx<l

2
f»(x):LJrL_z: 2x

1+x 1—-x 1—x?

>0 for all xe(0,1)
Next let g (1)=logt, te[l-x,1+x], 0 <x<1. Applying LMV theorem to g(?)
in [1-x, 1+x], there exists &e(1-x,1+ x)

for which &(1+x)=g(1-x)=2xg"(§)= 2§_x

=g (I+x)-g(l-x)=log (l+x)—log(l—x)<12—x,0< x<1
—x

sinx

2 T
2. Show that E< <1 when O<x<5

Let us construct g: [O, g} — R as follows :

g(x)z sinx T
X
1 x=0

‘ ‘ ‘ T , Xcosx—sinx v
So g is continuous in |05 | & & (x):x—2 exists in | 0, =
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Let t(x)zxcosx—sinxin [O, g} & so
’ : 1 n
t (x)z—xs1nx+ cosx—cosx<0i1n (O, —j

So #(x)<(0) or xcosx—sinx<0. Hence g’(x)<0in(0,gj

:>g(£)<g(x)<g(0) & hence = < Smx<lin(0,£)
2 T X 2

3. Show that tan x

X o
>——,0<x<—
X sin x 2

. T
Let f(x)=tanxs1nx—x2,OSx<E

f is continuous in [0, p] (p< gj &

f’(x) =sec” x sin x + sinx—2x=l(x) in [O, p]

2 - 2
#'(x) =2 sec” x tan x. sin x + sec” x.cos x + cosx —2

= (\/secx — \/cosx)2 +2sin? x sec® x
1(x) is continuous in [0, p] & #'(x) exists in (0, p). Also #’(x)>0in (0, p)

=1(x)>1(0), x>0 & so f’(x)>0:>f(x)>f(0),0<x<g

tan x X
, O<x<Z
2

Consequently, . St

4.Let 0 (x)=f(x)+ f(1-x)& f”(x)<0in[0,1]. Show that ¢ (x)is monotonic
1

1
increasing in [O, 5} and monotonic decreasing in |:57 1}
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By hypothesis, ¢’ (x)= f"(x)- f’(1-x)

Applying L M V theorem to f’ in [x,1-x] or in [l-x, x|, there exists
ge(x,1-x) or (1—x,x) such that

S1(x)= (1= x) = (2x=1) 17(§)

>0 0<y<t
By hypothesis f”(£)<0 & so f'(x)—f'(1-x) | 2
<0 ,—<x<I
2
. . . . l . . . l
So ¢(x) is increasing in O’E & is decreasing in 571

5. Show that cosx+xsinx > 1, xe(O, gj

Let f (x)=cosx+xsinx, OSxS%

f(x) is continuous in [O, g} J7(x)=—sinx+sinx+ x cosx exists in (O, gj
. n
Also f’(x)>0 in (Og) So f(x)> £(0), O<x<5
. n
=cosx+xsinx>1, O<x<—

6. Show that f(x)=tan™" x defined on (—co, ) is uniformly continuous & f
is also uniformly continuous.

, 1
We note that Jf (x): W exists for all yeR
Let us consider any pair of points x, yof R. By L M V theorem, there exists
&e(x, y) such that

1
1+ &2

[/ () = f ()| =lx -y

<|x-y|<8 for any pair of points x,yeR

satisfying |x—y|<8, § depends only on €. So f is uniformly continuous on R .
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Again |f’(x) - /" (y)| = |x—y| /7 (n) for some ne (x,y) (by LMV theorem)
(1)

-2
/7 (x)= x2 x) |< 2 for all x ...(2)

1+

2
For if |x|<l, > |x|:> f”(x)|< 2
” 2x

& it [X[>L |f (x)|< <2

’(x)—f’(y)|<2|x—y|<8 whenever [x—|<3, 5=§
for any pair of points x, y of R
Hence f” is uniformly continuous on R

7. Find all possible positive solutions of x?+ )% =4 +v*, ¥’ +° =4’ ++°

B

where u, v be fixed positive constants.
Obiviously x=u, y=v and x=v, y=u are two solutions of the system.

_ .3 .3 3 .3
Let X\=X, W=y, uy=u, W=y

We consider the function f(t)=t% in (i) [, ] Gi) [, ]
By L M V theorem, there exists # € (ul, xl) &ty e (V1, yl) such that

xl%—ul%=( ul)gll s & Vl/—yl/ (m yl)_ZZ K (D)

3
. 2 2 2 2
Given x; +y, =u; +v &xlé"'ylA:ulA"'VlA so (1) =1 =1,
But lle(ul,xl)&tze(vl,yl). So f1#t,. So x=u, y=v &x=v, y=u are

only solutions.

Exercise :

1. Show that 0< [log (1+ x):|_1 —x'<1, x>0
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e* —

1
2 Show that O<x_llog[ ]<l, x>0

3. Let f:[1,3]> R be a continuous function that is derivable in (1, 3) with
derivative £’(x)=|/(x) +4 for all xe(1,3)
State with reasons, whether f(3)— f(1)=35 is true or false.

fle)=fla) _ f(B)-[(c)

c—a b—c

4.If f”(x) existsin [a, b] and for some c€(a, b),

show that there exists at least one point &e(a,b) for which f”(§)=0.

5. If f"(x) exists for a<x<b and |f(x)) > as x—a, then show that

f’(x)|%oo as x—aq.
(Hints Apply LMV Theorem to f in [x, b]).

6. Let f be continuous in [0,1] and differentiable in (0,1). If f”be monotonic

/()

increasing in (0,1), prove that £ (x) = is monotonic increasing in (0,1).

7. Show that tan™ Xy — tan ™" x; <X, —x; where x, >x

8. Determine the intervals of monotonicity for the following functions :
(i) f(x)=2x"—9x - 24x+7
(i) f(x)=4x> —21x" +18x+20

(ii1) f(x) = sinx +cosx in[0,27]
9. Show that :
3 3

(a) x—x?<tan_1x<x—%, O<x<1

3
(b) x—%< sinx<x, x>0
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10. Prove that for 0< p <1 and for any positive a and b the inequality

(a+b)p <a? +b? i1s valid.
(Hints: Take f (x)=1+x” —(1+x)p,x20&thenx:%)

11. At what value (s) of b, does the function f(x)=sinx — bx+c decrease along

the entire number scale ?

12. Let f:R — R be differentiable and that f(0)=0; f(4)=2, f(6)=2 show
that

(i) there exists x e (0,4) such that f”(x)=

wlirn N

(ii) there exists xe(0,6) such that f'(x)=

13. Let f:R — R be a differentiable function. Let f”(x)> f(x) for all xe R
& f(x,)=0. Show that f(x)>0 for all x>x,

<Hints ‘Let g(x)=e"" f(x) & consider the sign of g (x)>
14. Let g>5>0. Show that a% —b% <(a—b)% for all n>2

) v v ) , a
(Consider f(x)=x"7—(x-1), x21; sign of f’(x)& then put x:Z)
15. Justify the following :

5qi
(a) if x>0, x> S X

4+ cosx

1 1
b) if 0<x<T/, O<xsinx——sin’x<—(n-1
®) 2 5 G

~15
o rx<4+X2 if x>15
©) -
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-1 .
(d) tan_1x<%+x7 if x>1

2

() p(x=-1)<x?-1<px™(x=1), x>1, p>1
Cauchy's Mean value theorem :

Let f, g:[a,b]—> R be such that (i) both are continuous in [a, ] (ii) both are
derivable in (@, b) (iii) g’(x)#0 in (a, b), then there exists at least one point
ce(a,b) for which

f@)-fla)_ f(e)

gb)-f(a) g'(c)

Proof : We construct the function F(x)= f(x)+ Ag(x) where the constant A is

to be determined from the functional relation F'(a)=£'(b).

/(8)-(a)
g(b)-g(a)

g(b)# g(a), for if g(b)=g(a), then g would satisfy all the conditons of Rolle’s

F(a)=F(b)=>-4= . In this connection, it is to be noted that

theorem in [a, b] and so g'(x) must vanish at least once in (a,b). But condition (iii)
tells otherwise. So g(b)# g(a) & —A4 is well-defined,

Here F’(x)= f’(x)+ Ag’(x) exists in (a,b) by condition (ii). Also F is
continuous in [a,b] by hypothesis. By construction, F'(a)=F(b). So F satisfies all
the conditions of Rolle’s theorem in [a,b]. By Rolle’s theorem, there exists at least
one point ¢ € (a,b)for which #’(c)=0.

(¢ b)— fla “(c
e 2822

Note : Putting g(x)=x in [a,b], we get LMV theorem.

So F'(c)=0=>-4=

has at least

Examples : (1) If f’ exists in [0,1], show that f(l)—f(O): f;(xx)

one solution in (0,1).



NSOU « CC-MT- 08 111

We take g(x)=x> in [0,1]. Both f, g are continuous in [0,1], are derivable in

(0,1) & g’(x)#0 in (0,1). By Cauchy’s mean value theorem, there exists at least one

S)=70) _ f(c)

point c¢e(0,1) such that <()=200) = s = f(1)-f(0)= ” & socisa

solution of f(l)_f(0)=%.

2.Let f:[a,b]— R be continuous in [a,b], derivable in (a,b) where 0<a<b.

Show that for some c € (a,b)
, b

£(8)- /() =cf"(¢) log (5)

We take g(x)=logxin[a,b],0<a<b. Applying CMV theorem to f, g, in
[a, b] there exists ¢ e(a,b) such that

f(i)_f(a) _ f,(c) N f(b)—;:(a) =¢f’(c)

<500 €0 1]

a

3. Let f, g be differentiable on [0,2] such that f(0)=2, f(2)=5,

g(2)#0,g(0)=0, f'(x)=g’(x)(*0) in (0, 2). Find g(2)

. f _
By C M V theorem, there exists ¢ < (0,2) such that 2(2)-2(0) =

=1=g(2)=5

13.5 Taylor's Theorem

Let f:[a,b]—> R be such that (i) f(”_l)(x)is continuous in [a,b] (ii) f(”)(x)

exists in (a,b).
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Then there exists 6 (0,1) such that

f(b):f(a)+(b—a)f’(a)+(b_z!a) f”(a)+...+%f(”_l)(a)+Rn
where
(b-a) (-6)"" +0(b—a € N (schlomilch — Roche'sform
i f"[a+6(b-a)], p e N (schlomilch — Réche'sform)
R, = (b= a()n 511;!9) /" [a+6(b-a)](Cauchy's form)
(b ;Tl)n I [a +6(b- a)] (Lagrange's form)

Proof : Continuity of #”! in [a,b] implies the existence and continuity of

Fo L fr 2 7 in [a,b]

We construct ¢:[a,b]—> R as follows :

(b—x)"
2!

(b _ x)n—l

0(x)= £ (x)+(b=x)f"(x)+ f”(x)+...+Wf<"-l>(x)+x(b_x)l’

where ), is a constant to be determined from the functional relation ¢(b) = d(a) .
¢ is continuous in [a,b] by hypothesis (i)

1

X Y _
o' (x)=f(x)= /() +(b—x) f(x)— ..+ 1) f(x)=Ap(b—x)”
exists in (a, b)
By construction, ¢(a)=0¢(b). So ¢(x) satisfies all the conditions of Rolle’s
theorem in [a,b].
Therefore, by Rolle's theorem, there exists ¢ e(a, ) such that ¢’(c)=0
n—1
=
(n—l)!

Therefore ¢(b)=¢(a) implies

(b—c P

F(e)=rp(b-c) " = h=

(n—l)!p f"(c)
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7(0)= 1)+ (o-a) 7 @ 2 (o)
G NN L I )
e e

As a<c<b we can write ¢=a+0(b—a) for some € (0,1).

(b—a)"(1-6)""
(n=1)tp

(b-a)'(1-0)""
(n—l)!

For p=n, R, = (b;—?)nf” [a + e(b —a)] (Lagrange's form)

We write R, =

I [a +6(b- a)] (schlomilch & Roche's form)

For p=1, R, =

f"[a+6(b-a)| (Cauchy's form)

Note : 1. The relevance of these forms by taking p = n & p =1will be discussed
in the subsequent results.

2. The readers should note the particular forms of this theorem (also known as
Generalised mean value theorem) by taking n=2,3 etc for solution of problems.

3. Taking b=a+nh,

2 hn—l n

f(a+h):f(a)+hf'(a)+Z_!f”(a)+...+mfn-l(a)+’;_!fn(a+eh)

for some 6<(0,1)

Problems : (i) Let f"*'(x) be continuous and # 0, the number @ which occurs

n
in the Lagrange's form of remainder of Taylor's theorem, viz, h—' " (a+6h) tends to
n!

1
PRI h—o+.

We know that—
2 hn—l

’ h .,
fx+h)=f(x)+hf (x)+2—!f (x)+...+(n_l)!

£ )+ % f"(x+6h) for

some 6€(0,1).
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By hypothesis "' (x) exists & so

h2 hn hn+1

f(x+h)=f(x)+hf’(x)+2—!f”(x)+...+n—!f(”)(x)+(n+l)!f(”+l)(x+9’h)
for some 6" <(0,1)
These two imply f”(x+9h)=f”(x)+%f(”+l)(x+9’h)

n

By LMV theorem f” (x+0h)— " (x)= ehf(”“) (x+60”h) for some 0” € (0,1)

f(n+1) (x + e/h)

So 67" (x+007h) =
n+1

1
10 - - 1 imo=_—
As " (x) is continuous by hypothesis & as £ (x)# 0 we get }llg})e =7

2. For x>0, show that OSsinx—[x——+———

" . N
Let f(x)=sinx. Then f( )(x)=s1n(x+7) for all xe R, neN

These f (n)(x)'s are continuous for all x.

For x>0 we have

’ x2 ” xn—l n-1 X" n
f(x)=7(0)+x f (O)+2—!f (O)+~~~+mf (O)+n—!f (6r)
for some 6 (0,1) (taking a = 0, b = x in Taylor's theorem with Lagrange's form
of remainder)

We take n="7 &n=9 respectively :

3 5 7

sinx:x—);—!Jr);—!—);—! cos (6,x) for some 6, €(0,1)
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x3 xS 7 9

& SIX = X ="k =Tk cos (6,x) for some 6, (0,1)

As —1<cos (ekx)SH for £=1,2 (here), so for x>0, we get

X X X X X

X——+———Ssinx<x—-——+———+—

3157 3t st 71 9l
Expansion of functions :

Taylor's infinite series suppose f possesses continuous derivatives of every

order in [a,a+h|

Let Sn:f(a)+hf’(a)+—f”(a)+...+(

Then f(a+h)=S,+R,

If now it is given that R, =0 as 5 — o, then lim S, = f(a+h)

n—>c0

Hence under the condition that lim R, =0, the infinite series

2 n
fla)+hf (a)+ %f”(a)+...+%f” (a)+ ... converges to f(a+h)

This result can be stated in the following way also.
Let f be defined in some open interval /(< R)containing 'a' and that derivatives

of every order of f exist & be throughout /. Let there exist A/ € R such that

S (Z)‘S M for all tel and for all neN, then following Lagrange’s form of

remainder,

_ k _ n+l (n+1)
f(x):f(a)+2(x k!a) f(k)(a)+(x aZn+J1{)! =

n
for some ce/.
k=1

As 1 — o, the upper bound in RHS tends to zero. So taking n —
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Maclaurin's infinite series :

If f possess continuous derivatives of every order in [0,h] and x €[0,h] and if

2 xn

further lim R, =0, then f (x) :f(0)+xf’(0)+;—!f”(0)+...+n—f” (0)+...c0

n—>00

Expansion of some elementary functions :

L f(x):sinx,xeR

) nr
For all €N, f (n)(x) =sin (x"‘?j & these derivatives are continuous

n '

R, in Lagrange's form R | = x—|f”(ex) = x—lsin (%H%xj for some 6 <(0,1)
n! n

" X" .
=|[R|<Z . As lim==0, solimR, =0
n! n—seo 1l n—>eo

Hence Maclaurins expansion is valid here & so
2 n

f(x):f(0)+xf’(0)+;—!f”(0)+...+2—!f” (0)+...
= sinx = x—);—3!+);—5!—...+(—l)n_1 (;jn__i)ﬁ..., xelR

IL f(x)=e", xeR

Here £ (”)(x): e* continuous for all xeR

R, === 1" (6x) =™, 0 (0,1)

n! n!

¢ <e*and lim*==0= limR =0

nteo J1 ' #+too

2 n

50 f(x):f(0)+xf’(0)+;—!f”(0)+...+n—f”(O)+...

2 n

X
e =l+x+—+.+—+.., xeR
21 n!
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IIL. f(x):log (l+x), -l<x<1

f”(x) — M

-, x>~-1 & these f,’® are continuous, —1<x<1

To consider lim Rn
n—>co

Casel: Let O<x<l1
X'
R”|L:n_!f( )(Gx) for ©<(0,1)

_&( ;

on 1+06x

j for some 6<(0,1)

n
X X 1
0< <1 lim =0 lim—=0
Here Tox > %0 (l+9x) . Also

n—>co n—eo 11

= limp =

n—oco H

Case Il —1<x<0

(In this case, it is not possible to ascertain igr;Rn if R,be considered in

Lagrange's form

1
To substantiate this claim, let X = e 0<B< 3 We see that R +5 0 as n — o)

x}’l

(n—l)!

We take R, in Cauchy's form = R, | = (1-0)"" f () (6x) for some

0<(0,1)
n—1 1 1-6 "
=(-1 "
Here R,|.=(-1)""x 1+9x(1+exj
1 1
Also [x|<i= lim x" =0 Again T <7y

n—>c0

consequently },E)ILR” =0
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Thus the conditions for Maclaurin's expansion of log(l+x)are satisfied.

2 n
Consegently f(x)= f(0)+xf’(0)+% f”(0)+...+% F(0)+ ...
3 X (—l)n_1 x"
& log(l+x)—x—7+?—...+7+...

()"

n

. ) 1 1 . ) )
If x =1 the series in RHS is 1—5+§...+ + ... which is Alternating series

& 1s convergent by Leibnitz lest.

So the region of validity of above expansion of log(l+x) is —1<x<1

Iv. f(x)=(1+ x)’” where m is any real number other than positive integer.
(If neN, the series will be finite series expansion having (n+1)terms)
Here /) (x)=m(m-1)(m=2). (m—-n+1)(1+x)""

We take |x|<1 & f"s are continuous in —]1<x<1.

x}’l

Rn|c = ( (1—9)n_1 S (8x) for some O 0,1).

n—l)!

_m(m=1)(m=2). (m=-n+1) ,(1-6 " -
B (n—l)! g (l+6xj ’ (l+6x)

. m(m=1)..(m-n+1) ,
We know that ,1,5130 ( (21_(1)! )x :O(as|x|<1)

1+ 06x

n—1
<l & so (; —0asn—> oo
1+0x

As —l1<x<1, 0<8<1, we have 0<

If (m-1) be positive, 0< (1+(9x)m_1 <2™ ! & if (m—1) be negative,

(l+9x)m_1 < (l—|x|)m_1. As result R,|.—0 as n— oo
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The conditions for the Maclaurin's expansion of (1+x)m are satisfied & so

2 n
£ ()= £ ()4 (0)+ 5 (0)+ .~ 1" (0)+
= (1+x)" :l+mx+m(n21!_l)x2+ + m(m_l)"ﬁfm_nﬂ)x”...ﬁx <1

-1
! =(1+ﬁ) .l(b;ﬁo,a;to)
+b b b

So the series can be deduced from above.

Particular case
ax

Application to approximate Calculations :
Examples :

1. Compute the approximate value of 4/33 accurate to six decimal places.

1
)\
We note that 483 =¥/81+2 = 3(1+§)

2 1
By the expansion of (1+ x)’”, taking 31 in place of x & 1 in place of m.

the expansion is

5 1+i821+i(illj(8zljz+i(ig(i2J(;Jgi(i@[%lzj(ﬂ(zj:m

3 3.7
1 4\ 4) 22 4 4 )\ 4) 2
=3[ 1+—+ +

162 2 (31)2 6 (31)3 T & this can be computed.

81

2. Compute the approximate value of cos5’

As in case of sinx, Maclaurin's expansion for cosx, x€ R, can be deduced as

follows :
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¥ xt

cosx=l-—+——-——+
21 41 6!

x=5 = % 6 & putting x = %6 & confining upto 2nd order terms,

36

4 4
411 41836

X n Y\
CosX = l—;z 1—(—) then

cosOx 4
4!

R,(x)=

B.6 Summary

In this unit, we have examined the concepts of derivative, differentiability and
differential. We have also studied the Rolle’s theorem, Lagrange’s Mean Value
Theorem, Cauchy’s Mean Value Theorem, Taylor’s Theorem. We have further
developed the Maclaurin’s infinite series to expansion of some elementary functions

such as e* sinx, log(1+x), (1+x)”, etc. We have explained the Young’s form of

Taylor’s Theorem.

13.7 Exercise

X

1. Expand f(x)= sin® x —x%e”
of fourth order.

in positive integral powers of x upto the terms

2. Expand f(x)=In(1+sinx) upto the fourth order terms.

2
3. Show that sin(o+4) differs from sino+/4 cosar by not more than >

4. Expand |ncosx upto the term containing x4
5.1f p(x)= x> =2x* +x* —x*+2x -1, show that

p(x):3(x—l)+3(x—l)4+(x—l)5
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Young’s form of Taylor's theorem :

(Note : This form of Taylor's theorem has very important & useful application
in the theory of maxima-minima...)

If a function f be such that £ () (a) exists and M is defined by the equation
2

fla+h)= fla)+ ' (a)+ 2

n—1 n
" gy

Iy o

M — f"(a)ash—0

n
(In equivalent form, if we write the last term as n

n!

/" (a)+€]. then £ —0 as
h—0)

Proof : Existence of £ (a) implies the existence of f, f7, f (1) in
N(a,8)=(a—8,a+8) for some §>0

Let ¢>0 be any number. First we take />(0. We define a function ¢ as
follows.

o(h) = 1(a)ebf (o) e B ) e (a0

n!

Here ¢(0)=0¢’(0)=...=¢""(0)=0 and ¢"(0)=¢e>0

Since ¢”(0)>0 & ¢"7'(0)=0, we see that there exists 8, 0< 8, <3, such that
0" (h)>0 when0<h<§,

Again ¢"'(h)>0in 0<h<§,, =¢">(h)>0,0<h<},

Proceeding in this way, we get ¢(h)>0 when 0</h<3J,
Thus when 0<h<9,, we get

2

f(a)+hf’(a)+h2—! @)+t

o) f(n—l)(a)+_[f"(a)+e]—f(a+h)> 0..(1)
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Similarly, we can show that there exists 0<3, <8 such that for 0<h<9,.

hn

A h" n_![f”(a)_g]—f(a+h)<O...(2)

f(a)+hf’(a)+2—!f”(a)+...+Wf(”‘l)(a)+

Let n=min {§,,8,}, so for 0</4<n, both (1) & (2) hold
Taking into account the given relation, we get

F"a)-e<M < f™(a)+e when 0<h<n

= lim M = f"(a)

h—0+

Taking /< arguing as before, we can get }lirr(l) M = f"(a)
—

Combining }llg(l) M = f"(a).



Unit- 15] Maxima-Minima of a Function

Structure

14.0. Objectives

14.1. Introduction

14.2. Maxima-Minima of a function
14.3 First derivative test

4.4. Exercise-1

14.5 Appendix

13.6. Summary

13.7. Miscellanous Exercise

13.8. Further Readings

14.0 Objectives

This unit gives
e The concept of maxima-minima of a function
e Test of maxima and minima of a function using first derivation test

o Some miscellaneous exercise will also be introduced of the end of this unit

14.1 Introduction

The maxima and minima of a function, known collectively as extrema, are the
largest and smallest value of the function. In this chapter we have shown how
differentiation can be used to find the extrema values of a function.

4.2 Maxima-Minima of a function

Let f:7 — R where I denote any interval c R .
f 1s said to have a relative maximum (relative minimum) at ¢ € / if there exists

a neighbourhood ¥ of ¢ such that f(x)< f(c)(f(x)2 f(c)) forall xin YN I. If

£ has either relative maximum or relative minimum at ¢, we say that f has a relative
extremum at c.

123
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Interior extremum Theorem :

Let ¢ be an interior point of interval I at which f:7/ — R has a relative extremum.
If the derivative of f exists at c. then f’(c)=0

If possible, let f’(c)>0. Then there exists a neighbouhood ¥ (<=1) of ¢ such
that

M>O(er,x¢c)

Soif xeV, x>c¢, f(x)-f(c)>0 in VV and if for xeV, x<c

f(x)-f(c)<0. As a result f(x)-f(c) does not maintain the same sign

througout the both-sided neighbourhood of c¢. As a result f has no extremum at c.

Thus we arrive at a contradiction. So f'(¢)#0. As a result, f’(c)=0

Note : f may not be derivable at an extremum. For example f(x)=|x| has

minimum at x=0 but f’ does not exist at x=0

2. At a point of domain of £, 1~ (x) =0 does, not ensure the existence of extrenum

at that point.
For example, f(x)= " peN

Note that f(x)=0 at x=0. But f(x)-f(0)>0 if x>0, f(x)-f(0)<0 if

x<0 ie f(x)-f(0) does not maintain the same sign in both sided neighbourhood
of 0.
Sufficient condition for maximum/minimum of function.

Let ¢ be an interior point of the domain / of f

Let (i) f () (c) exist and f () (c)#0

i) f7(c)=s"(c)=..= /" V(c)=0
Then if n is odd, f has no extremum at c.
But if # be even, f has an extremum at ¢ and f (¢) is maximum or minimum at

¢ according as £ (¢)<0 or ™ (c)>0
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Proof : Recalling Young's form of Taylor's theorem,

o h2 ) hn—l (n—l) "
f(c+h)—f(c)—hf (c)+2—!f (c)+...+(n_l)!f (c)+n—!M:>

M—)f(”)(c) as h—0

By (ii) f(0+h)—f(0)=%M....(l)

Since M af(”) (c) as h— 0, there exists §>0 such that for 0<|h|< 38,

M and V) (c)have the same sign.

So (1) = when n is even, f(c+h)— f(c) and M have the same sign. If
) (¢)>0, M & hence f(c+h)—f(c)>0 which implies that f(c) is minimum.
If f"(c)<0, flc+h)—f(c)<O0, meaning thereby that f(c) is maximum. If # be

odd, M <0 & as aresult, f(c+h)— f(c) changes sign with the change in the sign

of h. So if n be odd, f(c)is not an extreme value.

14.3 First derivative test

Let f:[a,b]— R be continuous in [a,b]. Let g <c < b and let fbe differentiable
in both (a,c)and (c,b). Then

(i) if there exists §>0 such that f’(x)=0 in (c—8,c) and f’(x)<0in
(c,c+8), then f has a local maximum at c.

(i) if there exists §>0 such that f’(x)<0 in (c-8,¢) and f’(x)20 in

(c, c+8), then f has a local minimum at c.

(iii) if f’(x) maintains the same sign in both (¢—8,¢)& (¢, c+3), then f has
no extremum at c.
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Proof : By hypothesis, f satisfies the conditions of L M V theorem in both
[c-8,c] & in [c,c+8]. So by L M V theorem, there exists e (x,c)(c (c-38, c))
and ne (c, x) (c (c, c+ 5)) for which

()= 1 (x)=(c=2) 7(8) & £(x)-£(e) = (x—c) £*()

(i) given that f’(x)20 in (c—38,c) & sof(c)-f(x)20

and f’(x)SO in (c,c+8):>f(x)—f(c)£0

so in both cases, f(c)= f(x) in N(c,8)N[a,b]

= f has a local maximum at c.

(i) given that f’(x)<0 in (¢-8,c) & so f(c)- f(x)<0

& £'(x)20 in (c,c+8)= £(x)- £(c)20 n (c,c+3)

In both cases, f(x)—f(c)20 or f(x)=f(c) in N(c,8)N[a,b]

= f has a local minima at c.

(i) if f7(x)keeps same sign in both (c-8,c) & in (c¢,c+8), f(x)-f(c)
does not maintain the same sign & meaning thereby that f has no extremum at c.

Note : The conditions are sufficient but not necessary for the existence of
extremum.

1
2x? +x° sin—, x#0

Let f(x)= X
0 x=0

2

Here xzsf(x)£3x2 & so f has a strict local minimum at x=0 but

, .1 1. o :
/(%) =4x+2x s1n;—cos;15 not of constant sign in any deleted neighbourhood

of x=0.
Problems on Maxima-Minima :

1. Let f(x) =l—,/(x2) where the square root is to be taken positive. Test for

the existence of maximum/minimum
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1- if x>0
Here f(x)={ % ¥ xz }

I+x, ifx<0

In 0<x<0+8, f(x)-f(0)=1-x-1=-x<0& in
0-8<x<0, f(x)-f(0)=x<0

So in any case, f(x)—f(0)<0 meaning f has a maximum at x=0

Note : fim 2SOy Il co=Rp(0)<0
x—0+ x—0 x—0+ X
& lim M: lim M=I>OL.J"(O)>O
x—0— x—0 x—0— X

Hence f’ does not exist at x=0)

2. P is any point on the curve y = f (x) & C is a fixed point not on the curve.

If the length PC is either maximum or minimum, show that the line PC is perpendicular
to the tangent at P.

Let P(x,),) be any point on curve y = f(x) & fixed point C be (o, B).

So PC:\/[(xl_a)2+(yl _B)Z} :\/[(xl—oc)2+(f(xl)_[3)2}

d(PC)

pm =O:>2(x1—oc)+2[f(x1)—[3]f’(xl)=0:>f’(x1)=—f?xli_):3=mlj
the slope of tangent at P.
f(xl)_B

Slope of PC=m, = and hence mym, =—1. Therefore for extremum

of PC, PC is perpendicular to the tangent at P.

3. A rectangle is inscribed in a right-angled triangle so as to have one angle
coincident with the right angle. Prove that its area is maximum when the opposite
corner bisects the hypotenuse.
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B (o, 9)

D M(r, s)

4 (p,0)

Cd X
ol ¢ \

We take x-axis and y-axis as along the base & the perpendicular line of the given
triangle, OCMD is the rectangle.

ABis L+2 -1 & M (r,s)is on AB=L 421
P 4 P 4

Area of rectangle = rs=r (1 — qu = f(r)
p

F0)=a 12 0= o s0)= T <o
P

f(r) is maximum when 7 =S =%. Hence M is midpoint of AB.

4. Find a point on a given straight line such that the sum of its distances from
two given points on the same side of the line is a minimum.

Y

A
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A(al,bl) and B(az,bz) are the given points. With reference to the given line as

x-axis & line perpendicular to it as y-axis.

Let f(x)= \/[(x—al)2+b12}+\/[(Clz—x)2+b22}

f/(x) — O — y= a1b2 +Cl2b1
b +b,
b b
Note that f” abta b, = f(x) is minimum when x= 2027 H0
by + b, b +b,

Consequently we conclude that when f (x) is minimum, the x-co-ordinate of
the point on the fixed line is same as the x-co-ordinate of the point which divides

AB internally in the ratio b, :b,.

5. A person wishes to divide a triangular field by a straight fence into two equal
parts. Show how it is to be done so that the fence may be of minimum length.

A
D
B I C
Let the fence be DE.
Length |[DC|=y, length |EC|=x
Length ‘DE‘ =z
So zZ=x*+y* —2xycos C ..(1)
1 11 ab
is. =xysinC=— —absinC = y=—
By hypothesis, 5 Y 27 y o .(2)

T
So z-=x"+ 2 —ab cos C = f(x) (say)
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272 ab
f”(x):2+3a4b ﬁf”[,/az—bj>02> minimum for ¥ = >

L ab
So z is minimum for X=Yy = o
6. Find the dimensions of the largest rectangle which can be inscribed in an

isosceles triangle of base 10 cm & altitude 10 cm.

Y

N

4] (0, 10)

(h kS R (h, k)

BPOQC’X

(5,0)

As A ABC is isosceles (4B = AC), so median from 4 on BC is perpendicular

on BC. We take mid point O of BC. as origin, positive side of x-axis along OC &
positive side of y-axis along OA. Refering to the figure, area of rectangle

X
A =2hk (unit). AC is §+%=1 & 50 24k =10=k =10—2h

AsA=2h(10-2h)= f(h), f'(h)=20-4.2h

fi(m=0=h=="

=% (unit) & k=5 (unit)
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. . 5
f”(h)=—8<0. So A4 is maximum for h=§, k=5

These give the dimensions of the largest rectangle.

7. A cone is circumscribed about a sphere of radius R. Show that when the
volume of the cone is minimum, its altitude is 4R and its semivertical angle is

Let the radius of the base be x (unit) and the height of the cone be z (unit). By
property of elementary geometry,

A, O, D are collinear, BD=DC & AB=AC

2
From the figure sinf = R = ad = x? = Rz
Z—-R (x2+zz) z—2R
2 2
Volume ¥ =Lg 2, =T 2 = f(z)
3 3 z-2R

For extremum f’(z)=0 and = z=4R and f”(4R)>0

L ) 1 .
So V' is minimum for z=4R and so s1n9=§ ie. e:sin‘ll.

3
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1
8. A man in a boat ? miles from the bank wishes to reach a village that is 55

miles distant along the bank from the point nearest to him. He can walk
4 m.p.h. & row 2 m.p.h. Where should he land in order to reach the village in the
least time ?

Find also the time.

Let P be the position of the man & let he land at 7" Let M7 = x miles.

(4x2+3) 11
PT = &NT:E—x
Let ¢ be the total time to reach N then
(4x2+3) 11 x
(=1 4 = X (Say)
4 8 4 f( )

For extremum f’(x) =0=x= %

. 1
Here f”(%)> 0 & so ¢ 1s least for x = 5 Then 7= l% hours.

9. Prove that a conical tent of a given capacity will require the least amount of

canvas when the height is \/5 times the radius of the base.
Let the cone be of semi-vertical angle ¢ & radius of its base be 7 (unit). Then

volume J = %nﬁ coto. & surface area S = T cosec O

d ) 1 d.
&g gives —m| 312 cotor L — 13 coseco, | =0
do. 3 do

dr 3 cosec’ol r cosec?ol

=—>= 3 =
do 3r<coto 3coto
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dS =1l 2r COSeC‘OCi—I”2 cosec o coto
Also do do

dr ds

tting the expression for ——, we get
putting Xp do.’ we g do

Fcoseco 5
=T7| 2r cosec L. ————— —r“ coSec oL cot O
3cotor

das 2r? cosec’a 5
—=0=>————7r“ cosecOt cotoc:>cotoc:x/§ or o = -1
do 3coto o = cot \/5

o1y ds S :
As o passes through the value cot V2, Jou changes its sign from negative to

positive & by first derivative test, S is minimum for o = cot™' 2.

Then height = rcoto = N2 =2 radius of the base.

14.4 Exercise-1

2 .2
1. Prove that the greatest acute angle at which the ellipse —2+b—2 =1
a

. . . -1 612 - b2
can be cut by a concentric circle is tan o
a

2. Show that the maximum & minimum values of ?=x?+3? where
2 2 : h : (a l)(b l)—hz
ax” +2hxy+by” =1 are given by the quadratic 2 2
. 1 . )
[Hints : X =7rcosb, y=rs1n9:>—2=acos29+hs1n29+bs1n29
r

dr sin20 cos?26 1
—=0= = =

a9 2 a-b _\/[(a_b)2+4h2} ~% )]

logx
X

) ) o1
3. Show that the maximum value of n 0<x<oo 18 —.
e
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4. Show that the height of the cylinder of maximum volume that can be inscribed

in a sphere of radius 'a' is 2%/5.

5. I f(x)=(x—a)”" (x=b)""" (m,n e N), test for the existence of extremum.

6. Find the altitude of the cone of maximum volume that can be inscribed in a
sphere of radius 'a'.
2 .2
7. A rectangle is drawn inside the ellipse a_2+b_2:l having sides parallel to

axes of the ellipse. Show that when the rectangle is greatest, the diagonals of the
rectangle will be along the conjugate diameters of the ellipse.

8. Of all triangles with the given base 2a unit & given area ah square unit, find
that with the least perimeter.

2 2

9. At which point on the ellipse %4_{_8 =1 must a tangent be drawn such that

the area of the triangle formed by the tangent & the co-ordinate axes is the smallest ?
10. Investigate for extremum :

@) f(x)={

—2x, x<0
3x+5, x=20

2x° 43, x#0
4 x=0

2

(i) f(x)= {

4.5 Appendix

On monotonic functions :

In chapter 11, we have just stated an important result on the continuity/discontinuity
of monotone functions without giving the proof or any other property. Here we are
going to discuss some properties of monotone functions :

Theorem : Let f:[a,b] > R be monotonic increasing in [a,b]& a<x,<b.

Then lim f(x) (or f(x,—)) and lim f(x) (or f(x,+)) both exist and

X —>x0

Sxo-)<f(x)<f(x+)
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Proof : Let A= { f(x)a<x< xo}, Since f is increasing function, the set A is
bounded above by f(x ). By completeness axiom of R, the set 4 has the least upper
bound (Sup) C (say). Then C < f(x,).

We propose to show that f (xo —) exists & that it equals C.

Let ¢>0 be given. As supA4=C, so corresponding to &, there exists & >0
such that a<x,-8<x, & C—e< f(x,—8)<C.

Since f is monotonic increasing function, we have

Xo—d<x<xy=> f(x-8)=s f(x)=C.

So C—e< f(x)<C for x,—8<x<x,

= f(xo=)=C< f(x)

Next let B= { f (x)|x0 <x< b‘}, since f'is increasing function, the set B is bounded

below by f (xo). So the set B has the greatest lower bound (inf f ) d (say). Then
F(x)=d.

We propose to show that f(x0 +) exists & f(x0 +) =d

Let £>0 be given. As d =inf B, corresponding to ¢, there exists d >0 such
that x, <x,+8<b=d < f(x,+8)<d+e

Since f is monotonic increasing function, we have

Xo<x<xXg+8=d < f(x)< fxg+8)=>d < fx)<d+e, xy<x<xy+d

= f(xy+) exists and f(x0 +) =d 2z f(xo)

consequently f(x,—)< f(x,) < f(x,+).

Remark : At the end points, f(a)< f(a+), f(b-)< f(b)

Note : (1) Let a<x<y<b

Then f(x+)= iI}fbf(l) < inf f(1)

xX<I<y

f(y=)=sup f(t)= sup f(¢)

a<i<y X<ty
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As inf f(6)< sup f(1), s0 f(x+)<f(y-)

x<(<y x<t<y

Also if x;,x,...,x, be n interior points of (a,b),a<x <x,<..<x,<b, we

n
have 2,/ (5 +)=f (5 =)] < f(b-) = f (a+)
k=1
Note 2. Monotonic functions can have only discontinuity of first kind or in other
words, monotonic functions can have no discontinuity of second kind.
Theorem : If f: [a,b] — R be a monotonic, discontinuous function, the set E
of points of discontinuity of fis atmost enumerable.

Proof : With every point x of E, we associate a rational number r(x) such that
f(x—) < r(x) < f(x+)

since x; < X, = f(x1 +) < f(x2 —) we see that r(xl) # r(xz) if x; # x,. We have
thus established a one-one correspondence between the set E & a subset of the set

of rational numbers. The set of rational numbers is atmost enumerable. Hence the
result follows.

Note : 3. Jump of f at a point :
We know that the jump of function f at a point ¢ is defined by

Jr(e)=7(e+0)=f(c=0)

Let f:[a,b]— R be increasing function. Let us now consider jumps of f at
distinct points.

Let a< p<x<qg<b. fbeing increasing,

fla)S f(p-0)< f(p+0)< f(x)<S f(g-0)< f(g+0)< £(b)
= jr(p)+isla)</(b)-/(a)

= for distinct points p, p,..,p, in (a,b) we have

jf(pl)+~~~jf<pn)Sf(b)_f(a)

Hence if there are & distinct points where the jump of f is at least ¢, then

k<[ (b)-f(a)]/t
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2. On second mean value theorem of differential calculus

Let f:[a,b]—> R be such that

(i) f,f’ are continuous in [a,b]

(i) f”exists in (a,b)

Then there exists at least one point ¢ e(a,b) such that

(b-a)

L (o

f(b)=f(a)+(b-a)f(a)+

Proof : Let us construct F':[a,b] > R by

F(x)=f(x)+(b-x)f (x)+A(b- x)2 where the constant A is to be determined
from F(b)=F(a) = f(b)= f(a)+(b-a)f (a)+A(b-a) ..(1)

Continuity of f, f7, (k- x)’ = continuity of F in [a,b]

F'(x)=f'(x)- f'(x)+(b-x) f"(x)—A2(b-x) exists in (a,b) by hyp...(2)

By construction /()= F"(a). So I satisfies all the conditions of Rolle's theorem
in [a,b]

Therefore, by Rolle's theorem, there exists ¢ € (a,b) for which #’(c)=0

= (b—c)f"(c)-24(b-c)=0

= A=21"(c)

Putting in (1) f(b)= f(a)+(b—a)f’(a)+@f”(c)

Note this result is in fact Taylor’s theorem for n = 2.

3. On convex function
Definition : Let f:/ — R where / is some open interval < R . If for pair of

points x;,x, €/ and any number o, 0,(=0),0,+0, =1, the inequality
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f(oclxl+0c2x2)Soclf(xl)+0c2f(x2)...(l) holds, then f is said to be a convex
function or convex downward. If only < holds in (1), f is stricly convex on L. If the
opposite equality holds f(0c1x1+0c2x2)2oclf(xl)+0c2f(x2)for any pair XX, as
stated above, f 1s concave or convex upward on L.

Remarks : Taking x=o,x +0,x, when o;+0, =1 we have

o = xz—xj - X—X
Yo =X Yo =X
& hence f(x)—f(xl)gf(xz)—f(x) for x;, <x<x,..(2)
X—X X, —X

Theorem : A necessary & sufficient condition for f:/ — R that is derivable
on / to be convex (downward) on [ is that its derivative f”to be increasing on /. (A

strictly increasing f’ corresponds to strictly convex function)

Proof : Let the convex function f:/ — R be differentiable on L
In (2) taking x tends first to x, & then to x,, we have

f(x)-f(x)

Xy =X

J'(x)< <f'(x)

Applying L M V theorem to f in [xl, xz], there exists & e (xl, x2) such that
f(xz)—f(xl):(xz _xl)f,(g)
So f’(xl)sf’(ﬁ)sf’(xz) & so the derivative of f is monotonic.

For a strictly convex function. f’(x)<f’(§)<f (x,) & f’is strictly

monotonic.

Converse : L M V theorem :>f(x)—f(x1) :(x—xl)f’(ﬁl) for some &, € (xl, x)

& f(xy)—f(x)=(x,—x)f(&,) for some &, &(x,x,)
If 7/(&)<f’(&,) then (2) follows & fis convex function.
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Note : Let f:/— R be twice differentiable on the open interval /(c R)
Then f is convex on [ if f”(x)>0 throughout /.

Theorem : Let f be convex on the open interval /(< R). Then

f(x+h)—f(x)
h

& lim

(i) the limits lim
h—0— h—0+

both exist for each

f(x+h)—f(x)
h

xel

(1) f 1s continuous on /.

Proof : As f is convex on I, by (2) for x, < x, < x(alle/)

f(xz)—f(xl) f(x3)—f(x2)

<
Xy —X X3 =X

we take x; =X, X, =x+/h, x3=x+h, where 0< /< h,

Sxth)=/(x) _Sxthy)-7(x)

Th
en n I,

so if £ () S (x+h)=f(x)

= P , h>0, then F'(h) increases in some interval (0,8)

so lim F(h) exists. Similarly lim 7 (h) exists

h—0+ h—0—

h—0+ h—0+

lim {f(x+h)—7(x)}= lim {f(x+h2_f(x)h}=o

Similarly hlirg {f(x+h)=f(x)}=0. Hence f is continuous function on /.
—0+

Notes : The result may fail if / be not open.

x2, 0<x<l1
x=1
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Examples :

(1) Let f(x)=x",x>0,eR

>0, forao<Ooro>1

f7(x)=o(a- 1)x“—2{

<0, forO<a<l
Soif o< Oora>1 fis strictly convex & for Q<o <1, f1s concave function
(2) sinxis strictly convex when 2km<x<(2k+1)n & concave when

(2k-1)m<x<2km.

(3) a*(a>0,a=1) is convex for O<a<l, a>1
4. On Periodic function :

A function f:R — R is said to be periodic on R if there exists a number p
such that f(x+p)=f(x) for all x. The least positive value of p for which
f(x+p)=f(x) is known as the period of f or the primitive period of f.
For example, sinx, cosx are periodic functions of period 2w.

Result : (i) Let /R — R be continuous and periodic with period 1. Then (i)
fis bounded above & below and achieves its maximum & minimum values. (ii) there

exists a real number x, such that f(x,+7)= f(x.).

Proof : Let f; be the restriction of fto [0,2]. As f(x+1)= f(x) forall xeR.

the ranges of f & f, are same. fis bounded & attains its maxima and minima there

in. As fis continuous & periodic on R . So fis bounded above & below and achieves
its maximum and minimum. Let f attain its maximum & minimum at p and ¢
respectively.

Hence f(p+m)-f(p)<0& f(g+m)—f(q)=0

If the equality holds in the first case, p is desired x,

If the equality holds in the second case, ¢ is desired x,
Otherwise : Let g(x)= f(x+7n)-f(x),xeR

So g is continuous & g(p)g(g)< 0. Applying Bolzano's theorem on continuous
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function to g on [p,¢](or on [g, p]), there exists x, € R for which g(x,)=0 i.e
flx+m)=f(x.).

Result 2. Let f:[R — R be continuous and periodic & let 7'(>0) be the period.
Then f is uniformly continuous on R

Proof : Continuity of fin [T, 27| implies fis uniformly continuous in [-T', 2T'].
For arbitrary g>(, there exists §(¢)>0 such that for any pair of points
x,y€[-T,2T] satisfying |x—y|< 8, we have ‘f(x)—f(y)‘< e (1)

We take 0<8<T

Let x,y,eR satisfying |x—y|< 8

There exists pe7 such that n7'<x<(n+1)T & so x-nTe[0,7] &
y—nT e[-T,2T].

Note that [(x—nT)—(y—nT)|=|x-y|<8=|f(x)-f(¥)|<e
= Uniform Continuity of f on R
Result 3. Let /:R — R be a periodic function. Show that if lim f(x) exists,

X—>00
then f is a constant function.

Proof : Let lim f(x)=/(eR) and T(>0) be the period of /. We propose to

X—>00

show that f(x)=1/for all x.

If not and if possible, let there exist ae R such that f(a)#/.

Let O<8<W. As lim f(x)=/, so corresponding to above ¢, there

X—>c0
exists (GeR such that
‘f(x)—l‘<e whenever x> G ...(1)

By Archemedean property of real numbers, there exists neN such that
nl'>G-a so nT+a>G..(2)
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By (1) and (2) |f(a+nT)—l|<e:>|f(a)—l|<e (as 7 is the period of f)
=10e <€ but this is absurd as >0

So f(x)=1/ for all x & as a result fis constant function

Example : 1MsINX doeg not exist
X—>o0

14.6 Summary

In this unit we have defined the term extrema of a function and shown how the
differentiation can be used to find the maxima & minima. We have also studied the
first derivative test for extrema and formulated a sufficient condition for extrema of a
function.

14.7 Miscellanous Exercise

l.Let £, g:S >R (S - R) and p be an accumulation point of S.

Let lim f(x)=/(eR) and lim g(x)=m(eR)
x—p

X—=>p

Test for the existence of

(i) limmax{f,g} (i) lim min{f,g}
xX—=p xX—=>p

n
2. Using the results (i) {(1+1) } converges to e and (ii) for x > 1 there exists
n
n

: 1Y
neN such that n<x<n+1, show that 11m(1+—) =e

x—>00 X
3. Let f:[a,e0) > R. Then show that )1:)130 S (x) exists if and only if for every
€ >0, there exists X > a such that
‘f(x)—f(y)‘<8 for all x,y>X

4. Let neN and ) >0. Show that there exists unique y >0 such that " =}
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2 o
5. Let f(x): {x —2x, when xis rational

3x —6, when x is irrational

If aeR, examine whether lim f(x) exists.
Xx—a

) h is rational
6. Prove or disprove : If f(x):{x’ when x isrationa 0 [O,l]

1-x, when x isirrational
then g(x)= f(x)f(1-x) is continuous everywhere.

2n
. +3
7. Let f(x): lim x2n .
n—eo x4

, xe[-2,2]. Test for the continuity of f'in [-2,2].

8. A function f:[0,1]— R is continuous on [0,1] and f assumes only rational
values on [0, 1]. Prove that f is constant.

9. f:[0,2] > R be continuous on [0,2] and f(0)= f(2) prove there exists a
point ¢ in [0, 1] such that f(c)= f(c+1)

T
10. Prove that cosx = x> for some x & (O, 5)

11. Let f:R — R be defined by

0, if x=0 or x isirrational

f(x)= %, it x=2 where pe’l,qeN andgcd(p,q)=l
q q

show that f is differentiable at 0 and f’(0)=0

/()

X

(Hints : For x#0, 0< S|x|2)

12. f:R — R satisfies the condition |f(x)—f(y)| <|x-»|" when a>1 for all

x,y€ R . Show that f is constant.
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13. Prove that the equation (x—l)3+(x—2)3+(x—3)3+(x—4)3 =0 has only

one real root.

14. Prove that between any two real roots of e*sinx+1=0, there is at least one
real root of tanx+1=0.

15. Given that f:[a,b]— R is continuous on [a,b] & f”(x) exists for all

xe(a,b). If a<c<b and f(a)= f(b)=0, prove that there exists a point & € (a,b)
such that f(c) = %(c—a)(c—b) 77(8)

16. If a<c<b, f” exists in (a,b), f and f’ are continuous at the end points

a and b, show that there exists /e (a,b) such that

()= DA Loy (9

(Hints : By second mean value theorem,

f(@)= £ (e)+(a=e)f(e)+ 2 {a=cf £7(8) for some Eefac) &

F(0)= F(e)+(b=c)f"(e)+ 5 (b=<) 7" (n) for some ne(c.b)

For ex. 15, take f(a)=0= f(b))
17. Let f:[a,b]—> R be continuous positive valued function, differentiable in

(a,b). Show that there exists ¢ e(a,b) such that

f(b) REOYEOMI0

f(a)
(Hints : Applying L M V theorem to F(x)=1In f(x) in [a, b] )
18. Let f” exist in [0,a], a>0.If f(0)=0 and 0<x<a, show that there

exists &e(0,x) such that f'(x)—@=%xf”(§)



NSOU « CC-MT- 08 145

(¥)

X

Hence show that is increasing in the above interval if f ”(x) >0 & 18

decreasing if f”(x)<0 for all x.

[Consider ¢:[0,a] —> R defined by q)(x)=—f(x)+xf’(x)+%Ax2 where

19. Let f:[a,b] >R be continuous in [a,b] and be derivable in (a,b). If
£2(b)- f*(a)=b"—a?, show that the equation f’(x).f(x)=x has at least one
root in (a,b).

20. An open tank with a square base must have a capacity of v liters, what size
will it be if the least amount of tin is used.

21. On the curve V= 5>, find a point at which the tangent forms with the

I+x
x-axis the greatest (in absolute value) angle ?

22. Test the following function for increase or decrease :

1 1
_1ps_ 13

o 5 3

23. What right triangle of given perimeter 2p has the greatest area ?

2 2
24. p is the length of perpendicular from the centre of the ellipse —2+b—2 =1
a

to the normal at a variable point on the ellipse. Show that the greatest value of p is
a-b.

25. Find the relative extremum points of f defined by
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14.8 Further Readings

HowoN

Introduction to Mathematical Analysis — A gupta (Academic Publishers)
Mathematical Analysis — S. C. Malik & Arora (Wiley Eastern Limited)
Introduction to Real Analysis — S. K. Mapa (Sarat Book Distributors)

First Course in Real Analysis — S. K. Mukherjee (Academic Publishers)
(second edition)

Mathematical Analysis — Shantinarayan (S. Chand & Co.)
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Unit- 157 Miscellaneous Examples & Exercises

Structure

5.0. Objectives
5.1. Unit-13A
5.2. Unit- 13B
5.3 Unit- 14

5.4 Summary

15.0 Objectives

The main objective of the unit is to prevent various Examples and exercises of
unit 13and 14. Also the solutions of each problem have also been given.

15.1 Unit-13A

Problems :

1
1. Let f(x):x—z, x#0,xeR

(a) Determine f(E) where £ ={xeR:1<x<2}
(b) Determine /' (G) where G={xeR:1<x<4}
2. Let g(x)= x? and f(x)=x+2 for xe R, and let h be the composite function

h=gof.
(a) Find h(E) where E={xeR:0<x<1}

(b) Find 4#7'(G) where G={xeR:0<x<4}
3. Show that if f:4— B and E, F are subsets of A then
S(EUF)=f(E)Uf(F) and f(ENF)c f(E)NS(F)

147
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4. Show that if f:4A— B and G, H are subsets of B, then
(6= 7 () ) and 7 (@0 = 7 @N S (1)

5. Show that the function f defined by f(x)= : , xR is a bijection of
x“+1

R onto {y:—l<y<l}.
6. For a,be R with a<b, find an explicit bijection of 4={x:a<x<b} onto
BZ{y 0<y< l}
7. Let f:A— B and g:B— C be functions.
(a) Show that if go f is injective, f is injective
(b) Show that if go f is surjective, g is surjective.
8. Let f, g be functions such that (go f) (x) =x for all xe D(f) and (f-g)
(y) =y for all yeD(g). Prove that g = £

9. Suppose that fand g are real-valued functions with common domain D(c R).
Assume that f and g are bounded.

Then (a) if f(x)< g(x)VxeD, then sup f(D))< sup g (D)

(b) if f(x)<g(y)Vx,yeD, then sup f(D)< inf g (D)

10. Let X be a nonempty set, and let f and g be defined on X and bounded. Show
that

sup{ f (x)+ g (x): xe X} <sup { £ (x): xe X +sup {g(¥): xe X}

and inf { f(x):xe X }+inf {g(x):xe X}<inf {f(x)+g(x): xe X}

11. Let X=Y={xeR:0<x<1}. Define #: X xY >R by h(x,y)=2x+y

(a) For each xeX, find f(x)=sup{h(x,y):yer}, then find
inf { f(x): xe X}
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(b) For each yeY, find g(y)zinf{h(x,y):xeX} then find

sup{ g( y) yet } Compare with the result found in part (a).

Solutions of problems :
2. h=gof :R - R 1s defined by

h(x)=(g=f)(x)
g(f(x)

g(x+2)

= (x+2)2

=x*t+4x+4
(@A 0<x<1

=2<x+2<3
=4<(x+2)° <9
so h(E)={yeR:4<y<9}
(b) 0<(x+2) <4
=-2<(x+2)<2
= -4<x<0
so i (G)={xeR:-4<x<0}
where G={xeR:0<x<4}

5. For x,yelR, let f(x)=1(»)

- )
\/l+x2 \/l+y2
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x2 y2

1+ x° _1+y2

= x2 + x2y2 = y2 + x2y2

:>(x+y)(x—y):O

- J
Then (x+y)(x—y)=0.But x+y =0 fortheny = —x & \/(1_);(2) B \/(1+y2)

does not stand.

If possible let x#y

as \/1+x2, \/1+y2

both are positive and x, y both are not zero.
So we arrive at a contradiction.

- f 1s one to one
-l<y<l
=0<y’ <1

=0<1-y*<1

~fiR—>{yeR:-1<y<l1} is onto. Thus f is a bijecton of R onto
{yeR:—l<y<l}.

and f_1 (x) =

2,—1<x<l
1-x
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7. Let for a, b €A so that
fla)=1(b)=g(f(a)=g(/(®))
=(gof)(a)=(g°f)(b) (As gof is injective)

=a=b
Thus f is injective

Let yeC. As gof:A— C is surjective, there exists x€ A such that
(go /)=y or g(f(x))=y

= corresponding toy of C, 3 f(x)e B= g is surjective.

8. Let yeD(g),f(g(y))=(f°g)(y):y
- [:D(f)— D(g) is bijective and f(g(x))=xVxeD(g)

therefore, f~':D(g)— D(f) is given by £~ (x)=g(x)¥xe D(g)

Thus, g= f_l .

9.(a) f(x)<g(x)VxeD so, f(x)<g(x)<sup{g(x)},xeD
Let 2, =sup f (D), b =sup g (D)
f(x)S uvxeD

If possible let A > choose ¢ = 7”%“

Then there is x € D st f(x)>A-¢

_ _(7“;“)
B 2
_2A-A+u
2

A+

2
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F()-u> 2R AR

= f(x)>p contradiction. Therefore, sup f(D)<supg(D)
(b) f(x)<g(y)Vx,yeD.Fix ay,eD. Then f(x)Sg(yo)‘v’x e
Now make y, arbitrary. If possible let Inf g (D) < sup f (D)

Take &= supf(D);lnfg (D)

>0

Then there exists a, b€ D such that
supf(D)—8< f(a) and g(b)< infg(D)+8

(D)_supf(D)—infg(D)

=sup f 5 < f(a)
= Sllpf(D);rinfg(D)<f(a)...(1) and
g(b)< infg(D)+supf(D)m(2)

2

But f(a) < g(b)...(3)

From (1), (2), (3) we have

supf(D)+infg(D) - infg(D)+ supf(D)
2 2

which is a contradiction.
Some solved problems on Limits.

1. Show that for f(x)=[x], lir%[x] does not exist.
X—>

In an arbitrary neighbourhood of 0, say N (0,1)

fx)=-1 if -1<x<0
=0 if 0<x<l1
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Let us consider two sequences {x,} and {y,} in N(0,1) defined by

X, = L, Y, = _—l, neN. Then the sequences {xn}n and {J/n}n. converge to O.
n+1 n+1

But the sequence { f (xn )} is {0, 0, 0,...} This converges to 0, and the sequence
{f(y,,)}n is {-1, =1, —1,...}. This converges to —1.

-~ lim[x] does not exist.
x—0

2. lim sgn x does not exist.
x—0

Let f(x):sgnx.
Then f(x)=l for x>0
=0 for x=0
=-1 for x<0

Domain D of f is R. 0 is an accumulation point of D. Let us consider two
-1

1
sequences {xn}n in R and {yn}n in R defined by xn=;, n = neN,

Then lim x,=0=1Im y,
n—>00 n—>00

Also, f(xn):l&f(yn):—l‘v’neN

Therefore, lim f (xn):l, lim f (yn):—lwhich are different
n—>c0 n—>c0

~ lim sgnx does not exist.
x—=0

3. Show that the following limits do not exist :

o1
(a) }Cli%x—z(x> 0)

(b) )1}3(1) (x +sgn (x))
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4. Use either €—0 definition of limit or the sequential criterion for limits, to
establish.

X 1
a) lim —=—
() =11+ x 2
2
(b) lim = =0
x—0 |x|

5. f(x)=sgnx Examine if lim f(*) and lim S (x) exist.

x—0+ Y 0—

Here the domain D of f is R
Let Dy =D((0,00) and D, = D[ (—e°,0). 0 is an accumulation point of both
D, and D,
f(x)=1VxeD, and f(x)=-1V xeD,
Therefore lim f(x)=1 and lim f(x)=-1
x—0+ x—0—

1

6. f(x)=ex.

Examine if lim f(x) and lim f(x) exist.
x—0+ x—=0—

Here the domain D of fis R\{0}. Let D; = D((0,) and D, = D((—co,0).
0 is an accumulation point of D, and D,. f is unbounded on N (O)ﬂD1 for any

neighbourhood N (0) of 0. Therefore lirg /(x) does not exist.
x—0+

1

1 - 1
We have ¢’ >r>0V¢>0. Take f=—— ,x<0 we have ¢ *>——>0, and
x x

1
this imples 0<e * <—x Vx<0

By Sandwich Theorem, lim f(x) =0

x—0—

7. Show that lim f(x) =eo, where f(x):i2
x—=0 X



NSOU « CC-MT- 08 155

In every neighbouhood of 0. fis unbounded above. Let us choose G > 0. Then

F(x)>GV x satisfying x < ——, x=0

N

That is, f(x) > G V x € N’ (0,8) where 8=

-

Therefore lim f (x):°°
x—0

8. Examine if lim tanx exists.

b
x—L
2

Let f(x)=tanx. The domain D of f is R—{(2n+l)g ; neZ}:R*

T T
D1=Dﬂ(5, 00), D2=Dﬂ(—°°, 5) Di#6, Dy#6¢. Also is an

T
2
acumulation point of both D and D, In T - ¥ < g, f is monotonic decreasing

function unbounded below. Therefore, lim f(x) =—co.

T
x>+
2

T, . . .
In 0< x <—, f is a monotonic increasing function unbounded above. Therefore,
2

lim f(x)=co. We conclude that lim f(x) does not exist.

X5 r=5

9. Using Cauchy’s principle, prove that lim cosx does not exist.
X—>00

. . 1
Let f(x)=cosx,xeR. Here the domain of fis R . Let us choose €= 5 In

order that lim f(x) should exist, it is necessary that there exists a positive G such
X—>c0

that | f(a)— f(b)| <% for every pair of points a,b>G .

For a given positive real number (G. We can find a natural number K such that
2Kkn>G



156 NSOU e CC-MT- 08

Let a=Qk+1)mn, b=2kn. Then a,b>G and f(a)=-1, f(b)=1. Therefore,
| fla)y-f (b)| + € for some pair of points a,b > G . This shows that cauchy's condition

for the existence of lim cosx is not satisfied. Therefore lim cosx does not exist.
X—>oc0 X—>oc0

1
10. Prove that lim(1+x)* =e.
x—0
. 1., 1
We have lim(1+—)"=e. Let y=—. As x—oo, y >0+
X—>eco X X

and x = —co, y 50—

X—>o0

1
Then e= lim(1+)* = lim (1+ ) ”..(1)
X y—0+

1
e=lim 1+ = lim (1+y) . (2)
X y—0—

X—>0c0
From (1) & (2), im(+y)" " =e
y—=0

- b
Thus, lim(1+x)'*=e
x—0

1. Use sequential criterion for limits to show that following limits do not exist.
i) lim cos !
(l) x—=0 x2

(11) lim x1+sin x
X—0

2. f(x)=x, xeQ
=2-x, xeR\Q

Show that (i) lim f(x) = 1, (ii) lim f(x) does not exist, if c#1.
x—>1 x—c



NSOU « CC-MT- 08 157

3. Show that the following limits do not exist
1
i) lim ——
® s lJre%C

S lim 2x+|x|
(@) x—0 2x—|x|

4. Evaluate the limits

) lim \Jx—[x], lim {/x—[x]

x—=0+ x—=0—
&y lim x ! lim x l
(11) x—0+ X ’ x—0— X

) sin x ) sin x
(i) lim , lim
x—0+ X x—0— X

5. Evaluate the limits

(i) lim —x2 3x
i
x5 X2 4 x+1

. sin x
(11) lim
x—0 X +COS X

(i) lim (J+1-3x)

X—>0

© nfi[5]

15.2 Unit-. 13B

1. A function f : R — Ris continuouson R and f(x+y)= f(x)+f()Vx,yeR.
If f(1)=k, prove that f(x)=kx V xeRR. Also show that f is uniformly continuous
on R.

Take x=y =0, We have f(0)=2f(0)= f(0)=0....(1)
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Take y=-x, f(x)+ f(-x)=0= f(-x)=—f(x)......(ii)

Let x be a positive integer.

Then f(x) = f(A+1+...+1)
=f)+f(D+.....+ f(1) (x times)
=x f()

= kxif x bea positive integer......(1i1)

Let x be a negative integer,

let x=-y, y>0
JO=fE0)==fO)by i) = —ky
= f(x) = kx, if x be negative integer .
So, f(x)=kx if xisa negative integer......(1v)
From (i), (ii1) and (iv) if follows that f(x)=4k xif x is an integer.... (v)

let xeQ, x=£, ‘say’ peZ, geN
q

flgx)=f(p)=kp by (v)
flgo)=f(x+.... +x)
= f()+ f(X)+....+ f(x) [gq times]
=q /()

Therefore g f(x)=k p
or, f()="L —kx
q

So, f(x)=kx if x is a rational number ...... (vi)
Let o€ R\Q. Let us consider a sequence of rational points {x,}, converging

to o. Since f is continuous at o, lim f(x,)= f(a).
n—>c0
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But if;f (x,) = ig{lokxn, since x € 0

As limkx, = ko, it follows that f(o)=k o

So, f(x)=k x if x is an irrational number ........ (vit)
From (v), (vi), (vii) f(x)=kx VxeR
Let £>0

g

and let x; X, be any two points in R . Choose & = . Such & depends only

|k |+1

on €.

Then | fp-f (x2)| = |k||x1 — x2| <¢. This prove that f is uniformly continuous
on R.

2. A function f is defined on R by f(x)

I
o
Q
w2
|
=
1
o

Prove that f is not continuous at 0.

. 1
Let us consider a sequence {x,} where x,=——, neN. Then

21n’

limx, =0, f(x,)=1 VneN. Therefore, lim f(x,)=1.

We have a sequence {x,}, in R that converges to 0 but lim f(x,)= f(0),
proving that f is not continuous at 0.

3 lim l+\/;=l

x—>0+

Let f(x)=1++x, x>0, g(x)=+/x, x>0
Let A={xeR:x>20}, f(4)cD(g)

(gof)(x):g(f(x)) = \/l+\/;, x>0, 04 and lin})f(x):l,

le D(g) and g is continuous at 1.
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Therefore ILTBI+V1+J; =1ig}) (gof) (x) =g =1

4. f(x):lsinl, x>0
X X

lirg f(x)=eo, lirg f(x)=—oo_ fis discontinuous at 0, O is a point of infinite
x—=0+ x—0—
oscillatory discontinuity.
5. J(x)=x-[x]. 0 < x <2

f(¥)=x, 0 < x <1

=x-1 1£x<2

Here lim f(x)=1, lim f(x)=0, f(1)=0.fis discontinuous at 1. 1 is a point

x—1- x—l+

of jump discontinuity.

Total jump of fat 1= f(1+0)— f(1-0)=0-1=-1

Problems on Chapter - 2

1. Determine the points of continuity of the functions
(2) g(x)=x[x]
1
(b) k(x)= [—}, x#0
x
2. f:R —>Rbe continuous on R and let S={xeR: f(x)=0} be the “zero

set” of £ If {x,} isin S and x=limx,, show that xe .

3. Suppose that f(r)=0 V reQ. Prove that f(x)=0V xeR

4. Define g:R—>R by g(x)=2x for xeQ, g(x)=x+3, xeR\Q. Find
points at which g is continuous.

5. Let g:R —> R satisfy the relation g (x+y)=g(x)g(y) Vx,yeR. Show
that if g is continuous at x =0, then g is continuous at every point of R . Also if we
have g (a)=0 for some ae R, then g (x)=0 V xeR. Also show that if g(x)#0

for any x, then g(x)=a* where a>0,a#1.
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6. Let f be defined by f (x)= sinl, x#0 and f(0)=0. Prove that f has the
x

intermediate value property on [-1,1].

7. Let f be defined on an interval / and suppose that f is one-to-one on /.
(a) Give an example to show that f may not be monotone on /.

(b) Give an example to show that f may not be monotone on any subinterval
of 1.

(c) Suppose that f is continuous on /. Prove that f is monotone on /.

(d) Suppose that f has the intermediate value property on /. Prove that f is
monotone on /.

8. Find the point of discontinuity of the functions.
1) f(x)= [sin x], xeR
(i) f=D, xeRr

9. Examine the nature of discontinuity of f at 0.

(i) f(x)=%, x>0
=0 x=0
sin x

=0 x=0
: f@)—lsme-x¢0
(iv) J() =1 sin

=0 x=0

10. Show that f is piecewise continuous on the interval /

(i) f(x)=[x],1=]0,3]
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(i) f(x)=sgnx, I = [—2, 2]

(i) f(x)=x-[x],1=[0,3]
11. Prove that the following functions are uniformly continuous on the indicated
interval.

() f(x)=x on[l, )
1
1+ x2’

(i) f(x)= xeR

(i) f(x)=xsin%, 520
=0, x=0 on [—l, 1]
(iv) f(x)=tanxon[a,b]

h —£<a<b<E
where —— 5

12. f:[a,b] >R and g:[a, 5] >R be continuous on [a, b] and let
fla)<g(a), f(b)>g (b). Show that there exists a point ce(a, b) such that
fle) =g(o).

15.3 Unit- 14

Some solved problems on unit 14.

1. Let f:[0,3] > R be defined by

f(x):x, 0<x <1

=2-x*, 1< x<2

=x—x?, 2 < x < 3. Find the derivative function f” and its domain.
f’(x):l for xe(O, l)

=—2x for xe(l, 2)
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=1-2x for xe(2, 3)

fim L) =FO =1, RF(0)=1

x—0+ x—0 x>0+ X

Hence f is differentiable at 0 and f”(0)=1

A R AU ol L L (1) =1

x—1— x—1 x—l-x—1

— 2 —
lim L:lf(l) = lim M —— 2, Rf'(1)=-2 so Lf'()# Rf'(1)

x—1+ x x—1+ x—1

Hence f is not differentiable at 1.

— — 2_ —
fm L02/(Q) 20 -(2) lim —(x+2)=—4
x—2— x—2 x—2— x—2 x—2—
Lf'(2)=-4
fim L) Q) X 42 (s
x—>2+ x—2 =2+ x-2 x—>2+

~Rf'(2)=-3 so Lf'()# Rf'(2)

Hence f is not differentiable at 2.

_ 2 _(_ 2
po S)=fB) o xmx—(6) L x-x?46
x—3— x—3 x—3— x—3 x—3— x—3

=lim-(x+2)= 5= f'3)=-5

x—3—

Hence f is differentiable at 3 and f’(3)=-5
The derived function f’is defined by
f(x)=1, 0<x<l

=-2x, I<x<2

=1-2x, 2<x<3
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2. f(x)=x% xe[0,0). fis strictly increasing and continuous on [0, ).
Let 7 =[0, o). Then f(1)=]0, )

The inverse function g defined by g (y)=+/y, y &[0, ) is continuous in [0, =)
f is differentiable on [0,e0) and f’(x)=2x, x€[0, o)

f'(x)#0 on (0, »). Let I, =(0,00). Then f(I;)=(0, c).

Hence g’(y) exists V ye(0, «) and g’(y)= T ):—:—
X

1
=——, ye(0,
7 ve0.e)

3. A function f:R — R is defined by f(0)=0 and f(x)=0 if xeR\Q

l’ x=L where peZ, geN and ged(p, q)=1
q q

Show that f is not differentiable at O.
lim f(x)—f(O) =lim f(x) Let q)(x): f(x)

x—0 x—0 x—0 X X

. Let {xn}n be the sequence of

rational points converging to 0 where x, = l, neN. Then lim ¢(x,)=lim n—=1
n n—>co n—>co n

Let { yn}n be a sequence of irrational points converging to O.

lim q)(yn)=1imM=Oj since f(yn)zo VneN.

n—>co n—>co y}’l

Therefore, lim ¢(x) does not exist, since for two sequences {x,} and {y,}
x—0 " "

both converging to 0, the sequences {¢(Xn)}n and {d)(y,,)}n converge to two different
limits.

- f 1is not differentiable at O.
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4. Let f:[-1,1] > R be defined by f(x)=0,xe[-10], f(x)=1,xe(0,1]

Does there exist a function g such that g’(x)= f(x), xe[-11]?

If possible, let there exist a function g:[-1,1] >R such that

g’ (x)=f(x), xe[-11].

Then g is differentiable on [-1,1] and g’(x)=0,xe[-1,0] and =1, x&(0,1]

Since g is differentiable on [-1,1] and g’(-1)# g’(1), by Darboux' s theorem
g’ must assume every real number lying between g’(-1) and g’(1), i. e. between
0 and 1 on [-1,1]. But this is not so and therefore g does not exist.

5. Show that functions tan™ x = f(x),— oo < x < oo, is uniformly continuous there
in and f’(x) 1s also so.
Let x, y be any pair of points in (—e0,00). By LMV theorem, 3¢ € (x, y) such that

FO)=f@==-01" €)= f N -f]=|r- lelgz <[y = Let £>0 be any

number. So |f(y)- f(x)|<|y—x|<e whenever |y—x|<8,8=¢.

= f is uniformly continuous on (—eo,c0).

Again |f'(x)= f'(»)|=|x=y| /(&) for some Ee(x,y) (by LMV theorem)
G ——
(1]

1+ &2 2l¢ 1
Note : That TZ|§|:>%SI.AISO 1+§251

consequently,

f’(x)—f’(y)‘ < ‘x—y’ <& whenever |x—y| <d

= f* is uniformly continuous on (—eo,eo).
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Indeterminate form

In the process of examining the existence of limit of functions in R and in its
determination we are very often faced with limits of following forms :

0 oo -
—,—,0Xe0 c0o—00 (° oo°]
070’ '

These forms are generally known as ‘Indeterminate forms’. Usually all the above

. . 0 oo
forms can be reformulated to give rise to the form 0%

French mathematician G F. L. Hopital (1661-1704) gave a method for computing
such limits (provided they exist).
I’ Hopital’s Rule,

Result-1 : Let f,g:[a,b)]— R be both continuous in [a, b], differentiable in
(a,b) such that f(a)=0=g(a) & g(x)#0, g'(x)#0ina<x<b. Then,

<1>1f1mf8—l(e R), then lim 28—
m L™ )
(i1) if 1 _} v g (X) =°°  then }g};%—
pAE))

Proof of (i) == corresponding to arbitrary €>0,38>0,

lim =
x—a+ g (_X)
0<d<b—a, such that

£
7 !

By hypothesis, Cauchy’s M. V. theorem is applicable to f& g in[a,x] where

< & whenevera<x<a+9 (D)

a<x<a+d 3E_ a<&_ <x, such that

fO-f@ _fE) o [0 FE) ,
c-g@) g g0 gty @

‘f() ;

)& @2 = <& whenevera<x<a+3d

) _
=M ™!
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Proof of (ii) : lim%: oo = corresponding to any G > 0, as large as we

please, 33,0<d < b—a, such that
S

g'(x)

Again Cauchy’s M V theorem is applicable to f, g in [a, x], a<x<a+3d.

> (G whenever a <x <a+90 (D)

so dn_,a<m, <x, such that

fO-f@ _ @) _ [ _ fn)
go-ga gm)  gx gm)

X
By (1) & (2), %> G whenever a<x<a+§
= tim LW -
x—a+0 g(x) :
Simple Ilustrations :
lim sinx (9) = lim X = Iim 2/x cos = 0
(l) x—0+ \/; O x—0+ ﬁ x—0+

. 1—cosx {0} _ sinx _1
2) lim—= (6)‘933 2x 2

(3) Evaluate lim [x —3(x—a)...(x- an)} where a’s are positive rationals.

The limit is of form co— .

We take x:%.soxﬁoo(:)t60+

The limit is lim
t—0 f

1—#0—%00—%0m0—%0(9)
0

1‘ _%{Q/(I—alt)...(l—anf)
=Im

t—0 l
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JO| _a TR T
. h |l-af 1-at I-at
=lim

t—0 1

where /(1) ={[(1-af)(1-a)..(1-a,)]

. T |
So the required limit is ;(5’1 +a, +...+an).

1

(4) Evaluate lim0 (e" + x); .
The limit is of form 1~

Let y= (ex + x); , 80 logy :%log(ex +X).

Then hm logy = hmw(g)
x—0 X O
I{e*+1
= lim (x ): 2
=0 e+ x
: _ 2
So limy=e",
D . si . log(1+ . et — . x"—=
Note : Standard limits like lim 22X lim og( x)’ lim& 1, lim*—4
x=0 X x—0 X x—0 X x—=a X—a

can not be evaluated by L. Hopital’s rule.

The reason is that if you apply the above rule to find liilg%, then you are

differentiating sinx w.r.t. x & in order to do the same, you are using the limit

. sinx
lim=—==1_
x—0 X

Result II : Let /, g are differentiable in [a, 5], xlgg J(x)=co= xlgg g(x), g(x)#0,

g'(x)#20 in a<x<b, then

() if hm f( ) _ = /(e R), then lim JO) _ —

7 M e
£ £ _
) 3 10 = M e
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Proof : Let a<x<c<b.
Applying C M V theorem to f & g in [a, ¢], IE € (a,c) such that

o)
J=f© _ O _ [ _FE _ g
g0-g0 g6 g @ = f© (D)
Jf(x)
Let 0<e<1 be any number. Then
39, 0<d < b—a such that f:(x)—l <g a<x<a+d
g'(x)

(4

SO
L2 = where |9, |</<1
we can write 7€) 1 0, |

- 80
Keeping chosen ¢ fixed. lim }g{(( ;
x—>a+l
f(x)
Choosing x nearer to a.
—gg"’; eif|l|<1
g(x
—=o 2 =1+8, where |9,|<
- © > where 5| |j| if | 7> 1
f(x)
JO) _ (148,)(148,) =148, +15,+58
Then(l):>() (+)(+2) +0,+/0,+9,0,
’f () —I|< 3¢ in above neighbourhood of ‘@’
g(x)
= lim L&) =
x—=a+t g(_x)
O | | y
(i) m (%) = corresponding to arbitrary large positive number G, 39,

')

0<&<b—a, such that g()>G,a<x<a+8.
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Choosing ¢ € (a,a+9d)

1 8©) 1 &©)
gx) 1 g(x)
l_f(c)>l G as l_f(C)ﬁl
J) f(x)
Then (1) :>§83>G 1—%)(:(}—1):}53%:00.

Simple Illustrations:

1) 1im1n—x(2) =liml=0

x—oo X o0

(2) lim (e—x, xz)(f) = limz—f(ﬁ) - lim% ~0

x—yeo

log(x—n)
B 2/ () _ g cos’x (0
3) lim ———=5{—= lim ===
( x—oIy tan x e x>y _E 0
2 2" X
2
= lim anx:—sinn:q

T
x>+
2

(4) lim x™%(0°)

x—0+

let y=x"*. So lirgl logy = lirgl sin x. log x (0 X —e0)

1
) logx [—co ) v
= lim —2X [=°)_ | —X
x50+ COSEC X | oo x—=0+ —COSEC X COt X
. sin 2x . o
=lim ——————=0=Ilimy=¢°=1,
x—0+ COSX — Xsin x o0+

&) (Y e

x—=0+\ X

NSOU e CC-MT- 08
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l tan x l
=|— 1 = 1 -
let ¥ (x) = logy=tanx og(x

= lirgl logy = lirgl tan x (—logx) (02X o)

1
- o0 . v 1 2
= lim logx(_): lim —X = lim
-0+ COtX

X . .
s—=lim ——=limsin2x= 0
=0+ —cosec’x 0+ X x—0+

o0

o Ilmy=e°=1

x—0+

1 1 1=
X X X
ar+ar+..+a;

x—yeo

, a’s are positive rationals.
let y be the expression mentioned above

1 1 1
log af +aj +..+a;

n
lim log y =lim (O)

o T
n

X

1 1
n 1 < < -1
B EE— .n[alx log,a,+...+a’log, a"}(x)
. ar+..+a;
=lim
tmyos -1
nx?

1 1
_ lim % [alx logea1+....+ajflogean}
x—eo| = =

ar+..+a;

=log, (aa,...a,)

7 x>0

So. imy=aa,.a,
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Problems on Indeterminate form : Evaluate the limits in (1) to (5) :

(1) li_}rg(xlogsinz x)

1

) lim (sinx)x2

x—0+ X

.37 =27
(3) lim ==

(6) Determine the constants a, b, ¢ such that

x(a+bcosx)+csinx _ 1

lim 5 :
x—0 X 60
1 1
. 1+Cx4_ . 1—2Cx4
(7) 1f Lli%(l—Cx) =4, find £1$(1+2Cx) '

15.4 Summary

In this unit, we have given various problems and solution of the units 1, 2

and 3.
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Unit- 17 (0 Limit and continuity for function of
two variables

Structure
1 6.0. Objectives
16.1. Introduction
16.2. Preliminaries
16.3 Limit and continuity for function of two variables
16.4. Continuity at a point

16.5 Neighbourhood Properties

16.6. Summary

16.0 Objectives

This unit gives

e Some preliminary notion of the distance in R?, diameter of a set, open and
closed sts in RZ.

e Convergence of sequence in R?.
e The concept of limit and continuity of two variable function.

e Continuity of a function in R?.

16.1 Introduction

This unit concerned with the calculus of functions whose domains are subsets of

R?. Such functions are frequently called by the name “functions of several variables”.
The concept extends the idea of a function of a real variable to several variables. There
are so many applications of this several variables’ functions in geometry, applied
mathematics, engineering, natural sciences and economics.
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16.2 Preliminaries

[1] The set R° and the distance on it
R? denotes the set of ordered 2-tuples (x!, x?) (or ordered pairs) of real

numbers x1 € R for i = 1, 2, where the notion of distance between the points

x = (x.3?) and x, = (x), %)

2
i=1

{(x —xé)z}} ()
The function d : defined by (1), obeys the following properties :
(1) dx;, xy) > 0 (i) d(x, x,) = 0 <=>x; = x, (1) d (x|, x,) = d(x,, x,)
(iv) d(x,, x3) < d(x, x,) + d(x,, x3).

[2] Diameter of a set :

is defined by d (x|, x,) = \/{

The diameter of a set £ — R* is the quantity
d (E) = Sup d(xla xz)

4.5, E
[3] Bounded set in R’ :
A set E c R* is bounded if its diameter is finite.
[4] Open and closed sets in R* :
Definition (1) : For 8 > 0, the set B(a, 0) = {x eR*|d(a,x)< 5} is called the
ball with centre a € R* of radius 8 or the 8-neighbourhood of the point ‘@’ in 2.

In particular, if (a, ) € R* and 8§ > 0, the set

{r mer | Jx-ay + (=) <3|

is called an open disc of radius o with centre at (a, b) & is denoted by
N(a, b, d).

The set N '((a, b), 6) =N((a, b),6)—{(a, b)} is called the deleted O&-neigh-
bourhood of (a, b), denoted by

N '((a, b), 6) as mentioned above.
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The set M cR* is a neighbourhood of (a, b) if and only if there exists
0> 0 such that

N((a,b),8)cM
Definition (2) : Aset G (c R”)is open in R? if every point x € G, there exists
a ball B(x, 8) c G.

In other words, a set G (c R?) is said to be open if it is a neighbourhood of
each of its points.

Examples : (i) R? is an open set (i) Void set is open set (iii) A ball B(a, b)
is an open set in R*

Definition (3) : The set /' < R* is closed in R* if its complement

G = R*\[ is open in R?.

Definition (4) : Let EcCR*. A point x is interior point of £ if some
neighbourhood of it is contained in £.

On the otherhand, x is exterior point of £ if it is an interior point of the
complement of £ in R*.

x is boundary point of £ if it is neither an interior point of £ nor an exterior
point of F.

Definition (5) : A point a € R* is a limit point (accumulation point) of £c R*
if for any neighbourhood N(a) of ‘a’ the intersection N N(a) is an infinite set.

The union of set £ and all its limit points in R?, is the closure of £ in R?,

denoted by E.
Results : We state the following results without proof :
(1) Intersection of any two open discs is an open set.

2) The union of any number of open subsets of [®? is open.
( y p p

(3) The intersection QGz- of a finite number of open sets in R* is an open set.

(4) The intersection F, of the sets of any system {FOc o e /\} of closed sets
F, in R’is a closed set in R*. ( ~ : Index set).

(5) The union of finite number of closed sets in R* is a closed set in R*.
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(6) Every bounded infinite set S of points in a plane has at least one
accumulation point.

Sequence of points : Convergence
Let us consider infinite sequence of points P (x,, y, ) in the plane. The
sequence is bounded if a disc can be found containing all the points P, i.e. if there

POI< M for all

is a point O and a number M such that the distance

nelN.

13 -2y
Examples : The sequence P, = {(-1)" +—,—},, P! = {3(?j } are bounded
n n

but the sequence {(712,713)}” is not bounded. The sequence {P,}, converges to a point

QO (or,lim P, = Q) if the sequence of distances {Pn_Q} converges to zero. For every
n—yoo n

€ >0, there exists positive integer m such that P ’s lie in the ¢ -neighbourhood of
Q for all n > m.

The sequence of points {(x,, y,)}, converges to (a, b) if and only if the

sequences {x, } &{y, } converge to a and b respectively (Co-ordinatewise

convergence).

16.3 Limit and continuity for function of two variables

Definition :

u(x, y) is a function of independent variables x and y whenever some law f
assigns a unique value of u, the dependent variable to each pair of values
(x, ) belonging to a certain specified set, the domain of the function. A function u(x,
y) thus defines a mapping of a set of points in the xy-plane, the domain of £, on to
a certain set of points on the u-axis, the range of f.

Geometrically, a function of two variables represents a surface.
Examples :

X
[1] Domain of #(x,y)=Sin 1§+ xyis S,US, where

Sl:{(x,y)eRZ|—3Sx£0,y£0}&S2:{(x,y)eR2|OSxS3,y20}
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[2] Domain of u(x, y) = \/1 —x* 4+ \/1 —y* is the square formed by the segments of

the lines x = £1,y = +1,including its sides |x|<1|y|<1.

[3] Domain of u(x,y)= \/(xz —4) + \/(4_y2) is the two strips x>2,-2<y<2
and x<-2,-2<y<2.

[4] Domain of u(x,y)= W is the strips 2nlI<x<(2n+DII,y>0 and
2n+DII < x<(2n+2)I, y <0 (where n is integer).
[5] Domain of u(x, y) = In (x*> + ) is that part of the plane located above the
parabola y = —x2.
Definition (Limit of function of two variables)
Let f:S—R when § c R*. Let (a, b) be an accumulation point of S. We say

that lim ) f(x,y)=1(e R)if for any number g> (, there exists & > 0 such that

Ce.y)—(a.
| flx, y) — 1< & whenever (x, y)e N'((a,b),8)"S.

This limit if exists is known as simultaneous limit or double limit.

Sequential approach : Im f(x,y)=/(€R) if and only if for every

(x.y)=>(ab)

sequence of points (x,, y, ) —>(a, b),we have lim f(x, ,y )=1I[(cIR).

These two definitions (€ —0 approach & sequential approach) are equivalent.

Examples :
) Xy
lim

T . 5500 X +y

[l lj & [2 lj
The sequences nn)f 2 nboth approach to (0, 0)

f[l 1}_1/;12_1 f[g lj_g . i
P I 2 & > 5 These two are different.

So the limit does not exist.
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lim —
[2] p)s00 /(xz 3%

Refer to polar co-ordinates x =rcos®, y =r sin6. Then,

Xy

VX +)y7)

1 1 €
We note that | /(x,))—0|< Er(: E\/(xz +y2)j < 5 whenever

1 )
=—r sin 20.

0<J(x*+y)<8&d= %’ £>0 is arbitrary number.

So.  lm  f(x,y)=0.

> (23)(0.0)
Theorem : (Necessary condition for the existence of double limit)

Let f: S — R where S ¢ R* and (a, b) be an accumulation point of S.

If lim : S (x,¥)=L(e R), then f{x, ¢ (x)) = L as x— a, where ¢ is a real

(x,y)—>(ab

valued function of one variable x such that (x, ¢(x)esS

xeD, and o(x)>basx—a.
Note that in a plane (x, y) may approach to (a, b) through infinitely many

paths, strictly within the domain. The genesis of the above theorem is that limit ¢
is independent of all such paths leading to (a, b).

Proof : Given lim f(x, y) = L(e R), Let € > 0 be any number.

(x, y) = (a, b)
Corresponding to €, there exists 0 > 0 such that

| f(x,y)—L|<e whenever 0<|x—al|<08,0<y—b|<b (1)

Again lim ¢(x) =b, corresponding to above 0, there exists >0

such that | p(x)—b|<d whenever 0 < [x—al<n (2)
Let p=min{d, n} .
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Hence by (1) and (2), we have | f(x, ¢(x))— L |<ewherever 0 < |x —a| < p
Consequently, 1m /(x,¢(x)) =L

Remarks : If there be two functions ¢,(x)& ¢,(x) such that

lim £ (¥, @,(x)) = lim £(x,9,(x))

where (x, ¢,(x)) & (x, ¢,(x))e Sfor each xe D, (i=1,2) & as x = a,

¢, (x)—=b(i=12), then Ilim f(x,y) does not exist.

(x.y)>(a.b)

X +y

Examples : f(x,y)= { XEY

X=y

0, x=y
Let (x, y) — (0, 0) along the path x — y = mx3. Then

+y 1+0-mx*y 2 2 )
= —>—as x— 0,— ig different for different m.
X—y m m m

So, lim f(x,y) does not exist.

(%,3)>(0,0)

Repeated limits :

Let f: § - R where S ¢ R?and (g, b) be an accumulation point of S.

Let (Lifal)f (X,)) exist, then it is function of y, say o(y).

Let lirrbl(p(y) exist & = M€ R), then lylfb} Llfalf(x» »)=2A .1
Y

Let lirrbl J(x,y)exist & it is then function of x, say y(x).
Yy

Let }gj W(x) exist & = p(e R), then lim lirrb} f(x,y)=n ...(2)
X—a y—

(1) and (2) are known as ‘Repeated limits’

So questions arise regarding the existence of Repeated limits, whether their
existence ensure the existence of double limit & conversely etc.

In this connection, let us consider first the following examples :
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1 1
(1) Letf(x, y) = {xSin—erSin—, xy#0
y x
Let € > 0 be any number,

1 1
| f(x,y)—0|= xSin—+ ySin—|<|x|+| y |<e whenever
y X

g
0<x-0|<8,0<y-0]<3,d correspond to €, say 5

lim X, : :
So, (x,y)—)(0,0)f( Y) exists & is 0.
But limSin— does not exist, so neither lim lim f#(x, y)nor limlim f(x,y)
t—0 { x—0 y—0 y—0 x—0
exists.

This example illustrates that only the existence of double limit at a point does
not ensure the existence of repeated limits.

@) fxy)= Sin x+Sin 2y

tan2x +tan y

Keeping y fixed, let x — 0, then we take y — 0.
— 1
lim lim £ (x,y)=7

On the other hand, first keeping x fixed, let y — 0. Then we take x — 0.
) ) _1
We get LIE)I(} lyl{}(} Sx,y)= 3

So both repeated limits exist though they are unequal.

For consideration of double limit, let (x, y) — (0, 0) along y = x.

. 3x X
. . . . 25sin— COS— COS X COS 2X
sinx+sin2y  sin x+sin2x 2

= N . 3x 3x
tan2x+tan y tan2x+tanx 2s1n?COS?
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X
COS— COSX COS2Xx
= 3 —lasx—0.

X
Cos——
2

Next we consider the path y = 2x.

26 5x  3x 5
sin2x+sin2y sinx+singy ST, €05 ,7C08SX

tan 2x +tan y 2tan 2x 2sin2x
ﬁnsx
1 3 5 3 5
—. 2 . ‘x .—.cos—x.cos2x. =—asx—0
2 5% sinx 2 2 cosx 4

2
So the double limit does not exist.

So existence of repeated limits = existence of double limit.

Also if g(x,y) = x*+y* #0,we note that both the repeated limits

X+

exist and are equal but the double limit does not exist.

So a question arises : whether there is any relation between the existence of
repeated limits and that of double limit. In this connection, the following theorem is
relevant :

Theorem : Let the double limit lim f(x,y) exist and be equal to A (e R).

x,y)—>(ab)

Let the limit lim f(x, y) exist for each fixed value of y in the neighbourhood

of b and like wise let the limit lylgl}f (x,») exist for each fixed value of x in the

neighbourhood of ‘a’.
Then 1m lirrb} f(x,y)=A= lirrb1 lim f(x,y).
X—=a y—> y—=b x—=a
Proof : Let (lim) f(x,y)=F(y) (by hypothesis, it exists)

Let € > 0 be given let 0 < |y — b| < g,
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Corresponding to €, there exists 6, > 0 such that
g
| f,y)—F(y) |<E ...(1) for all x satisfying

O<x—al<d, Also 0<y-bl<d,. (D)

Also due to the existence of double limit, corresponding to above g€, there
exists 8, > 0 such that

€
Ifln}O—A%<5 ..... (1) for all x,y satisfying 0 <|x—a|<8,,0<y-b[<8, ..(2)

Let n=min{3,8,3,}

€ €
So IF(y)—AISIf(x,y)—F(y)l+|f(x,y)—A|<5+5 whenever
0<y-bl<n. So, lirrb1F(y):A.

Yy

Consequently limlim f(x,y)=4

y—b x—a

Similarly for the other part.

(x-y)’

IMlustration : Let f(x,y)= = (x, ) # 0 1)
1-2xy+y

i ; lim X,
Examine the existence of (x,y)ﬁ(l,l)f (x,»)

If possible, let the double limit exist & be equal to A

(1-y)y

For y#L1lim f(x,y)= 2=l:>1imlimf(x,y)=l
z1 1-2y+y v

—1 x>l

(1-x)> 1-x

x#1,lim f(x,y)= =——=Ilimlim f(x,y)=0
For lim 7 (x, y) 0 2 im lim £(x, y)

So by above theorem ; the double limit does not exist.
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16.4 Continuity at a point

Let f: § >R where § cR? and let (a, b) € S.
(a) If (a, b) be an accumulation point of S &

lim f(x,y)=f(a,b)

(x3)(ab)
(b) Or If (a, b) be an isolated point of S,
then f is continuous at the point (a, b)
If for given € > O there exists & > 0 such that

| £(x,y)— f(a,b)|<e wherever \[[(x—a)’+(y—b)’]<8 or
(x,y)e N((a,b)d) S,

then f is continuous at (a, b)

Note : Let g(x) = f (x, b). Then by above, |g(x)—g(a)|<e wherever
|x—a|d= g(x)is continuous at ‘a’.

Similarly if A#(y)= f(a,y), then it is continuous at y = b.

But continuity of g(x) at a & that of /#(y) at b |= continuity of f (x, y) at (a, b)

0,if xy#0
Let f(x,y) = 1Lif xy=0

Here g(x) = fix, 0) = 1 for all xeR&A(y)=f(0,y)=1 for all
yeR = g(x), h(y) are continuous at x = 0, y = 0 respectively.

If possible, let f(x,y) be continuous at (0, 0). Then for € = A there exists

8 >0 such that | f(x,y)— f(0,0) |<ewhenever (x,y)e N((0,0)0)nR

:>|f[%,%j—l

Thus f is not continuous at (0, 0),

1
<&€= |1| < 8[: Ej . Absurd.

xylog(x2 +y2 ), x? +y2 =0

2 2

Examples : (1) f(x,y)=
0, x+y =0
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For 0<x*+y” <1, log(x*+y*)<0 & so we have

|/ (x, )= £(0,0)| = —|xy|log(x* + y*) < —%(xz +y*) log(x* +3?) [AM = GM |
If we have x* + 3% = t, by L Hospital’s rule, Erogtlogt =0

So given € > 0, there exists § > (0 such that

|rlog?—0|<2e whenever 0<7<§

= ‘(x2 +37)log(x” + y2)| <2ewhenever 0<7<§

For n=min{1,8}, we have for 0 <x?+)* <n,

| f(x,¥)—-1(0, O)| <e= f is continuous at (0, 0).

0,if (x,3)=(2y, y) }

Let f(x.0)= {exp{— | x =2y /(x> —4xy+4y")},(x, ) £ (2Y, V)

lk=2y 1
X —4xy+4y* [x -2y

we note that

-1

Let 0<g<1 and &, =

log e
2
e-2))<fxl+ 2]y <2+ =2 whenever =0 <= [y-0< 2= -2y <e,
1 —|x =2y 1
—2)|/(x* —dxy +4y7)} > — -—=1
:>{|x y| (x xy + y)}>81:>(x2—4xy+4y2)< 81 0oge

. exp{ﬂ} e

x*—4xy+4y°

= |f(x,»)— (0,0)| <e whenever |x—0|<3,

y—O|<6,656(8).
Thus f is continuous at (0, 0).
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(3) Let f and g be two functions of one variable which are continuous on

[a=d,,a+98,] & [b-3,,b+8,] respectively, §, >0,9,>0.
If h(x,y)=max {f(x), g(y)}, then h is continuous on

[a—38,a+8;b-5, b+3,]

Here, h(x,y)= %[f(x) + 2+ () - g)]

Let (x,y) ela—d,,a+8,;6-0,,b+3,]
Let ¢>0 be any number
As fis continuous at x', so corresponding to above €, there exists 0,

0<8<9,, such that |f(x)—f(x’)

€ .
<3 whenever [x—x'|<8. As g is

continuous at y’, corresponding to above € there exists &',

0 <8 <8, such that g —g() <% whenever |y—y'| <d".

Let n=min{3, 5"}

So |f(x) - f(x')| < % whenever |x - x'| <n& |g(y) gy ')| < % whenever
y=y|<n

Consequently [{f(x)£g(»)}~{f(x)£g(»}|

<|f(x) - f(x)|+|g() - g(¥)| <& whenever |x—x|<m,

y=y|<n
F(x)-g()|

continuous at (x', )'). So their sum, difference and scalar multiple are
continuous. Hence A(x,y) is continuous at (x', }").

Therefore f(x) + g(y) and f(x) — g(y) are continuous at (x', }"),

o B
Xy
(x,y)#(0,0
e CORCX)

0, (x,y)=(0,0)

(4) Let f(x,))=

Examine for the continuity of f(x, y) at (0, 0).
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Let (x, y) — (0, 0) along the line y = mx.

p p
xocy _ m a+p-2

2 2 7 X
x +xy+y l+m+m

If a+B=2 we get ~ & if o+ <2, the limit does not exist

I+m+m
So a+PE2
Let us consider the case o +[3>2

We put x=rcos6, y=rsin6, Then,

x*yP e (cos0)*(sin0)”

X +xy+y’ 1+5sin0cos0

For any 6,%£1+sin6cos6 <2

0sp2 (cOs 0)*(sin 6) |
1+sinBcosO

<2p* P 22 s asr— 0

Then, f(xny)l =\

provided oo + 3 > 2.

Therefore, when o0 + B > 2,

f(x,y)— f(0,0)| <& whenever

|x—O|<6,

y— O| < 8,0 =05(e) = fis continuous at (0, 0) only when o + > 2.

(ax+by)sin£,y #0 (a,beR)
Let f(x,y) = Y
0,y=0

Test for continuity of f(x, y) at (0, 0)
Let € > 0 be any number

|f(x,y)—f(0,0)|= S|ax+by|£|a||x|+|b||y|

(ax+by) sin=—0
Y

|al.e |6].€

2(|a| D) + 2(|b| 1) whenever
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(6)

()

|x—a|<61:

€ €
L PV A __&
T R vy
If 6 =min{o,,d,}, we have

|/ (x,»)— f(0,0)| <& whenever |x—0|<38,

So f is continuous at (0, 0).

y—O|<6;656(8)

6 4

X
Let f(x, y) = . xT 4+ £0
0, x2+y2:0

2

Test for the continuity of f(x, y) at (0, 0).
Put x = rcosB, y=rsin0

x°—2y*

—=r*cos’®—2r’sin*6. Let ¢>0 be any number

X +y
|f(x,y)—f(0,0)|£r4+2r2 <& whenever x>+ <8&3% :4\;/%
= f 1s continuous at (0, 0).

3 3

Fen =122 ey 20

2 2

0, x2+y2:0

2%’ -y’ .
Put x = 7cos8, y =rsin®, Then T;;:Zrcofe—rsm%.

|f(x, v)— f(O, O)| <2r+r <e whenever r<§ = %(e > Qis arbitrary)

= f(x,y) is continuous at (0,0).

16.5

Neighbourhood Properties

1)

If lim  f(x,y)=A(eR), there exists a deleted neighbourhood of (p, ¢) in

(x.3)=>(p.a)

which £ is bounded.


Mampi Howlader
Typewriter
1


188

2)

Q)

NSOU e CC-MT- 08

We note that there exists §>(Q such that

1
‘f(xa y)- M < 5 whenever (x, y) € N'((p,q),d) N D,

1
:>|f(x,y)|Slf(x;y)—k|+|k|<5+|k| for all (x,y)e N'((p,q),8) "D,
= f(x,y) is bounded in N'((p,q),8)ND,

i lm  f(x,»)=% AeR—{0}, there exists a deleted

(.3)=>(p.9)
neighbourhood of (p, ¢) in which f(x, ) does not vanish.
There exists n>0 such that

A

|f(x,y) —7u| < |?| whenever (x, y) € N'((p, q), n) ND,
! M .

= E|7\‘| < |f(xay)| < 7+|f(xay) > (xay) € N ((paq)an)me

LHS of the last inequality implies that f(x,y) does not vanish in N'

((p.9).m) AD,

Let f be defined and continuous in S (c K?*). If at two points M'(x', }') and
M" (x", y") of S, M'M" lies entirely in S, the function takes values of distinct
signs, say f(x', ') <0, fix", y") > 0, then there exists a point M, (x,, ,) in the
domain at which f(x,, y,) = 0.

Let x=x"+t(x"-x"), y=y'+t(y"-y") where 0<r<1.

FOey) = flx+t(x"=x"), y'+1(y"=y) = F (D).

By hypothesis /() is continuous in [0, 1]. F(0) F(1) = f(x', y') f(x", y")
ie, F(0) F(1)<0. By Bolzano’s theorem on continuous function for a function
of one variable, there exists a point £, €(0,1) for which F{z,) = 0 => there is
a point (x,, ,) such that f(x,, y,) = 0 where

Xo =X+ 1y (X"=x), yo =y +1, 0" =)
Some important results :
We state the following results without proof

Results (1) : If functions ¢,(P) (i =1,2) are continuous at the point
P’ (1), t,') in S(c R*) and the functions f(M), M(x,, x,), be
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continuous at the corresponding point M'(x/', x,") where x,'=¢o,(7,")
x,'=0,(¢'t,") then the composite function

U= f((Pl (Zla Zz): 0, (Zla Z(2)) = f((Pl (), 0, (p)) is continuous at p'"
Result (2) : If f(x, y) is defined & continuous in a bounded closed domain

S(c R?), then f is bounded above and below in S and f attains its bounds in
S.

Example : Let f(x, y) be defined in the square § = {(x, y)|x| <1, | y| Sl}

Flp) =4, x4y 20
x'+y
0,x4+y4:0
Examine for continuity and boundedness of f on §.
It is evident that f is continuous in x for every y and f is continuous in y for
every x. To discuss double limit, let (x, y) — (0, 0) along y = mx3.
4

mx m
—>m asx—0

Then f(x,y)=

' mtx? 1+mtyt

So double limit ( l)irr(l0 o f(x,y) does not exist & fis not continuous at (0, 0).
XY )=,

If possible, let f be bounded. Then there would exist M > 0 such that
|/ e, »)| <M for all (x,y) 8.

1 1 1 1 1 1
For x=y=——, , = / + =2M >M
Y IM / [2\/2\4 2\/Mj 4M [16M2 16M2j
This indicates f(x, y) is not bounded on S.

17.6 Summary

In this chapter we have introduced the concept of limit and continuity for
function of two variable as a generalization of one variable. We also have examined
condition for the existence of double limit. We have studied repeated limits and
continuity at a point with some examples. We have further developed the
neighbourhood properties.
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