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Vice-Chancellor

With its grounding in the "guiding pillars of Access, Equity, Equality, Affordability and
Accountability," the New Education Policy (NEP 2020) envisions flexible curricular structures
and creative combinations for studies across disciplines. Accordingly, the UGC has revised the
CBCS with a new Curriculum and Credit Framework for Undergraduate Programmes
(CCFUP) to further empower the flexible choice based credit system with a multidisciplinary
approach and multiple/ lateral entry-exit options. It is held that this entire exercise shall leverage
the potential of higher education in three-fold ways - learner's personal enlightenment; her/his
constructive public engagement; productive social contribution. Cumulatively therefore, all
academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

 In this epochal moment of a paradigmatic transformation in the higher education scenario,
the role of an Open University is crucial, not just in terms of improving the Gross Enrolment
Ratio (GER) but also in upholding the qualitative parameters. It is time to acknowledge that the
implementation of the National Higher Education Qualifications Framework (NHEQF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the
arena of Open and Distance Learning that is truly seamless in its horizons. As one of the largest
Open Universities in Eastern India that has been accredited with 'A' grade by NAAC in 2021,
has ranked second among Open Universities in the NIRF in 2024, and attained the much
required UGC 12B status, Netaji Subhas Open University is committed to both quantity and
quality in its mission to spread higher education. It was therefore imperative upon us to embrace
NEP 2020, bring in dynamic revisions to our Undergraduate syllabi, and formulate these Self
Learning Materials anew. Our new offering is synchronised with the CCFUP in integrating
domain specific knowledge with multidisciplinary fields, honing of skills that are relevant to each
domain, enhancement of abilities, and of course deep-diving into Indian Knowledge Systems.

 Self Learning Materials (SLM's) are the mainstay of Student Support Services (SSS) of
an Open University. It is with a futuristic thought that we now offer our learners the choice of
print or e-slm's. From our mandate of offering quality higher education in the mother tongue,
and from the logistic viewpoint of balancing scholastic needs, we strive to bring out learning
materials in Bengali and English. All our faculty members are constantly engaged in this academic
exercise that combines subject specific academic research with educational pedagogy. We are
privileged in that the expertise of academics across institutions on a national level also comes
together to augment our own faculty strength in developing these learning materials. We look
forward to proactive feedback from all stakeholders whose participatory zeal in the teaching-
learning process based on these study materials will enable us to only get better. On the whole
it has been a very challenging task, and I congratulate everyone in the preparation of these
SLM's.

I wish the venture all success.
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Unit - 1  Linear Programming Problem (LPP) :
Formulation

Structure

1.0 Objective

1.1 Introduction

1.2 Requirements of Linear Programming

1.3 Scope of Linear Programming

1.4 Formulation of a Linear Programming Problem

1.5 Summary

1.6 Exercise

1.7 Multiple Choice Questions (MCQ)

1.0 Objective

After studying this chapter, the reader should be able to know

the nature of linear programming problems (LPP)

the requirements and scope of LPP

advantages and limitations of LPP

applications of LPP

1.1 Introduction

Linear programming is a mathematical technique for determining the optimal allocation

of resources and obtaining a particular objective when there are alternative uses of the

resources : money, manpower, material, machine and other facilities. The objective in

7
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resource allocation may be cost minimization or inversely profit maximization. The

technique of linear programming is applicable to problems in which the total effectivness

can be expressed as a linear function of individual allocations and the limitations on

resources give rise to linear equalities or inequalities of the individual allocations.

1.2 Requirements of Linear Programming

In general, linear programming can be used for optimization problems if the following

conditions are satisfied :

(i) There must be a well-defined objective function (profit, cost or quantities

produced) which is to be either maximized or minimized and which can be

expressed as a linear function of decision variables.

(ii) There must be restrictions on the amount or extent of attainment of the

objective and these restrictions must be capable of being expressed as linear

equalities or inequalities in terms of variables.

(iii) There must be alternative course of action. For example, a given product

may be processed by two different machines and the problem may be as to

how much of the product to allocate to which machine.

(iv) Another necessary requirement is that decision variables should be inter

related and non-negative. The non-negativity condition shows that linear

programming deals with real-life situations for which negative quantities are

generally illogical.

(v) The resources must be in limited supply. For example, if a farm starts

producing greater number of a particular product, it must make smaller

number of other products as the total production capacity is limited.

1.3 Scope of Linear Programming

Despite the restriction that relationship must be linear, linear programming, as an

operation research technique, has been recognized and widely used in industry as an

effective tool for business problems.
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The first application of linear programming technique was made in 1947 in the U.S.

Air Force. After the second World War, it became necessary to concentrate on the

development of a model that would define the optional and efficient coordinations of a

nation’s energies in the event of a total war. The Air Force officially named this task as

Project SCOOP (Scientific Computation of Optimum Programmes) and it was in 1947 that

George Dantzig and his associates found out a technique for solving military planning

problems while working on this project. This technique consisted of representing the

various activities of an organization as a linear programming model and arriving at the

optional programme by minimizing linear objective function. Dantzig developed the ‘Simplex

Method’ for deriving an optimal feasible solution which solved the project SCOOP. Since

then the military has been building linear programming models for crew training, for

scheduling of routine maintenance activities, for personnel assignments and for contract

bidding etc.

The use of linear programming in business and industry has been tremendous since

1951. The first and the most widely used industrial applications have been in all phases of

the petroleum industry, viz., exploration, production, refining, distributions and pollution

control. The second most active user of linear programming is the food processing industry.

In the heavy industry, linear programming has been used in the iron and steel industry, to

decide the types of products to be made in the rolling mills so as to maximize the profit.

Administration, Education and politics have also employed linear programming to solve

their problems, viz., in planning political campaign strategies; for allocating resources in

educations; for making school assignments in large districts; for optimal city administration

and for resource allocations in local election campaigns. This list of applications of linear

programming can go on for ever.

1.4 Formulation of a Linear Programming Problem

Mathematically, a most general linear programming problems (LPP) can be stated as

follows :

Find x1, x2, ..... xn which optimize (maximize or minimize) the objective function :
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z = c1x1 + c2x2 + .... + cnxn

subject to the constraints

a11 x1 + a12 x2 + ..... + a1n xn ( = ) b1

a21 x1 + a22 x2 + ..... + a2n xn ( = ) b2

  .....     .....     .....      .....

  .....     .....     .....      .....

am1 x1 + am2 x2 + .... + amn xn ( = ) bm

   x1, x2, ..... xn   0;

where for each constraint one and only one sign of , =,  holds, but the sign may vary

from one constraint to another. In this LPP, all aij’s, bi’s and ci’s are constants. The

constants ci’s are called cost coefficients of the problem.

In this section, we shall consider some examples of the LPP and formulate them in

mathematical models in terms of the decision variables x1, x2, .... xn. The objective is to

familiarize the reader with some of the areas where this techinque may be applied. In these

examples, the stress is laid on the analysis of the situation and formulation of the linear

programming problem rather than on its solution.

 Example 1.4.1 (Production Planning Problem)

A firm manufactures three products A, B and C. The profit per unit sold of each

product is  3,  2 and  4 respectively. The time require to manufacture one unit of each

of the three products and the daily capacity of the two machines P and Q is given in the

table below :

Machine Time per unit (minutes) product Machine Capacity

A B C (minutes/day)

P 4 3 5 2000

Q 2 2 4 2500
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It is required to determine the daily number of units to be manufactured for each
product so as to maximize the profit. However, the firm must manufacture at least 100 A’s,
200 B’s and 50 C’s but not more than 150 A’s. It is assumed that all the amounts produced
are consumed in the market. Formulate the problem as a LPP.

Solution : Let the number of units of the products A, B and C manufactured daily
be designated by x1, x2 and x3 respectively where x1, x2, x3  0.

The objective here is to maximize the profit. In view of the assumption that all the units
produced are consumed in the market, it is given by the linear function

z = 3x1 + 2x2 + 4x3.

In order to produce x1 units of product A, x2 units of product B and x3 units of
product C, the total time needed on machines P and Q are given by

4x1 + 3x2 + 5x3 and 2x1 + 2x2 + 4x3

respectively. Since the manufacturer does not have more than 2000 minutes available on
machine P and 2500 minutes available on machine Q, we must have

4x1 + 3x2 + 5x3  2000

and 2x1 + 2x2 + 4x3  2500.

Also, the manufacturer has to satisfy the following given additional restrictions :

x1  100, x1  150, x2  200 and x3  50.

Hence, the problem can be put in the following LPP as given by

Maximize z = 3x1 + 2x2 + 4x3

subject to

4x1 + 3x2 + 5x3  2000

2x1 + 2x2 + 4x3  2500

100  x1  150, x2  200, x3  50.

 Example 1.4.2 (Diet Problem)

A doctor advises a patient to take at least 150 calories out of two kinds of food—
milk and meat; and also advises him not to take more than 18 units of fat daily. Relevant
information is given in the following table :
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Food type Calorie Units of Fat

Milk
(per litre) 120 15

Meat
(per 100 gm) 30 3

It is given that one litre milk costs  45 and one kilogram of meat costs  600.
Formulate the problem as a LPP in order to have the minimum cost diet.

Solution : Let us represent the problem in the following table :

Food type Calorie Units of Fat Cost
(in Rs.)

Milk
(per litre) 120 15 45

Meat
(in kg) 300 30 600

Requirements 150 18

Let the patient take x1 litres of milk and x2 kilograms of meat per day. Thus, he will
get (120x1 + 300x2) calories and (15x1 + 30x2) units of fat daily. For this, total cost per
day will be  (45x1 + 600x2).

Thus, the problem can be formulated as a LPP in the following way :

Minimize z = 45x1 + 600x2

subject to 120x1 + 300x2  150

15x1 + 30x2  18

x1, x2  0

 1.4.3 Example (Staff Management Problem)

A city hospital has the following daily minimal requirement for nurses :
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Period Clock time Minimal number of
(24 hours day) Nurses Required

1 6 am – 10 am 2

2 10 am – 2 pm 7

3 2 pm – 6 pm 15

4 6 pm – 10 pm 8

5 10 pm – 2 am 20

6 2 am – 6 am 6

Nurses report to the hospital at the beginning of each period and work for 8

consecutive hours. The hospital wants to determine the minimal number of nurses to be

employed so that there will be sufficient number of nurses available for each period.

Formulate this problem as a LPP.

Solution : Let xj (j = 1, 2, .... 6) be the number of nurses required at the begining

of j-th period.

Since each nurse has to work for 8 consecutive hours, the x1 nurses who joined

during the 1st period shall till be on duty when 2nd period starts. Thus, during the 2nd priod

there will be (x1 + x2) nurses. Since the minimal number of nurses required during the 2nd

period is 7, so we must have, x1 + x2  7.

Similarly, the other constraints of the given problem will be x2 + x3  15, x3 + x4 
8, x4 + x5  20, x5 + x6  6 and x6 + x1  2. The objective of the problem is to minimize

the total number of nurses employed in the hospital, that is z = x1 + x2 + x3 + x4 + x5

+ x6. Thus, the problem can be put in the following LPP as given by

Minimize z = x1 + x2 + x3 + x4 + x5 + x6

subject to x6 + x1  2

x1 + x2  7

x2 + x3  15
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x3 + x4  8

x4 + x5  20

x5 + x6  6

xj  0  (j = 1, 2, ...., 6)

 Example 1.4.4 (Transportation Problem)

A dairy farm has two plants located in a metropolitan city. Daily milk production at

each plant is as follows :

Plant 1 — 5 million litres

Plant 2 — 10 million litres.

Each day the firm must fulfil the needs of its three distribution centres. Requirement

at each centre is as follows :

Distribution centre 1 – 8 million litres

Distribution centre 2 – 5 million litres

Distribution centre 3 – 2 million litres

Cost of shipping one million litres of milk from each plant to each distribution centre

is given in the following table in hundreds of rupees :

Plant Shipping cost

Distribution Centre

1 2 3

1 1 2 4

2 3 2 1

The dairy farm wishes to decide as to how much should be the shipment from which

plant to which distribution centre so that the cost of shipment may be minimum.

Solution : Let xij be the decision variable (quantities to be found) when the milk is
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shipped from plant i (i = 1, 2) to distribution centre j (j = 1, 2, 3)

z = (x11 + 2x12 + 4x13) + (3x21 + 2x22 + x23).

Constraints are on the availability of milk at the two places and its requirement at the
three distribution centres. These are as follows :

(i) Availability or supply :

x11 + x12 + x13 = 5

x21 + x22 + x23 = 10

(ii) Requirement or Demand :

x11 + x21 = 8

x12 + x22 = 5

x13
 + x23

 = 2

Hence, the transportation problem can be put in the following LPP :

Minimize z = x11 + 2x12 + 4x13 + 3x21 + 2x22 + x23

subject to x11 + x12 + x13 = 5

x21 + x22 + x23 = 10

x11 + x21 = 8

x12 + x22 = 5

x13 + x23 = 2

   x11, x12, x13, x21, x22, x23  0.

 Example 1.4.5 (Resource Allocation Problem)

A ship has three cargo loads–forward, aft and centre. The capacity limits are as
follows :

Weight in Kgs. Volume in Cu. Cms.

Forward 2000 1,00,000

Centre 3000 1,35,000

Aft 1500 30,000

The following cargos are offered. The ship owner may accept all or any part of
each commodity.
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Commodity Weight (in Kgs.) Volume per unit Profit

(in Cu. Cms.) (in Rs. per kg.)

A 6000 60 60

B 4000 50 80

C 2000 25 50

In order to preserve the firm of the ship, the weight in each load must be proportional

to the capacity in kgs. The cargo is to be distributed so as to maximize the profit. Formulate

the problem as a LPP.

Solution : Let x1A, x2A, x3A be the weights (in kg.) of the commodity A to be

accomodated in forward, centre and aft portions respectively. Similarly, let x1B, x2B,

x3B and x1C, x2C, x3C be the corresponding weights (in kg.) of B and C respectively.

Then, the given information can be formulated in an appropriate mathematical form

as a LPP as given by

Maximize z = 60 (x1A + x2A + x3A) + 80 (x1B + x2B + x3B)

+ 50 (x1C + x2C + x3C)

subject to x1A + x2A + x3A  6000

x1B + x2B + x3B  4000

x1C + x2C + x3C  2000

x1A + x1B + x1C  2000

x2A + x2B + x2C  3000

x3A + x3B + x3C  1500

60x1A + 50x1B + 25x1C   1,00,000

60x2A + 50x2B + 25x2C  1,35,000

60x3A + 50x3B + 25x3C  30,000

          x1A, x2A, x3A, x1B, x2B, x3B, x1C, x2C, x3C  0
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1.5 Summary

Unit-1 deals with a brief introduction of Linear programming. The requirements and

scope of linear programming is discussed in two sections. Formulation of a LPP is

explained with several examples in another section. Graphical method of solution is also

discussed with numerous illustrative examples. Finally, matrix form of a LPP is presented

in the last section.

1.6 Exercise

1. Formulate the following problem as a LPP :

(i) A firm manufactures two types of products—chairs and tables from its available

sources. Processing of these products is done on two machines G and H only.

A chair requires 3 hours on machine G and one hour on machine H, whereas a

table requires 2 hours on machine G and 2 hours on machine H. There are 12

hours of time per day on machine G and 8 hours per day on machine H available.

Profits gained from a chair and a table are  150 and  120 respectively..

Formulate the problem mathematically as a linear programming problem to

maximize the total profit.

(ii) A farmer buys sheeps and goats at  5,000 per sheep and at  8,000 per goat,

and sells them at profit of  600 per sheep and  900 per goat. The farmer has

accommodation for not more than 50 animals and cannot afford to pay more than

 3,20,000. He wishes to buy these two kinds of animals in order to have the

maximum profit. Formulate the problem as a LPP.

(iii) Everyone would like to decide on the constituents of a diet which will satisfy his

daily needs of protein, carbohydrate and fat at the minimum cost. Choices can be

made from three different kinds of the food—milk, bread and butter. The yields

per unit of these foods are given in the following table :
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Food type Yields per unit Cost (in )

Protein Carbohydrate Fat per unit

Milk 3 1 2 9

Bread 4 2 1 12

Butter 3 1 2 20

Daily requirement 5 3 2 —

Formulate the problem as a LPP in order to minimize the diet cost.

(iv) A steel company is faced with the problem of transporting coal from two coal

mines to four of its steel plants. The amount of coat available in the coal mines

are a1 and a2 metric tons. The amounts required at plants are b1, b2, b3, b4 metric

tons. Exactly one truck is used for these shipments. It is possible to ship from any

mine to any plant, but the truck cannot make more than one ship from a mine to

a plant. The problem is to determine the minimum capacity of truck which can

complete all these shipments. Formulate this as a linear programming problem. It

is given that the transportation cost of one unit of product from ai (i = 1, 2) mine

to bj (j = 1, 2, 3) plant is

cij units.

(v) A transistor radio company manufactures four models—A, B, C and D which

have profit contributions of  80, 150 and  250 on models A, B and C

respectively and loss of  100 on model D each. Each type of radio requires a

certain amount of time for manufacturing components, for assembling and

packing. Specially, a dozon units of model A require one hour of manufacturing,

two hours for assembling and one hour for packing. The corresponding figures for

a dozen units of model B are 2, 1 and 2; and a dozen units of C are 3, 5 and

1, while a dozen units of model D require 1 hour of packing only. During the

forthcoming week, the company will be able to make available 15 hours of

manufacturing, 20 hours of assembling and 10 hours of packing time. Formulate

the problem as a LPP to obtain the optimal production schedule for the company.
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2. Solve the following LPP graphically :

(i) Maximize z = 150x1 + 120x2

subject to 3x1 + 2x2  12

x1 + 2x2  8

x1 , x2  0

(ii) Minimize  z = 600x1 + 900x2

subject to x1 + x2  50

5x1 + 8x2  320

x1 , x2  0

(iii) Minimize z = 9x1 + 12x2 + 20x3

subject to 3x1 + 4x2 + 3x3  5

x1 + 2x2 + x3  3

2x1 + x2 + 2x3  2

x1, x2, x3  0

(iv) Minimize z = 
2 3

ij ij
i 1 j 1

c x
 


subject to x11 + x12 + x13 + x14 = a1

x21 + x22 + x23 + x24 = a2

x11 + x21 = b1

x12 + x22 = b2

x13 + x23 = b3

x14 + x24 = b4

xij  0 (i = 1, 2; j = 1, 2, 3)

(v) Maximize z = 80x1 + 150x2 + 250x3 – 100x4

subject to x1 + 2x2 + 3x3  180

2x1 + x2 + 5x3  240

x1 + 2x2 + x3 + x4  120

x1, x2, x3, x4  0
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1.7 Multiple Choice Questions (MCQ)

1. In an LPP, a constraint restricts

(a) Value of objective function

(b) Value of a decision vaniable

(c) Use of available resource

(d) None of these

2. Linear programming problem (LDP) must have an

(a) Objective function that we aim to optimize.

(b) Constraints that we need to specify.

(c) Decision variables that we need to determine.

(d) All of the above.

3. A constrain in an LPP is expressed as

(a) Inequality with ‘  ’ sign.

(b) Inequality with ‘  ’ sign

(c) An equation with ‘=’ sign

(d) Any or all of the above.

Answers

1. (c) 2. (d) 3. (d)
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Unit - 2  Graphical Method of Solution

Structure

2.0 Objective

2.1 Introduction

2.2 Graphical Method of Solution

2.3 Summary

2.4 Exercise

2.5 Multiple Choice Questions (MCQ)

2.0 Objective

After studying this chapter, the reader should be able to know

the technique used to identify the optimal solution for liner programming problem

involving two variables, know as graphical (or geometical) method.

about the solution space or feasible region of all the constrants of an LPP

about the particular type of LPP having unbounded solution or infinito number of

optimal solutions.

2.1 Introduction

For programming problems involving two variables it is possible to display the entire

set of feasiable solutions graphically by plotting liner constraints an a graph paper in order

locate the optimum solution. This method also provides a great deal of instant into what

happens in the more gereral case with any number of variables.

7
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2.2 Graphical Method of Solution

We shall illustrate the graphical method of solution with a few examples involving two

variables which are taken to be x1 and x2. Introduce an X1X2 coordinate system

(rectangular cartesian) in two dimensional Euclidean space and note that any set of numbers

(x1, x2) (ordered pair) is a point in the X1X2 –plane. It follows that any point lying in the

first quadrant has x1  0 and x2  0 and satisfies the non-negativity restrictions of a LPP.

Therefore, any point which is a feasible solution of a LPP must lie in the first quadrant. To

find the set of points in the first quadrant which will satisfy the constraints of the LPP, we

have to draw graphs of the constraints (equations or inequations). The feasible region of

solution will be a two-dimensional figure (polygon) in the first quadrant bounded by the

straight lines represented by the constraints regarded as equations. Any point in the region

of feasible solution will satisfy the non-negativity conditions as well as the constraints of the

problem, and hence will be a feasible solution.

To solve the linear programming problem, we must find the point (or points) in the

feasible region which gives the optimal value (maximum or minimum) value of the objective

function z. If the objective function is z = c1x1 + c2x2 (c1, c2 are known constants), its

graph is a straight line. Any point on the straight line will give the same value of z. For each

different value of z, a family of parallel straight lines will be generated. We wish to find the

straight line with the optimal value of z (maximum or minimum) through the feasible region.

The point (or points) in that region which will give the optimal value of z will be the optimal

solution and that value of z will be the optimal value of the LPP.

 Example 2.2.1

Solve graphically the following LPP :

Minimize z = 15x1 + 12x2

subject to 3x1 + 2x2  12

x1 + 2x2  8

x1, x2  0

Solution : A set of rectangular cartesian axes OX1 and OX2 is taken in the plane of
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the paper to represent the solution space and find the optimal solution graphically of the

given LPP.

For this purpose, at first we draw the graph of the equations 3x1 + 2x2 = 12 and x1

+ 2x2 = 8 and hence we find the regions of the inequalities 3x1 + 2x2  12 and x1 + 2x2

 8. The region OABC bounded by the straight lines x1 = 0, x2 = 0, 3x1 + 2x2 = 12 and

x1 + 2x2 = 8 together with all the points on its boundary is the feasible solution of the LPP,

where O, A, B, C are the extreme points and this region is marked by shading. Any point

in the shaded region, whether it is within or on the boundary, is a feasible solution to the

given LPP.

For any particular value of z, the graph of z = 15x1 + 12x2 is a straight line and as

z varies, a family of parallel straight lines is generated. A few of them are shown by the

dotted lines. Among them, the straight line further from the origin will be the one for the
maximum value of z and that one is through the extreme point B (2, 3) which is the point
of intersection of 3x1 + 2x2 = 12 and x1 + 2x2 = 8.

Thus, the optimal solution of the LPP is x1 = 2, x2 = 3 and the maximum value of
z = (15 × 2 + 12 × 3) units = 66 units. This optimal solution is unique.

(8, 0)

B (2, 3)
(0, 4)

C

O






A (4, 0)

z = 66z = 60

z = 0

3x
1 + 2x

2  = 12

x
1 + 2x

2  = 8
X1

X2

Figure. 1
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 Example 2.2.2

Solve the following LPP by the graphical method :

Minimize z = 2.5x1 + x2

subject to 3x1 + 5x2  15

5x1 + 2x2  10

x1, x2  0

Solution : We consider a set of rectangular cartesian axes OX1 and OX2 in the plane

of paper and with reference to them, we draw the graphs of 3x1 + 5x2 = 15 and 5x1 +

2x2 = 10. The region OABC bounded by these straight lines and the axes of co-ordinate,

including all its boundary points is the feasible region. This region is marked as the shaded

region. It is evident from the problem that for any particular value of z, the objective

function z = 1
2

(5x1 + 2x2) is parallel to the constraint 5x1 + 2x2 = 10. The graphs of z

= 1
2

(5x1 + 2x2) for different values of z are shown by the dotted lines. The graph shows
that the optimal solution of the problem occurs at an infinite number of points of the line

segment AB, some of them are A (2, 0), B =  20 45,
19 19 . The maximum value of z is (5

× 2 + 2 × 0) = 5 units which is unique. Here, the solution region is bounded, but the
problem has an infinite number of optimal solutions. Thus, an optimal solution of the LPP
is x1 = 2, x2 = 0 and zmax = 5 units.

Figure. 2







z = 5
z = 2

z = 0

A (2, 0) (0, 5)

(0, 3) C
B

3x
1 + 5x2  = 15

5x
1  + 2x

2  = 10

X1

X2

 20 45
,

19 19

O
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 Example 2.2.3

Solve the following LPP graphically :

Minimize z = 2x1 + 3x2

subject to x1 + x2  4

6x1 + 2x2  8

x1 + 5x2  4

x1  3

x2  3

x1, x2  0

Solution : We consider the X1 X2 –coordinate system (rectangular cartesian). We
draw the graphs of the straight lines x1 + x2 = 4, 6x1 + 2x2 = 8, x1 + 5x2 = 4, x1 = 3
and x2 = 3.

Figure. 3

 








x 1
 =

 3

x2 = 3

z = 6
z = 4

z = 0

O

E

C

BA

x
1  + x

2  = 4

6x
1  + 2x

2  = 8

x1 + 5x2 = 4

(0, 4)

(4, 0) 4 ,0
3

 50,
4

X1

X2

D
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The shaded region shown in the graph is the feasible region whose extreme points are

A  8 4,
7 7 , B  13,

5 , C (3, 1), D (1, 3) and E  1 , 3
3 . The graphs of the objective function

z = 2x1 + 3x2 for different values of z are shown by dotted lines. It shows that the minimum

value of z occurs at A. Thus, the optimal solution of the problem is x1 = 
8
7 , x2 = 4

7  and

the minimum value of z is 8 42 3 4
7 7

     units. The solution of the LPP is unique.

 Example 2.2.4
Solve the following LPP graphically :

Minimize z = 6x1 + 4x2

subject to   3x1 + 2x2  12

– x1 + x2  3

  0  x1  7

  0  x2  6

Solution : Wifh reference to the rectangular cartesian axes OX1 and OX2, we draw
the graphs of 3x1 + 2x2 = 12, – x1 + x2 = 3, x1 = 7 and x2 = 6. The shaded region shown

Figure. 4









z = 30z = 24

z = 12z = 0

CD

E

A B (7, 0)

(7, 6)

(4, 0)

(0, 6)

(0, 3)

O
(–3, 0)

x2 = 6

x 1
 =

 7

–x
1
 +

 x 2 
= 3

3x
1  + 2x

2 = 12

X2

X1
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in the graph is the feasible region whose extreme points are A (4, 0),

B (7, 0), C (7, 6), D (3, 6) and E  6 21,
5 5 .

It is evident that for any particular value of z, the objective function z = 2(3x1 + 2x2)
is parallel to the constraint 3x1 + 2x2 = 12. The graphs of z = 2(3x1 + 2x2) for different
values of z are shown by the dotted lines. The graph shows that the optimal solution of the
LPP occurs at an infinite number of points of the line segment AE, some of them are A (4,

0), E  6 21,
5 5 . The minimum value of z is 6 × 4 + 2 × 0 = 24 units.

Hence the LPP has an infinite number of optimal solutions, one of them is
x1 = 4, x2 = 0 and zmin = 24 units.

 Example 2.2.5
Solve the following LPP graphically :

Figure. 5





B (30, 20)

A (10, 0) (20, 0)

(0, –10)

(0, –40)

O

z = 160

z = 100

z = 60z = 20

X1

X2

x 1 
– 

x 2 
= 1

0

2x
1
 –

 x
2
 =

 4
0
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   Minimize z = 2x1 + x2

subject to x1 – x2  10

2x1 – x2  40

  x1, x2  0

Solution : With reference to a set of rectangular cartesian axes OX1 and OX2 in the

plane of the paper, we draw the graphs of the straight lines x1 – x2 = 10 and

2x1 – x2 = 40. The feasible region of the LPP is shown in the graph by shading it. It is

evident that the region of feasible solutions is unbounded.

It is observed in the graph that the graph of the objective function z = 2x1 + x2 for

different values of z can be moved towards right indefinitely as marked by dotted lines, till

containing the points of the feasible region. So this LPP has no maximum value of z. In this

case, we say that the LPP has an unbounded solution.

2.3 Summary

In the previous unit we learnt how a decision making  problem is formulated in a linear

programming model and in this unit-2. We have explained how this LPP model can be

solved by graphical (or geometrical) method. Various types of linear programming

problems are discussed in this regard.

2.4 Exercise

1. Solve the following LPP graphically:-

(i) Maximize z = 3x1 + 5x2

Subject to x1 + 2x2  2000

x1 + x2  1500

      x2  600

x1, x2  0

(ii) Maximize z = 2x1 + x2

Subject to 5x1 + 10x2  50

x1 + x2  1
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      x2  4

x1, x2  0

(iii) Maximize z = 80x1 + 120x2

subject to x1 + x2  9

20x1 + 50x2  360

x1  2

x2  3

(iv) Maximize z = 4x1 + 5x2

subject to x1 + x2  1

–2x1 + x2  1

4x1 – 2x2  1

x1, x2  0

(v) Minimize z = 3x1 + 5x2

subject to 3x1 + 4x2  12

2x1 + x2  –2

2x1 + 3x2  12

x1  4

x2  2

x1, x2  0

Answers

1. (i) x1 = 1000, x2 = 500; zmax = 5500 units

(ii) x1 = 0, x2 = 1; zmin = 1 units

(iii) x1 = 3, x2 = 6; zmax = 960 units

(iv) Unbounded solution is z has no maximum value

(v) x1 = 3, x2 = 2; zmin = 19 units.
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2.5 Multiple Choice Questions (MCQ)

1. The maximum value of z = x1 + x2 subject to the constraints

5x1 + 10x2  50,  x1 + x2  1,  x2  4; x1,  x2  0 is

(a) 30 units (b) 20 units (c) 50 units (d) 10 units

2. The minimum value of z = 4x1 + 2x2 subject to the constraints

3x1 + y1  27,  x1 + x2  21,  x1 + 2y1  30;  x1, x2  0 is

(a) 28 units (b) 48 units (c) 40 units (d) 10 units

3. The optimal solution of the following LPP

Maximize z = 2x1 + 4x2

subject to x1 + 2x2  5

x1 + x1  4

x1, x2  0

is given by

(a) x1 = 0, x2 = 5
2

(b) x1 = 1
2

, x2 = 3
2

(c) x1 = 2, x2 = 7 (d) x1 = 3, x2 = 1
2

4. The optimal solution of the following LPP

Maximize z = 3x1 + 4x2

subject to 5x1 + 4x2  20

–x1 + x2  3

x1, x2  0

x1  4, x2  3; x1, x2  0

is given by

(a) x1 = 2, x2 = 2
5 (b) x1 = 3, x2 = 5

(c) x1 = 
8
5 , x2 = 3(d) x1 = 3, x2 = 5

2
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5. The L.P.P.

Maximize z = 2x1 + 3x2

subject to 3x1 – x2  –3

x1 – 2x2  2

x1, x2 0

has

(a) unbounded solution (b) no feasible solution

(c) unique optimal solution (d) infinitely many optimal solutions

Answers

1. (d) 2. (b) 3. (a) 4. (c) 5. (b)
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Unit - 3  Mathematical Preliminaries

Structure

3.0 Objective

3.1 Introduction

3.2 Vectors

3.3 Some Important Theorems (Statement only)

3.4 Spanning Set and Basis

3.5 Some Important Theorems (Statement only)

3.6 Summary

3.7 Exercise

3.8 Multiple Choice Questions (MCQ)

3.0 Objective

After studying this chapter, the reader should be able to know

the vectors and their propeties in Euclidean space

some basic results on basis set

3.1 Introduction

In this section, we shall give some necessary definitions and related theorems with
examples which are useful to find the analytical solution of a linear programming problems
in the subsequent units.

3.2 Vectors

Definition 3.2.1 : A matrix consisting of a single row (or column) is called a row
(or column) vector. A vector containing n elements is called an n-component vector. Thus,

30
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the matrices (a1, a2, ....., an) and 
1

2

n

a
a

a

 
 
 
  
  are n-component row and column vectors

respectively. In the present discussion, a column vector will be represented by a row of
n-elements enclosed within square brackets like [a1, a2, ...., an] whereas, n-elements
enclosed within first brackets like (a1, a2, ...., an) will represent a row vector.

Geometrically, an n-component vector may be imagined to represent a point in n-
dimensional space and it is an ordered set of n elements or an ordered n-tuple.

Algebra of vectors : The algebra of vectors is governed by the algebra of
matrices. Some of its elementary properties are as follows :

(i) Two vectors are said to be equal if both are either row or column vectors
and their corresponding elements are equal. Thus,
(a1, a2, ...., an) = (b1, b2, ...., bn)  a1 = b1, a2 = b2, ...., an = bn.

(ii) The addition of two n-component vectors is an n-component vector whose
elements are the sum of the corresponding elements of the given vectors.
Thus,
(a1, a2, ...., an) + (b1, b2, ...., bn) = (a1 + b1, a2 + b2, ...., an + bn).

(iii) If  is a scalar, then the multiplication of a vector by a scalar  is defined
as

 (a1, a2, ...., an) = (a1, a2, ...., an).

(iv) Scalar product of two vectors   = (a1, a2, ...., an) and   = (b1, b2, ...., bn)

is defined as

n

i i
i 1

. a b . .


     

where ai and bi are the i-th components of the vectors   and   respectively..
Here, both the vectors will be either row or column vectors.

Null Vector : A vector with all its components zero is called a null vector or zero

vector and it is denoted by 0 . Thus.

0  = (0, 0, ....., 0) or  0  = [0, 0, ....., 0].

Unit Vector : A vector whose one component is unity and all other components
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are zero is called a unit vector. Clearly, there are n number of

n-component unit vectors. A unit vector in which the i-th component is unity and the

remaining components are zero is denoted by ie . Thus,

ie  = (0, 0, ..., 0, 1, 0, ..., 0) or ie  [0, 0, ..., 0, 1, 0, ..., 0].

Euclidean Space : A Euclidean Space of n-dimension, generally denoted by En or

n, is the set of all n-component real vectors (either row or column). Any vector will be

treated as a point in Euclidean Space. In particular,  Em means   is a m-component

vector. Here, the symbol  means ‘belongs to’.

Linear Combination of vectors of En : A vector    En is called a linear

combination of the vectors 1 2 p, , ,    of En when it can be expressed in the

form

1 1 2 2 p p ,          

where 1, 2, ....., p are scalars.

Any vector   = (a1, a2, ...., an)  En can always be expressed as a linear

combination of the unit vectors of 1 2 ne , e , , e  of En as follows :

1 1 2 2 n na e a e a e   

Linear Dependence and Independence of Vectors in En : Let 1 2 k, , ,  
be a set of k-vectors in En. Then, these vectors are said to be linearly depedent (l.d.)

if there exists k scalars 1, 2, ....., k with at least one i  0 such that

1 1 2 2 k k 0         

where 0  is the null vector belongs to En. On the other hand, if 1 1 2 2     

k k 0     holds only when 1 = 2 = ...... = k = 0, then the vectors 1 2 k, , ,  
are said to be linearly independent (l. i.).

Example 3.2.1 : Test whether the following vectors are l.d. or l.i. : (1, 1, 0), (3, 0, 1),
(5, 2, 1).

Solution : Let 1 (1, 1, 0) + 2 (3, 0, 1) + 3 (5, 2, 1) = (0, 0, 0). Then, we have
the homogeneous system of equations
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1.1 + 3.2 + 5.3 = 0

1.1 + 0.2 + 2.3 = 0

0.1 + 1.2 + 1.3 = 0

Now, the value of the co-efficient determinant of this system

1 3 5
1 0 2
0 1 1

   = 1 (0 – 2) – 3 (1 – 0) + 5 (1 – 0) = 0.

Since  = 0, the system has a non-trivial solution, that is, there exists at least
one i  0 in the solution of the system. Hence, the vectors are linearly dependent.

In fact, from the first two equations of the system, by cross-multiplication, we
have

31 2

6 0 5 2 0 3

 
 

  
  31 2

6 3 3

 
 


  31 2

2 1 1

 
 


.

As 1 = 2k, 2 = k, 3 = – k (k  0) satisfies the third equation of the system,
hence

2.(1, 1, 0) + 1.(3, 0, 1) –1.(5, 2, 1) = 0 .

Since at least one i  0 (Here, 1, 2, 3 are all non-zero), so the vectors are
linearly dependent.

Example 3.2.2 : Show that the following vectors are linearly independent :
(2, 1, 4), (2, –1, 2), (1, 3, –2).

Solution : Let 1 (2, 1, 4) + 2 (2, –1, 2) + 3 (1, 3, –2) = (0, 0, 0). Then, we
have the homogeneous system of equations

2.1 + 2.2 + 1.3 = 0

1.1 – 1.2 + 3.3 = 0

4.1 + 2.2 – 2.3 = 0

Now, the value of the coefficient determinant of the system

2 2 1
1 1 3
4 2 2

  


 = 2 (2 – 6) – 2 (–2 – 12) + 1. (2 + 4) = 26
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Since,   0, the system has the only trivial solution, that is, 1 = 2 = 3 = 0. So
the vectors are linearly independent.

Example 3.2.3 : Express the vector (18, 3, 5) as a linear combination of the vectors
(1, 1, 0) and (3, 0, 1)

Solution : Let (18, 3, 5) = 1 (1, 1, 0) + 2 (3, 0, 1).

Then, we have

1 + 32 = 18, 1 = 3, 2 = 5,

which are consistent.

Thus, (18, 3, 5) = 3 (1, 1, 0) + 5 (3, 0, 1).

3.3 Some Important Theorems (Statement only)

Theorem 3.3.1 : In En, any non-empty subset of a set of linearly independent
vectors is also linearly independent.

Theorem 3.3.2 : In En, any superset of a set of linearly dependent vectors is also
linearly dependent.

 Theorem 3.3.3 : In En, a set of vectors containing a null vector is necessarily
linearly dependent.

3.4 Spanning Set and Basis

Definition 3.4.1 (Spanning Set)

A finite set of vectors X  En is said to be a spanning set if every vector in En can
be expressed as a linear combination of the vectors of X. It is said that X spans En or En

is sppanned by X.

Definition 3.4.2 (Basis Set or Basis)

A spanning set in En is called a basis or a basis set, if the vectors of the spanning set
are linearly independent.

Thus, a set B  En forms a basis in En, if

(i) B spans En, i.e., every vector of En can be expressed as a linear combination of
the vectors of B.
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(ii) The vectors of the set B are linearly independent.

Since any vector of En can be expressed as a linear combination of the set of unit

vectors of En, so the set  1 2 ne , e , , e  is called the standard basis of En.

Example 3.4.1 : Show that the set of unit vectors  1 2 3e , e , e   E3 is a spanning set

in E3.

Solution : Let x  = (x1, x2, x3) be any vector of E3. Then, we can easily write

x  = (x1, x2, x3) = x1 (1, 0, 0) + x2 (0, 1, 0) + x3
 (0, 0, 1)

             = 1 1 2 2 3 3x e x e x e 

Also we can write

1 1 2 3e 1.e 0.e 0.e  

2 1 2 3e 0.e 1.e 0.e  

3 1 2 3e 0.e 0.e 1.e  

Thus, every vector in E3 can be expressed as a linear combination of the vectors of

the set  1 2 3e , e , e . So, the set of unit vectors of E3 is a spanning set in E3.

Example 3.4.2 : Show that the set of unit vectors (1, 1, 0), (1, –1, 0), (0, 0, 1) is a
spanning set in E3.

Solution : Let x  = (x1, x2, x3) be any vector of E3.

Let (x1, x2, x3) = 1 (1, 1, 0) + 2 (1, –1, 0) + 3 (0, 0, 1).

Then we have

x1 = 1.1 + 1.2 + 0.3

x2 = 1.1 – 1.2 + 0.3

x3 = 0.1 + 0.2 + 1.3

Now, the co-efficient determinant
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1 1 0
1 1 0
0 0 1

    = 1 (–1 –1) = –2  0.

Hence, by Cramer’s rule, the above system of equations has a unique solution. So 1,
2, 3 can be determined uniquely in terms of x1, x2, x3. Therefore, the set of vectors (1,
1, 0), (1, –1, 0), (0, 0, 1) is a spanning set in E3.

Example 3.4.3 : Show that the set {(3, 0, 2), (7, 0, 9), (4, 1, 2)} forms a basis for
E3.

Solution : Since 
3 7 4
0 0 1
2 9 2

   = –(27 – 14) = – 13 ( 0), so the vectors of the

given set are linearly independent.

Again, let x  = (x1, x2, x3) be any vector of E3. Let

(x1, x2, x3) = 1 (3, 0, 2) + 2 (7, 0, 9) + 3 (4, 1, 2)

Then we have

x1 = 3.1 + 7.2 + 4.3

x2 = 0.1 + 0.2 + 1.3

x3 = 2.1 + 9.2 + 2.3

Since the coefficient determinant of the above non-homogeneous system   0, so,
1, 2, 3 can be determined uniquely in terms of x1, x2, x3. Therefore, the set of vectors

is a spanning set in E3.

Hence, the given set forms a basis for E3.

3.5 Some Important Theorems (Statement only)

Theorem 3.5.1 : Representation of a vector in En in terms of the vectors of a basis
is unique.
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 Theorem 3.5.2 (Replacement Theorem)

If x =  1 2 k, , ,   be a basis in En and    En be any other non-null vector

such that

1 1 2 2 k k ,          

where, 1, 2, ...., k (not all zero) are scalars, then any vector i  for which i 

0 can be replaced by the vector   in the basis set X to get a new basis in En.

 Theorem 3.5.3 : Every basis in En has exactly n vectors.

 Theorem 3.5.4 : Any subset of n linearly independent vectors of En forms a basis
in En.

 Theorem 3.5.5 : Any set of (n + 1) or more vectors of En are linearly dependent.

Example 3.5.1 : Find a basis in E3 containing the vectors (1, 2, 0) and (0, 3, 1).

Solution : We know that the set of unit vectors  1 2 3e , e , e  always forms a basis

in E3.

Since (1, 2, 0) in a non-null vector, we have

(1, 2, 0) = 1 1 2 2 3 3e e e  

where 1 = 1, 2 = 2 and 3 = 0.

Since 1  0, so by Replacement Theorem, the vectors (1, 2, 0), 2 3e , e  form a

basis in E3.

Again, (0, 3, 1) is a non-null vector. So, it can be expressed as a linear

combination of the vectors (1, 2, 0), 2 3e , e  of the new basis.

Let (0, 3, 1) = 1 (1, 2, 0) + 2 2 3 3e e .  

Then, we have

0 = 1, 3 = 21 + 2 and 1 = 3

Solving these relations, we get 1 = 0, 2 = 3, 3 = 1.
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As 2  0, so, by Replacement Theorem. the vectors (1, 2, 0), (0, 3, 1), 3e  from

another basis in E3.

Hence, the set {(1, 2, 0), (0, 3, 1), (0, 0, 1)} form a basis in E3.

Example 3.5.2 : Show that the vectors (2, 3, 1), (1, 0, 4), (2, 4, 1), (0, 3, 2) are linearly
dependent.

Solution : Let 1 = (2, 3, 1), 2  = (1, 0, 4), 3 = (2, 4, 1) and 4 = (0, 3, 2).

Since 
2 1 2
3 0 4
1 4 1

 = 2 (0 – 16) – (3 – 4) + 2 (12 – 0) = – 7 ( 0), the vectors

1 2 3, ,    are linearly independent. Since n linearly independent vectors of En form a

basis in En, so the vectors 1, 2, 3 form a basis in E3. Again, 4  is a non-null vector

in E3, so it can be expressed as a linear combination of the vectors of the basis 1 2 3, ,   .

Therefore, the given vectors are linearly dependent.

3.6 Summary

In this chapter properties of vectors in a Euclidean space are discussed. Also, some

important theorem are stated which are useful to find the analytial solution of a linear

programming problem.

3.7 Exercise

1. Express c  = (4, 5) as a linear combination of the vectors a  = (1, 3) and b  =
(2, 2).

2. Express   = (2, 1, 1) as a linear combination of the vectors   = (1, 2, 2) and

  = (1, 1, 1).

3. Test whether the vectors (1, 2, 0), (2, 1, 2), (2, 2, 1) are linearly independent
or not.
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4. Test whether the vectors (1, 2, 0), (3, –1, 1), (4, 1, 1) are linearly dependent or
not.

5. Show that the vectors (2, 3, 1), (1, 0, 4), (2, 4, 1), (0, 3, 2) are linearly
dependent. Also find a relation between them.

6. Show that the vectors (2, –1, –2), (1, 2, –1), (2, 0, 2) form a basis in E3.

7. Show that the vectors (2, 1, 1), (0, 1, 1), (3, 1, 4) form a basis in E3.

8. Is the set {(3, 1, 2), (4, 2, 8), (2, 1, 4)} form a basis in E3? Justify your answer.

Answers

1. 2 a  + 7 b  = 4 c

2. λ  = 3    

3. Linearly independent

4. Linerarly dependent

5. 29 (2,3,1)  4 (1,0,4)  27 (2,4,1) + 7 (0,3,2) = (0,0,0)

6. No, since the vectors are linearly dependent.

3.8 Multiple Choice Questions (MCQ)

1. If the vectors (1,1,0), (3,0,1), ( λ ,2,1) are linearly dependent, then the value of

λ  is

(a) 3 (b) 4 (c) 2 (d) 5

2. If a  = (4,5), b  = (1,3), c  = (2,2) are such that a  = λ , b  + 2λ c  then the

values of 1 2λ , λ  are

(a) 71
1 22 4λ = λ = (b) 3 5

1 22 4λ = λ =

(c) 3
1 2 4λ = 3 λ = (d) 31

1 22 2λ = λ = -

3. If a = (1,0,0), b  = (1,1,0), c  = (1,1,1) then

(a) all the vectors are unit vectors
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(b) a  b  c  are linearly dependent vectors

(c)  a, b, c  is a spanning set in E3

(d)  a, b, c  does not from a basic for E3

Answers

1. (d) 2. (a) 3. (c)
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Unit - 4  Basic Solution of a set of Simultaneons
Linear Equations

Structure

4.0 Objective

4.1 Introduction

4.2 System of Linear Equations

4.3 Basic Solution and Basic Feasible Solutions

4.4 Matrix form of a Linear Programming Problem

4.5 Summary

4.6 Exercise

4.7 Multiple Choice Questions (MCQ)

4.0 Objective

After studying this chapter, the reader should be able to know

the consistancy or inconsistency of a set of simultaneons linear equations

the different type of solutions of a system of simultaneous linear equations

4.1 Introduction

In this section, we shall give some necessary definitions of consistency, inconsistency,
feasible solution, basic feasiable solution etc. of a system of linear equations with examples
which are useful to find the solution of a linear programming problem in the subsequent
chapters.

4.2 System of Linear Equations

Let us consider a set of m simultaneons linear equations in n unknown variables x1,

30
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x2, ---- xn as follows :-

a11 x1 + a12 x2 + ------------------------- a1n xn = b1

a21 x1 + a22 x2 + ------------------------- a2n xn = b2

---------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------

am1 x1 + am2 x2 + ------------------------- amn xn = bm

or, A  = b

where A is the matrix

(aij)mxn, i = 1,2,--------- m; j = 1,2,-------- n

 = [x1,x2, -------- xn] and b  = [b1,b2, ------ bm]

Let us now define the augmented matrix Ab of order mx (n+1)th which contains A in the

first n columns and b  in the (n+1) colum n. Thus

11 12 1n 1

12 22 2n 2

b

m1 m2 mn m

a   a --------- a     b

a   a --------- a     b

A  =

a   a ------- a     b

 
 
 
            
 
            
 
 

Any set of values of x1, x2,-------- xn which simultaneously satisfy all the equations

(1) is called a solution of the system of equations (1). A system of equations is said to be

consistent it there exists at least one solution otherwise it is inconsistant.

We state here same characteristics of the solution of the set of linear simultaneous

equation withput proof.

If r(A) <r(Ab) then the  system has no solution and the equations are inconsistent. On

the otherhand it r (A) = r (Ab) then there is at least one solution and the system of equations

are consistent.
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Further it r (A) = r (Ab) = n, the number of unknown variables of the equations.

Then the system will have unique solution. On the otherhand, it r (A) = r (Ab) < n, then

the number of solutions is infinite.

Example 4.2.1 : Find the value of λ  for which the equations

2x + 3y = 5

4x + by = λ

are consistent.

Solution : The given system is A x = b

Where 
2 3

A = 
4 6

 
 
 

 x = x
y ,  5

λb = 

Now rank of A  r (A) = 1  2 3
4 6 0 

Again Ab =  2 3 5
4 6 λ

The given system will be consistent

it r (A) = r (Ar) => r (Ab) = 1

3 5
6 λ 0

3 30 = 0 =>  = 10

Thus for  = 10 the given system of equations are consistant.

4.3 Basic Solution and Basic Feasible Solution

Definition 4.3.1 (Basic Solution)

Consider a system of m simultaneous linear equations in v variable Ax = b  (m < n)
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with r (A) = m. If m x m nonsingular matrix B is choosen from A and it all (n - m) variables
not associated with the coloums of this matrix B are set equal to zero, then the solution
to the resulting system of equations is called a basic solution which can be written as

 Bx = x , o  with 1
Bx B  b .

The m variables associated with the columns of A in B are called basic variables
where as others are non basic variables.

The vectors associated to the basic variables (vector formed by the coefficient of the
variable xi is the vector associated to xi) are linearly independent.

The basic solution cannot have more than m non-zero variables.

The number of basic solution to a system of m linear equations in n variables Ax b

(m < n), r (A) = m, may have at most 
mc

n . In this system we have

A = 1 2 1 2( , , ), [ , ]n na a a x x x x      where

1 2[ , , ]i i i mia a a a    for i = 1,2,--- n.

Definition 4.3.2 (Degenerate Solution)

A basic solution to Ax b  be degenerate if at least one basic variable is zero.

Definition 4.3.3 (Non-Degenerate Solution)

A basic solution to Ax b  be non-degenerate if all the basic variables are non-zero.

Definition 4.4.4 (Feasible Solution)

A solution x  to Ax b  is called feasible if x   0 .

Definition 4.5.5 : (Basic Feasible Solution)

A feasible solution to Ax b  which is also basic is called a basic feasible solution.

Example 4.3.1 : Find all the basic solutions to the following system of equations :

2x1 + x2 + 5x3 = 5

x1 + 2x2 + x3 = 4

Mention the basic feasible solutions, if any. Also mention the non-degenerate solutions.
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Solution : In matrix notation, the given system of equations can be written as

1 1 2 2 3 3a x a x a x b,  

where        1 2 3
2 1 5 5a , a , a and b1 2 1 4    .

We write,

 1 1 2 1
2 1

B a , a ; B 3 ( 0)
1 2
      

 2 1 3 2
2 5

B a , a ; B 3 ( 0)
1 1
       

 3 2 3 3
1 5

B a , a ; B 9 ( 0)
2 1
       

Since all the square matrices B1, B2, B3 are non-singular, therefore, any two column

vectors of 1 2 3a , a , a  are linearly independent. Hence, the system has 3 basic solutions. The

vector 
i

1
B ix B b  (i = 1, 2, 3), that is,

1

11
B 1

2

x 2 1 5 21x B b ;
x 1 2 4 13

                        

2

11
B 2

3

x 1 5 5 51x B b ;
x 1 2 4 13

                       

3

12
B 3

3

5x 1 5 51 3x B b .
x 2 1 4 29

3


                       

Thus, the three basic solutions of the given system are (2, 1, 0), (5, 0, –1) and

 5 20, ,
3 3 .
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Out of these solutions, the basic feasible solutions are (2, 1, 0) and  5 20, ,
3 3 .

Since all the basic variables are non-zero in each of these three basic solutions, so
they are all non-degenerate solutions.

4.4  Matrix form of Linear Programming Problem

A LPP can be represented in matrix form as follows :

(Maximize or Minimize) Z = c x

Subject to ( )Ax b  

x o

Where A = (a1i)mxn , x  = [x1, x2, ----xn] (a column matrix), b  = [b1, b2,---- bm]

(a column matrix), c  =  (c1, c2, ---- cn) (a row matrix), o  = [o, o, ---- o] (here a column
matrix. It may be mentioned here that for each LPP either ‘maximize’ or ‘minimize’ is used
in the objective function, are and are   holds for each constraint but the sign may very form
ane constraint to another.

4.5  Summary

In this chapter properties of system of linear equation are discussed. Also some

important terms like feasible solution, basic solution, degenerated solution etc are defined

which are useful to prove some important theorems of LPP.

4.6 Exercise

1. Show that the system of equations
x1 + x2 + x3 = 1
2x1  x2 + x3 = 2
3x1  2x2  x3 = 3

2. Find all the basic solutions to the following system of equations:

2x1 + x2  x3 = 2
3x1  2x2  x3 = 3

Also mention the degenerate and non-degenerate solutions
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3. Find all the basic solutions to the following system of equations

2x1 + x2  3x3 = 7
3x1  2x2  2x3 = 8

4. Find all the basic solutions to the following system of equations

x1 + x2  2x3 = 9
3x1  2x2  5x3 = 22

5. Find all the solutions to the following system of equations

2x1 + 6x2  2x3  x4 = 3
3x1  2x2  2x3  3x4 = 1

6. How many basic solutions of the following system are there?

2x1 + x2  x3 = 10
x1  3x2  x4 = 6

Find them

7. Prove that x1 = 2, x2 = 1 and x3 = 0 is a solution set but not a basic solution
to the set of equations.

3x1  2x2  x3 = 8
9x1  6x2  4x3 = 24

Answers

2. (1,0,0) is degenerate,

5 1
3 3(0, , )  is non degenerate

3. (2,0,1) and (0,2,1)

4. (4,5,0), (1,0,5) and (0,1,4)

5. 7 8 71
2 2 3 3(0, ,0,0),( 2,0, ,0), ( ,0,0, )  and (0,0,2,1)

6. Six, 24 2
5 5( , ,0,0) , (6,0,-2,0), (5,0,0,1), (0,2,8,0), (0,10,0,24), (0,0,10,6)

4.7 Multiple Choice Questions (MCQ)

1. If the system of equations x +y = 2, 2x + my = n
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has infinite number of solutions then

(a) m = n = 2 (b) m = 2, n  4

(c) m = 2, n = 4 (d) none of these

2. For the system of equations

x1 + 4x2 – x3 = 5

2x1 + 3x2 + x3 = 8,

a basic solution is

(a)  320, ,
7 7 (b)  13 2, 0,

3 3
 (c)  34 , , 0

5 5 (d) None of these

3. For the system of equations

2x1 + 6x2 + 2x3 + x4 = 3

3x1 + 2x2 + 2x3 + 3x4 = 1,

a basic solution is

(a)  1 , 0, 1, 0
2 (b)  3 , 0, 0, 0

2 (c)  10, , 0, 0
2 (d)  11, , 0, 0

6

4. The maximum number of basic solutions for a LPP having m constraints and n
variables (m < n) is

(a) n (b) ncm (c) m (d) m + n – 1

Answers

    1. (c)        2. (b)      3. (c)        4. (b)
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Unit - 5 Slack and Surplus Variable and Standrad
form of a LPP

Structure

5.0 Objective

5.1 Introduction

5.2 Slack and Surplus Variable and Standrad form of a LPP

5.3 Summary

5.4 Exercise

5.5 Multiple Choice Questions (MCQ)

5.0 Objective

After studying this chapter, the reader should be able to know

how the set of consistrains of a general LPP can be converted to a set of

simultaneous linear equations.

5.1 Introduction

To solve a LPP by algebraic method it is necessary to convert all the constrants into
equations. We consider two types of constrains ‘ ’ and ‘ ’ separately..

5.2 Slack and Surplus Variable and Standrad form of a LPP

(i) We consider first the constraints having ‘ ’ sign in the LPP. A typical constraint of
this category may be as.

ar1 x1 + ar2 x2 + ------------------------- ark xk   br

This can be converted to into an equality by adding to its left hand side a non negalive
now variable xk+r which is called slack variable; and then

30
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we have

ar1 x1 + ar2 x2 + ------------------------- + ark xk + xk+r = br,

xk+r   0

Thus, a non negative variable which is added to the left hand side of the constraint
having ‘ ’ sign of a LPP to convert into an equation is called a slack variable.

       (ii) Next, we consider the constraints having ‘’ sign in the LPP. A typical constraint
of this category may be as

as1x1 + as2x2 + ...... + askxk  bs.

This can be converted into an equality by subtracting from its left hand side a non-
negative new variable xk+s, which is called surplus variable; and then we have

as1x1 + as2x2 + ...... + askxk – xk+s = bs, xk+s  0.

Thus, a non-negative variable which is subtracted from the left hand side of the
constraint having ‘’ sign of a LPP to convert it into an equation is called a surplus variable.

Standard form of a LPP

We know that a constraint of the general LPP may involve any one of the following
three signs : ‘’, ‘=’, ‘’.

We arrange the constraints of the general LPP and first write those constraints having
‘’ sign, then those which involve ‘’ sign and in the end, we write those having equality
sign ‘=’.

After the introduction of the slack and surplus variables to the corresponding
constraints of the general LPP, we convert the objective function of ‘minimization’ type to
a ‘maximization’ type by multiplying by (–1). Then, we shall have obtained the standard
form of the LPP as follows :

Maximize z =
k

i i k i k i
i 1 i 1 i 1

c x 0.x 0.x



 
  

   

subject to

k

ij j k i i
j 1

a x x b


  (i = 1, 2, ....., )
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k

ij j k i i
j 1

a x x b


   (i =  + 1,  + 2, ......, )

k

ij j i
j 1

a x b


  (i =  + 1,  + 2, ....., m)

where bi  0, xj  0 for i = 1, 2, ...., m; j = 1, 2, ....., k, k + 1, ....., k + .

Equivalently, in matrix notation, the standard form of a LPP is

Maximize z = c x

subject to Ax b,

b 0, x 0, 

where

b  = [b1, b2, ......, bm]

x  = [x1, x2, ......., xn] ; (n = k + )

c  = (c1, c2, ....., ck, 0, 0, ....., 0)

and A is the coefficient matrix of order m × n.

Example 5.2.1 : Pose the following LPP in its standard form :

Maximize z = x1 + 3x2

subject to 3x1 + 6x2  8

5x1 + 2x2  10

x1, x2  0

Solution : Introducing slack variables x3 and x4, the given LPP can be reduced to
its standard form as given by

Maximize z = x1 + 3x2 + 0.x3 + 0.x4

subject to 3x1 + 6x2 + x3 + 0.x4 = 8
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5x1 + 2x2 + 0.x3 + x4 = 10

x1, x2, x3, x4  0

This is the standard form of the given LPP.

Example 5.2.2 : Reduce the following LPP to its standard form :

Minimize z = 2x1 – 10x2

subject to x1 – x2  0

x1 – 5x2  –5

    x1, x2  0

Solution : This is a minimization problem. Multiply the objective function by
(–1) to reduce it to a maximization problem. Also we multiply the second constraint by (–
1) first and then introduce slack and surplus variables to reduce the LPP to its standard
form.

Hence, the standard form of the given LPP is

Maximize (–z) = –2x1 + 10x2 + 0.x3 + 0.x4

subject to x1 – x2 – x3 + 0.x4 = 0

–x1 + 5x2 + 0.x3 + x4 = 5

x1, x2, x3, x4  0.

Here, x3 is a surplus variable and x4 is a slack variable. This is the standard form of
the given LPP.

Example 5.2.3 : Reduce the following LPP to its standard form :

Minimize z = x1 + x2 + x3

subject to x1 – 3x2 + 4x3 = 5

x1 – 2x2  3

2x2 + x3  4

x1, x2, x3  0

Solution : Introducing slack variable x4, surplus variable x5 and reducing the problem
as a maximization problem, the standard form of the problem is given by

Maximize  (–z) = –x1 – x2 – x3 + 0.x4 + 0.x5

subject to x1 – 3x2 + 4x3 + 0.x4 + 0.x5 = 5
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x1 – 2x2 + 0.x3 + x4 + 0.x5 = 3

0.x1 + 2x2 + x3 + 0.x4 – x5 = 4

x1, x2, x3, x4, x5  0.

This is the standard form of the given LPP.

5.3  Summary

Unit-5 deals with the introduction of slock and surphus variable which are used to find

the standrad form of a LPP

5.4 Exercise

1. Reduce the following linear programming problems to its standard form by
reducing the objective function into maximization form :

(i) Maximize z = 2x2 + 5x3

   subject to x1 + x2  0

x1 – x2 + 2x3  –4

2x1 + x2 + 6x3  3

x1, x2, x3  0

(ii) Minimize z = – x1 + 2x3

    subject to x1 + 3x2 + x3  5

– x1 + x3 = –1

x2 – 2x3  – 3

x1 + x2  0

x1, x2, x3  0

(iii) Maximize z = 3x1 + 2x2

     subject to 3x1 + 2x2  6

x1 – 2x2  – 1

– x1 – 2x2  1

x1, x2  0
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Answers

1. (i) Maximize  z = 0.x1 + 2x2 + 5x3 + 0.x4 + 0.x5 + 0.x6

   subject to x1 + x2 + 0.x3 + x4 + 0.x5 + 0.x6 = 0

–x1 + x2 – 2x3 + 0.x4 – x5 + 0.x6 = 4

2x1 + x2 + 6x3 + 0.x4 + 0.x5 + x6 = 3

xj  0 (j = 1, 2, ....., 6)

(ii) Maximize (–z) = x1 + 0.x2 – 2x3 + 0.x4 + 0.x5 + 0.x6

    subject to x1 + 3x2 + x3 + x4 + 0.x5 + 0.x6 = 5

x1 + 0.x2 – x3 + 0.x4 + 0.x5 + 0.x6 = 1

0.x1 – x2 + 2x3 + 0.x4 – x5 + 0.x6 = 3

x1 + x2 + 0.x3 + 0.x4 + 0.x5 – x6 = 0

xj  0 (j = 1, 2, ......., 6)

(ii) Maximize z = 3x1 + 2x2 + 0.x3 + 0.x4 + 0.x5

    subject to 3x1 + 2x2 + x3 + 0.x4 + 0.x5  = 6

–x1 + 2x2 + 0.x3 + x4 + 0.x5  = 1

–x1 – 2x2 + 0.x3 + 0.x4 – x5  = 1

xj  0 (j = 1, 2, 3, 4, 5)

5.5 Multiple Choice Questions (MCQ)

1. Which of the following statement is worng?

(a) slock variable are used to convert the inequalitics of the type ‘’ into
equations.

(b) supphus variable are used to convert the inequalities of the type ‘’ into
equations.

(c) A LPP with all its constrants are of the type ‘’ is said to be standrad form.

(d) none of these.

2. The general LPP is in standrad form, it
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(a) all the constraints are strict equations

(b) all the constraints are inequalities of ‘’ type

(c) all the constrants are inequalities of ‘’ type.

(d) None of these

Answers

                    1. (c)        2. (a)
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Unit - 6 Convex Sets, Covex Hull and Convex
Polyhedron

Structure

6.0 Objective

6.1 Introduction

6.2 Point Sets

6.3 Hyper Plane

6.4 Convex Sets

6.5 Some theorems on Covex Sets

6.6 Convex Cone, Covex Hull and Convex Polyhedron

6.7 A few Examples

6.8 Summary

6.9 Exercise

6.10 Multiple Choice Questions (MCQ)

6.0 Objective

After studying this chapter, the reader should be able to know

the idea of point set, interior point boundary point, open set, closed set etc in En

the concept of convex set and their properties

the idea of convex cane, convex hull and convex polyhedron

6.1 Introduction

In this unit the definition and the properties of convex set which will help us to
understand the nature of the optimal solution of a LPP. Also we discuss about convex cone,

58
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convex hull and convex polyhedron with examples. Some simple theorems on convex sets
are also discussed.

6.2 Point Sets

 Definition 6.2.1 (Point Set)

Point sets are subsets of En whose elements are points or vectors in En.

Definition 6.2.2 (Interior Point)

A point   is an interior point of the point set X  En if there exists an  –
neighbourhood about   which contains only points of the set X.

Every interior point of a point set X must be an element of X.

For example, every point of the point set X = {(x1, x2) : x1
2 + x2

2 < 4} is an interior

point of X.

Definition 6.2.3 (Boundary Point)

A point a  is a boundary point of the point set X  En if every  – neighbourhood

about a  contains points in X and also points not in X.

A boundary point of the point set X may or may not belong to the set X.

For example, (i) every point of the point set X1 = {(x1, x2) : x1
2 + x2

2 = 4} is a

boundary point of the point set

X = {(x1, x2) : x1
2 + x2

2  4}.

Here, all the boundary points of X are its elements.

(ii) Again, all the points of X1 = {(x1, x2) : x1
2 + x2

2 = 4} are boundary points of the
point set.

X2 = {(x1, x2) : x1
2 + x2

2 < 4}.

Here, all the boundary points of X2 are not its elements.

6.2.4 Definition (Open Set)

A point set is open if it contains only interior points.

For example, the point set X = {(x1, x2) : x1
2 + x2

2 < 4} is an open set.
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Definition 6.2.5 (Closed Set)

A point set is closed if it contains all its boundary points.

For example, the point set X = {(x1, x2) : x1
2 + x2

2  4} is a closed set.

Remark : (i) A point set containing a finite number of elements is a closed set.

(ii) Null set is a closed set.

Note : (i) If A and B are closed sets, then A  B is a closed set.

(ii) The intersection of any finite number of closed sets is also closed.

Definition 6.2.6 (Line Segment)

The line segment joining the points 1 2 1 2x , x (x x )  in En is defined to be the set of

points

 1 2x : x x (1 )x ,0 1X       

Remark : A line segment is a closed set. It has no interior point.

Definition 6.2.7 (Line)

The line passing through the points 1 2 1 2x , x (x x )  in En is defined to be the set

of points

 1 2x : x x (1 ) x , is realX     

6.3 Hyperplane

Definition 6.3.1 (Hyperplane)

A hyperplane in En is defined to be the set of points  X x : c x z   with c 0
being a given n-component row vector, an n-component column vector and z is a given
scalar.

Since x  = [x1, x2, ....., xn], c = (c1, c2, ......, cn), the equation of a hyperplane can
be written as

c1x1 + c2x2 + ..... + cnxn = z.

For example, 4x1 + 5x2 – 3x3 = 7 is the equation of a hyperplane.
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Half Spaces

A hyperplane c x  = z in En divides the whole space into three sets of points which

are mutually exclusive and collectively exhaustive sets. They are

H1 =  x : c x z ,

H2 =  x : c x z ,

H3 =  x : c x z .

The sets H1 and H3 are called open half-spaces.

The sets H4 =  x : c x z  and H5 =  x : c x z  are called closed half-spaces.

Some Important Notes :

(i) Hyperplanes are closed sets.

(ii) A hyperplane has no interior point.

(iii) A closed half-space is a closed set.

(iv) The intersection of a finite number of hyperplanes or closed half-spaces is a
closed set.

Definition 6.3.2 (Hypersphere)

In En, a hypersphere with centre a  and radius r is the set of points  x: x a r 
where x a  = {(x1 – a1)2 + (x2 – a2)2 + ..... + (xn – an)}½, x  = (x1, x2, ...., xn) and

a = (a1, a2, ...., an). Here x a  is defined as the distance between the vectors x  and

a .

Also the set of points  x: x a r   is called an open ball with centre a  and radius

r, while the set  x: x a r  is called a closed ball with centre a  and radius r..

Example 6.3.1 Determine the position of the points (1, 0, 2, –2), (0, 4, 1, 0) and (2,
2, – 1, – 4) with respect to the hyperplane 2x1 + 3x2 + x3 – 3x4 = 13.

Solution : (i) For the point (1, 0, 2, –2), we have

2x1 + 3x2 + x3 – 3x4 = 2 × 1 + 3 × 0 + 2 – 3 × (–2) = 10 < 13.

So the point (1, 0, 2, –2) lies on the open half space 2x1 + 3x2 + x3 – 3x4 < 13.
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(ii) For the point (0, 4, 1, 0), we have

2x1 + 3x2 + x3 – 3x4 = 2 × 0 + 3 × 4 + 1 – 3 × 0 = 13.

So, the point (0, 4, 1, 0) lies in the hyperplane 2x1 + 3x2 + x3 – 3x4 = 13.

(iii) For the point (2, 2, –1, 4), we have

2x1 + 3x2 + x3 – 3x4 = 2 × 20 + 3 × 2 – 1 – 3 × (–4) = 21 > 13.

So, the point (2, 2, –1, 4) lies in the open half-space 2x1 + 3x2 + x3 – 3x4 > 13.

6.4 Convex Sets

Definition 6.4.1 (Convex Combination)

A convex combination of a finite number of points 1 2 px , x ,...., x  of En is defined as

a point in En as given by

1 1 2 2 p px x x ....... x ,      

with i  0 (i = 1, 2, ...., p) and 
p

i
i 1

1

  .

In particular, the convex conbination of two points 1 2x , x  in En is a point

1 1 2 2x x x     ; 1, 2  0 ;  1 + 2 = 1,

that is, 1 2x x (1 )x ,      0   1.

Definition 6.4.2 (Convex Set)

A set X  En is said to be convex if every convex combination of any two points
of the set X is also in the set X.

In other words, a set X  En is said to be convex if for any two points x1, x2 in X,
the line segment, joining these points is also in the set X.

Thus, if X is a convex set, then every point x , given by

1 2 1 2x x (1 ) x , 0 1; x , x X,        

is also a point of the set X.
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By convention, a set containing only one point is a convex set.

Remark : A convex set may or may not be closed. It may or may not be strictly
bounded.

Note : A set A  En is strictly bounded if there exists a positive number r such that
for every a A, a r  . A strictly bounded set lies inside a hypersphere of radius r with
the centre at origin.

A Few Examples of Convex Set

(i) The set X = {(x1, x2) : x1
2 + x2

2  1} is a convex set. It is closed and bounded.

(ii) The set Y = {(y1, y2) : y1
2 + y2

2 < 1} is a convex set. It is bounded but not closed.

(iii) The set Z = {(z1, z2) : z1 > z2, z1 > 0, z2 > 0} is a convex set. It is neither closed
nor bounded.

(iv) The set A = {(x1, x2) : x2 – x1  1, x1  0, x2  0} is a convex set. It is closed
but not bounded.

(v) The set B = {(x1, x2) : x1
2 + x2

2  1, x1
2 + x2

2  4} is not convex, though it is
bounded.

The diagrams below should help to distinguish a convex set from a non-convex on in
E2 :

Figure 6.2 (Non-convex sets)
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1x 2x

1x

2x

2x
1x

Figure 3.1 (Convex sets)
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Definition 6.4.3 (Extreme Point)

A point x  in a convex set is said to be an extreme point if and only if there does not exist

points 1 2 1 2x , x (x x ) in the set such that 1 2x x (1 )x ,      where 0 <  < 1.

The definition stipulates that an extreme point cannot be between any other two points
of the set.

Remark :

(i) An extreme point of a convex set is a boundary point of the set.

(ii) A boundary point of a convex set may be an extreme point, but not all boundary
points of a convex set are necessarily extreme points.

(iii) If a convex set contains only a single point, this point will be considered an
extreme point of the set.

A few examples of extreme points of a convex set

(i) The line segment joining two points 1 2x , x  that is, the set x = { x : x  =

 1 2x (1 )x ,   0    1} is a convex set. The points are its extreme points which are

also boundary points.

(ii) The set X = {(x1, x2) : x1
2 + x2

2  1} is a convex set. All the boundary points of
this set are extreme points which are infinite in number and they are the points A = {(x1,
x2) : x1

2 + x2
2 = 1}.

(iii) The set X = {(x1, x2) : x2 – x1  2, 0  x2  3, x1  0} is a convex set.

Figure 6.3 (Convex set)

O

A

B

x2

x1



NSOU  NSE-MT-02 65

1st Proof   CPP  21/03/2025

It is geometrically shown in the adjoining figure. It has only three extreme points O,
A, B. No other point is its extreme point. The set is closed but unbounded.

6.5 Some theorems on Convex Sets

Theorem 6.5.1 : A hyperplane is a convex set.

Proof : Consider a hyperplane X = {x : c x z} .

Let 1 2x , x X.  Then, 1c x z  and 2c x z

Now, we consider a convex combination of 1 2x , x  as

1 2x * x (1 ) x ,     0    1

Then, we have

c x * =  1 2c x (1 ) x   

= 1 2(c x ) (1 ) (c x )   

=  z + (1 – ) z = z.

Thus, *x  is a point on the hyperplane c x z,  that is, *x X.

Therefore, every convex combination of any two points on the hyperplane is also on
the hyperplane. Hence, a hyperplane is a convex set.

Remark : A hyperplane is a closed convex set.

Theorem 6.5.2 : The intersection of two convex sets is also a convex set.

Proof : Let X1 and X2 be any two convex sets. Let X = X1  X2.

If X contains only a single point, then automatically X is a convex set.

Now, let 1 2x , x X.  Then, we have 1 2 1x , x X  and 1 2 2x , x X .

Consider a convex combination of 1 2x , x  as

1 2x x (1 ) x ,      0  1.

Since X1, X2 are convex sets, then x  belongs to both X1 and X2. Therefore,

x X.  Hence, X is a convex set.
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Note : If Xi (i = 1, 2, ...., m) is a convex set, then 
m

i
i 1

X X


  is also a convex set.

Remark : (i) If X1 and X2 are two convex sets, then X1  X2 may or may not be
a convex set.

(ii) Any subset of a convex set may or may not be a convex set.

Theorem 6.5.3 : Half spaces (closed or open) are convex set.

Proof : Consider a closed half-space X =  x : c x z . Let 1 2x , x X.

Then, we have, 1c x z  and 2c x z.

Now, we consider a convex combination of 1 2x , x  as

*
1 2x x (1 ) x ,      0  1.

We have, *
1 2c x (c x ) (1 )(c x )    

 z + (1 – ) z = z

that is,  *c x z.

Thus, *x X.  Hence, X is a convex set.

Similarly, it can be shown that the half-spaces

H1 =  x : c x z ,  H2 =  x : c x z  and H3 =  x : c x z  are convex sets.

Remarks : Closed half-spaces are closed convex sets.

Theorem 6.5.4 : The set of all convex combinations of a finite number of points
in En is a convex set.

Proof : Consider the set of all convex combinations of a finite number of points

1 2 mx , x , , x  in En as

m m

i i i i
i 1 i 1

X x : x x , 0 (i 1, 2, , m), 1
 

          
  

 
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Let  u, X.   Then, we have

m m

i i i i
i 1 i 1

u x , 0 (i 1,2, ,m), 1;
 

       

m m

i i i i
i 1 i 1

x , 0 (i 1,2, , m), 1.
 

        

Now, we consider a convex combination of u,  as

w u (1 ) ,       0  1

= 
m m

i i i i
i 1 i 1

x (1 ) x
 

      

=  
m

i i i
i 1

(1 ) x


    

= 
m

i i
i 1

w x ,



where wi = i + (1 – ) i  0 [  0  1, i  0, i  0 for all i]

and 
m m m

i i i
i 1 i 1 i 1

w (1 )
  

            × 1 + (1 – ) × 1 = 1.

Thus, 
m m

i i i i
i 1 i 1

w w x , w 0 (i 1,2, ,m), w 1.
 

    

Hence, w X.  Therefore, X is a convex set.

Since w  is a convex combination of the finite number of points 1 2 mx , x ,...., x in En,

so we conclude that the set of all convex combinations of finite number of points in En is
convex.
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6.6 Convex Cone, Convex Hull and Convex Polyhedron

Definition 6.6.1 (Cone)

A non-empty subset C  En is called a cone if for each xC and  0, the point

 xC.

Definition 6.6.2 (Convex Cone)

A cone is called a convex cone if it is a convex set.

Example 6.6.1 : If A be an m × n matrix, then the set of n vectors x  satisfying

A x   0  is a convex cone in En. It is a cone, because if AA x  0 , then A ( x )  0  for

non-negative . It is convex, because if A 1x 0  and AA 2x 0 , then

A  1 2x (1 ) x     0, 0  1.

Definition 6.6.3 (Convex Hull)

Let A  En. Then the intersection of all convex sets containing A, is called the Convex
Hull of A and it is denoted by C(A).

In symbols, if A  En, then C(A) =  Wi, where for each i, Wi  A and Wi is a
convex set.

Since the intersections of the members of any family of convex sets is convex, it
follows that C(A), the convex hull of A, is a convex set.

Now, for any set A  En, we have

(i) C(A) is a convex set, A  C(A)

and      (ii) if W  A, be a convex set, then C(A)  W.

Thus, the convex hull of a set A  En is the smallest convex set containing A.

Example 6.6.2 : The convex hull of two given points 1 2x , x  is the line segment

joining these two points. Thus, if X =   n
1 2x , x E ,

C(X) =  i 2x : x x (1 )x , 0 1       .
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The convex hull of two points is a closed convex set.

Example 6.6.3 : The convex hull of three non-collinear points 1 2 3x , x , x  is the

triangular region with its vertices at these three points. This is the smallest convex set

containing 1 2 3x , x , x  and this set is closed.

Example 6.6.4 : The convex hull of the set A = {(x1, x2) : x1
2 + x2

2 = 1} is

C(A) = {(x1, x2) : x1
2 + x2

2  1}.

This is the smallest convex set containing all the points of A and it is closed.

The following diagrams should help to observe the relation of a set A to the convex
hull C(A) :

Definition 6.6.4 : (Convex Polyhedron or Polytope)

The convex hull of a finite number of points in En is called the convex polyhedron (or
polytope) spanned by these points.

In other words, the set of all convex combinations of a finite number of points in En

is called a convex polyhedron (or polytope) with vertices at these points.

Figure 6.4 (Set A)
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Figure 6.5 (Convex Hull C(A))
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Note : (i) The convex polyhydron spanned by m, points cannot have more than m
extreme points, because any other point of the polyhedron is a convex combination of these
points and hence cannot be an extreme point. Thus, its extreme points will be among these
m points. However, not all these m points may be the extreme points; one or more of these
m points may be interior points of the polyhedron.

(ii) Each point of the convex polyhedron can be written as a convex combination of
its extreme points.

Remark : A convex polyhedron is a closed
convex set with a finite number of extreme points,
and every point of a convex polyhedron can be
written as a convex combination of its extreme points.

Example 6.6.5 : The convex polyhedron

spanned by four non-collinear points 1 2 3 4x , x , x , x

in E2 may be a closed convex set X as shown in Fig.
3.6, having four extreme

points 1 2 3 4x , x , x , x  only..

Example 6.6.5 : The convex polyhedron spanned by four

points 1 2 3 4x , x , x , x  in E2 may be a closed convex set Y as

shown in Fig. 3.7, having only three extreme points.

Example 6.6.6 : In Fig 3.8, the set Z is the convex
polyhedron in E2 having three extreme points. This is the set of

points lying on and within the triangle with vertices  at 1 2x , x  and 3x . Let x  be any point

inside the triangular region. First we draw a straight line

from 1x  through x  to meet the opposite side at  . Then

1 1 1x x (1 ) ,       0  1  1.

But, 1 2 1 3x (1 ) x ,       0  1  1 ; since Z is

a strictly bounded closed convex set.

1x

2x

3x

4x

Figure 6.6 (X)



1x

4x

3x

2x

Figure 6.7 (Y)



1x
2x

3x

x

O
Figure 6.8 (Z)


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Therefore,

 1 1 1 1 2 1 3x x (1 ) x (1 )x      

  = 1 1 2 2 3 3x x x ,    

where 1  0, 2 = (1 – 1) 1  0,  3 = (1 – 1) (1 – 1)  0 and 1 + 2 +
3 = 1.

Thus, 
3

i i
i 1

x x ,


  i  0 (i = 1, 2, 3), 1 + 2 + 3 = 1.

Therefore, any point inside the triangular region can be expressed as a convex
combination of its vertices.

This example shows that if a strictly bounded closed convex set Z has a finite number
of extreme points, then any point in Z can be written as a convex combination of the
extreme points, that is, Z is the convex polyhedron of its extreme points.

Definition 6.6.5 (Simplex)

A simplex in n-dimension is a convex polyhedron having exactly (n + 1) vertices.

A simplex in zero dimension is a point; in one dimension, it is a line segment; in two
dimension, it is a triangular region, in three dimension, it is a volume bounded by a
tetrahedron and so on.

6.7 A Few Example

Example 6.7.1 : Show that X =  x: x 2  is a convex set.

Solution : Let 1 2x , x X.  Then we have,

1 2x 2 and x 2  .

Let 1 2u x (1 ) x    , 0  1.

Now, 1 2 1 2u x (1 ) x x (1 ) x .2 (1 ).2 2              
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      i.e. u 2 .

Thus, u X.  Since u  is a convex combination of two points 1x  and 2x  of X, so

X is a convex set.

Example 6.7.2 : Show that X = {(x1, x2) : 4x1
2 + 9x2

2  36} is a convex set.

Solution : Let u  = (u1, u2) and   = (1, 2) be two points in X. Then, we have

4u1
2 + 9u2

2  36 and 41
2 + 92

2  36.

Let     w =  u + (1 – )  , 0  1

=  (u1, u2) + (1 – ) (1, 2)

= (u1 + (1 – ) 1, u2 + (1 – ) 2)

= (w1, w2), say.

Now, 4w1
2 + 9w2

2 = 4 {u1 + (1 – ) 1}2 + 9 {u2 + (1 – ) 2}2

= 2(4u1
2 + 9u2

2) + (1 – )2 (41
2 + 92

2) + 2 (1 – ) (4u11 + 9u22)

 2 × 36 + (1 – )2 × 36 + 2 (1 – ) (4u11 + 9u22) ...... (1)

We know,  (x – y)2  0   2xy  x2 + y2. Using this inequality, (1) becomes

4w1
2 + 9w2

2  362 + 36 (1 – )2 +  (1 – ) {4 (u1
2 + 1

2) + 9 (u2
2 +2

2)}

= 362 + 36 (1 – )2 +  (1 – ) {(4u1
2 + 9u2

2) + (41
2 + 92

2)}

= 362 + 36 (1 – )2 +  (1 – ) (36 + 36)

= 36 {2 + (1 – )2 + 2 (1 – )}

= 36 ( + 1 – )2

= 36

Thus, 4w1
2 + 9w2

2  36. So, w X.  Since w  is a convex combination of two points

u,   of X, so X is a convex set.

Alternative approach : Since the set X represents an ellipse with all its boundary points
and all interior points, so the line segment joining any two points of X must lie within X.
So, X is a convex set.
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Example 6.7.3 : Determine the convex hull of the points (0, 0), (0, 1), (1, 2), (1,

1) and (4, 0).

Solution : In the adjoining figure, the points O

(0, 0), A (0, 1), B (1, 2), C (1, 1) and D (4, 0) are

plotted. The shaded region shown in the figure is the

convex hull of the given points. It is noted here that

the point C (1, 1) is the interior point of the convex

hull.

Example 6.7.4 : Give an example in each case :

(i) A convex polyhedron having only two extreme points.

(ii) A convex set having only four extreme points.

(iii) An unbounded convex set without any extreme point.

(iv) A convex set whose all the boundary points are its extreme points.

Solution : (i) The line segment joining two points (0, 0) and (1, 0) :

X = {(x1, x2) : 0  x1  1, x2 = 0}.

(ii) The square and its interior with the vertices at O (0, 0), A (4, 0), B (4, 4) and
C (0, 4) :

X = {(x1, x2) : 0  x1  4, 0  x2  4}.

(iii) In the x1x2-plane, the right side of the x2-axis :

X = {(x1, x2) : x1  0}.

(iv) The circle of radius ‘a’ units and its interior points :

X = {(x1, x2) : x1
2 + x2

2  a2}

Example 6.7.5 : Correct or justify :

(i) A line segment is a convex set.

(ii) Any convex set is a convex polyhedron.

Solution : (i) The statement is correct.

Justification : The line segment joining two points 1 2x , x  in En is the set of points

given by

 1 2x x : x x (1 ) x , 0 1        











X

Y

B (1, 2)

(4, 0) D

(0, 1) A

(0, 0) O

C (1, 1)
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Let u, X.   Then, we have

1 1 1 2 1u x (1 ) x , 0 1;      

2 1 2 2 2x (1 ) x , 0 1;       

Now, for  (0  1),

w u (1 )     

=     1 21 2 1 2x x(1 ) 1 (1 )          

= 1 2x (1 ) x ,  

where  = 1  + 2 (1 – ) such that 0  1.

Thus, every convex combination of any two points in X is also in X. Hence,
X is a convex set.

(iii) The statement is wrong.

Justification : A convex polyhedron spanned by k points cannot have more than k
extreme points. Thus, a convex polyhedron must have a finite number of extreme points,
whereas a convex set may have a finite or an infinite number of extreme points or no
extreme point. That is why, a convex set may or may not be a convex polyhedron.

6.8 Summary

In this chapter, point set, convex set and their properties are discussed in detail. A few

theorems also presented which are useful to find the optimal solution of a linear

programming problem.

6.9 Exercise

1. Examine, whether each statement is true or false :

(i) All boundary points of a convex set are its extreme points.

(ii) Extreme points of a convex polyhedron are finite in number.
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(iii) If a LPP has two distinct feasible solutions, then it has an infinite number of
feasible solutions.

(iv) An optimal solution of a LPP is a basic feasible solution.

(v) The set X  = {x1, x2} : x1
2 + x2

2  1} is a convex polyhedron.

2. Examine, whether the following sets are convex or not, and which are convex
polyhedrons :

(i) x = {(x1, x2) : x1
2 + x2

2  4}

(ii) x = {(x1, x2) : x1
2 + x2

2 = 9}

(iii) x = {(x1, x2) : x2 – 5x1 = 3, x1  0, x2  0}

(iv) x = {(x1, x2) : x1x2  1, x1  0, x2  0}

(v) x = {(x1, x2) : x1
2 + x2

2  1}

3. What is the convex polyhedron spanned by the points (i) (1, 0), (0, 1)
(ii) (0, 0), (2, 0), (0, 2)

4. Find the extreme points, if any, of the following sets :

(i) S = {(x1, x2) : x1
2 + x2

2  49}

(ii) S = {(x1, x2) : | x1 |  1, | x2 |  1}

5. Consider the set of points on the union of the half lines : x = 0, y  0;
y = 0, x  0 on xy-plane. Verify whether the set is convex or not. Find the convex hull
of the set.

Answers

1. (i) False   (ii) True   (iii) True   (iv) True   (v) False

2. (i) Convex, but not convex polyhedron.

(ii) Non-convex

(iii) Convex polyhedron

(iv) Non-convex
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(v) Non-convex

3. (i) x = {(x1, x2) : 1 – x2 = x1 = , 0  1}

(ii) x = {(x1, x2) : x1 + x2  2, x1  0, x2  0}

4. (i) x = {(x1, x2) : x1
2 + x2

2  49}

(ii) x = {(1, 1), (1, –1), (–1, 1), (–1, –1)}

5. Non-convex. Positive quadrant of the xy-plane is the convex hull.

6.10 Multiple Choice Questions (MCQ)

1. Which of the following is not a convex set?

(a)  x : x 2 (b) {(x1, x2) : x1 + 2x2 = 7}

(c) {(x1, x2) : 3x2 + 4x2
2  12} (d) {(x1, x2) : x1  5, x2  3}

2. Which of the following is not a convex polyhedron?

(a) {(x, y) : x + 2y  3, 2x – y = 2, x  0, y  0}

(b) {(x, y) : x2 + y2  4}

(c) {(x, y) : 9x2 + 16y2  144}

(d) {(x, y) : 2x2 + 5y2 = 10}

3. The set S = {(x1, x2) : 4x + 5y = 20} has

(a) no extreme point (b) exactly two extreme points

(c) more than two extreme points (d) infinitely many extreme points

4. For the hyperplane 2x1 + 3x2 + x3 – 3x4 = 13, which pair of points lie on the
opposite sides ?

(a) (0, 4, 1, 0), (3, –1, 10, 0) (b) (1, 0, 2, –2), (2, 2, –1, –4)

(c) (1, 0, 2, –2), (1, 1, 8, 0) (d) (7, –1, 2, 0), (2, 2, –1, –4)

Answers

1. (c) 2. (a) 3. (a) 4. (b)
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Unit - 7 Separating and Supporting Hyperplanes
Some Theorems on LPP related to Covex
sets

Structure

7.0 Objective

7.1 Introduction

7.2 Separating and Supporting Hyperplanes

7.3 A few theorems on LPP related to Covex sets

7.4 A few examples

7.5 Summary

7.6 Exercise

7.7 Multiple Choice Questions (MCQ)

7.0 Objective

After studying this chapter, the reader should be able to know

the idea of separting and supporting hyperplans

some theorems on LPP related to convex sets

7.1 Introduction

In this unit the definition and some properties of separating and supporting hyperplanes
are discussed. Also some theorems on convex sets are presented which are useful to find
the optimal solution of a LPP.

77
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7.2 Separating and Supporting Hyperplanes

 Definition 7.2.1 (Separating Hyperplane)

A hyperplane H =   nx : c x = z  c E  is called a separating hyperplane if it separates

two convex sets S and T such that

   S c x : c x  z  and T c x : c x  z 

This hyperplane H is also called a bounding hyperplane. A hyperplane H will be called
a strictly separating hyperplane if

   S c x : c x  z  and T c x : c x  z 

Definition 7.7.2 (Supporting Hyperplane)

Let S  En be a non-empty closed convex set and u  S be a boundary point. Then

a hyperplane H =  x:c x z  is called a supporting hyperplane of S at u  if

(i) c u z

and (ii) S  H1 or S  H2,

where H1 =  x:c x z  and H2 =  x:c x z .

Theorem 7.7.1 : Let S  En be a closed convex set and y   S. Then there exists

a hyperplane containing y  such that S is contained in one of the

open half spaces generated by the hyperplane.

Proof : Since S is a closed convex set and y  S, so there

exists a point w  S such that

x S
w y min x y


    ............. (i)

Let u  S. Since S is a convex set, so for 0  1, we have

 u  + (1 – ) w  S. ........... (ii)

From (i) and (ii), we have







Figure 7.2
(Separating
hyperplane)

y

w

x
S
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u (1 ) w y w y      

or,     2 2w y u w w y     

or,  22 u w 2 (w y) u w 0       .

Taking  0 and c  = w y  such that c 0,  we get

   w y u w 0  

or,  c u w 0 

or,     c 0u y w y   

or,     2c u y c w y c    .

So, putting c y z  we get, c u z.  Thus, y  lies on the hyperplane c x z  and for all

u  S, c u z.

7.3 A Few Theorems on LPP related to convex sets

Theorem 7.3.1 : The set of all feasible solutions of a LPP is a convex set.

Proof : Let X be the set of all feasible solutions of a LPP whose constraints are

Ax b, x 0. 

Let 1 2x , x X.  Then we have,

1 1Ax b, x 0   ;  2 2Ax b, x 0  .

Let 3 1 2x x (1 ) x    , 0  1.

Now, 3 1 2Ax Ax (1 ) Ax b (1 )b b.          

Since 1 2x 0, x 0   and 0  1, so 3x 0 .
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Hence, 3x X.  Since 3x  is a convex combination of any two points of X, so X is

a convex set.

Note : If a LPP has two distinct feasible solutions, then it has an infinite number of
feasible solutions.

Theorem 7.3.2 : The optimal hyperplane to a LPP is a supporting hyperplane to
the convex set of all feasible solutions to it.

Proof : Consider a LPP in its standard form :

Maximize z = c x

subject to Ax b, x 0. 

We know that the set of all feasible solutions X to a LPP is a closed convex set and

the objective function c x z  is a hyperplane.

Now, we move this hyperplane parallel to itself over the convex region of feasible
solutions until z is made as large as possible so that the hyperplane contains at least one
point of the feasible region if it is assumed that z attains a finite maximum. The hyperplane

0c x z corresponding to the maximum value z0 of z is termed as the optimal hyperplane.

No point on 0 0c x z  is an interior point of X. We assume the contrary that

0 0c x z  where 0x  is an interior point of X. Then, there exists an -neighbourhood of

0x  which consists of all points of X. Then the point

1 0
cx x . X

2 c
   

and 1 1 0 0
c c

z c x c x . z c
2 2c

      .

Hence, 1 1 0z c x z  .

Thus, a point 1x X gives the higher value of z which contradicts the fact that z0 is the

maximum value of z. Therefore, 0x  cannot be an interior point of X. So, 0x  is a boundary

point of X. Thus, 0c x z  is a hyperplane contaning a boundary point of X. Also, if
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u X , then 0c u z z ,   that is, 0c u z .  Therefore, the optimal hyperplane 0c x z

is the supporting hyperplane at 0x .

Theorem 7.3.3 : A basic feasible solution to a LPP corresponds to an extreme
point of the convex set of feasible solutions.

Proof : Consider a LPP :

Maximize z = c x

subject to Ax b, x 0. 

where A = (aij)m × n (m < n), b  = [b1, b2, ...., bm], c  = (c1, c2, ...., cn) and x  =

[x1, x2, ...., xn].

Let *x  be a basic feasible solution of this LPP. Without any loss of generality, we can

assume that first m-components of *x  are non-zero and remaning (n – m) components are
zero.

Let *x  = [x1, x2, ....., xm, 0, 0, ....., 0]. Let the column vectors of A associated with

the basic variables be 1 2 ma , a ,...., a . Then 1 2 ma , a ,...., a  are linearly independent and the

constraints of LPP can be written as

1 1 2 2 m ma x a x a x b    .

If *x  is not an extreme point of the convex set of feasible solutions of the LPP, then

x  can be expressed as a convex combination of two other feasible solutions u  and   of
the LPP. Then, we have

*x u (1 ) ,       0 <  < 1.

Since all the components of *x  are non-negative with (n – m) components of it being

zero, so u  and   must also have (n – m) zero components. So, let

u = (u1, u2, ...., um, 0, 0, ...., 0)

and  = (1, 2, ....., m,  0, 0, ....., 0).

Since u  and   are two feasible solutions of the LPP, we must have
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1 1 2 2 m mu a u a u a b   

and 1 1 2 2 m ma a a b      

Subtracting these two relations we get

   1 1 1 2 2 2 m m mu a u a (u ) a 0          .

Since 1 2 ma , a ,...., a  are linearly independent, so

u1 – 1 = 0, u2 – 2 = 0,...., um – m = 0

i.e. u1 = 1, u2 = 2, ....., um = m

i.e. uj = j for j = 1, 2, ...., m.

Thus, it is not possible to express *x as a convex combination of two other feasible

solutions of the LPP. Hence, *x  is an extreme point of the convex set of the feasible
solutions of the LPP.

Theorem 7.3.4 : Every extreme point of the convex set of feasible solutions of the

system Ax b, x 0   corresponds to a basic feasible solution.

Proof : Let X be the set of all feasible solutions of the system Ax b, x 0  . Let

*x  = (x1, x2, ...., xn) be an extreme point of X. Now, we are to show that *x  is a basic
feasible solution, that is, we are to show that the column vectors of A which are associated

to the non-zero components of *x  are linearly independent and at most m of the xj’s are
positive.

Without any loss of generality, let as assume that first m components of *x  be

positive. If 1 2 m, ,....,    be the associated column vectors of A, then

1 1 2 2 m mx x x b.        ......... (1)

If possible, let 1 2 m, ,....,    are linearly dependent. Then there exists 1, 2, ....,

m, not all zero, such that

1 1 2 2 m m 0.           ....... (2)
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Using (1) and (2), we can find the following two relations :

 
m

j j j
j 1

x k b


       ............ (3)

and  
m

j j j
j 1

x k b.


        .......... (4)

Thus, by proper choice of k, two feasible solutions having m non-zero components

of the system Ax b  can be taken as

1 1 2 2 m mu (x k , x k ,..., x k , 0,0,.....,0)      

and 1 1 2 2 m m(x k , x k ,..., x k , 0,0,.....,0)        .

If we choose k such that

0 < k < min 
j

j
j

x
, 0



    
  

,

then u,   are feasible solutions.

Now, we see that *x  can be expressed as a convex combination of two feasible

solutions u and   as

* 1 1x u
2 2

   .

So, by definition of an extreme point, *x  can never be an extreme point of the convex
set X and hence, there is a contradiction.

Thus, 1 2 m, ,....,    must be linearly independent. Again, every set of (n + 1)

vectors in a n-dimentional space is a linearly dependent set. Hence, by the above result

together with the fact that each 
j  has m components, we can not have more than m

positive xj.

Thus, every extreme point of the convex set of feasible solutions of the system

Ax b  corresponds to a basic feasible solution.
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Theorem 7.3.5 : If any LPP admits of an optimal solution, then the objective
function assumes that optimum value at an extreme point of the convex set generated by
the set of all feasible solutions of the LPP.

Proof : Consider a LPP in its standard form as :

Maximize z = c x

subject to Ax b, x 0. 

Let X be the convex set of all feasible solutions of the given LPP.

Let  1 2 kx , x ,...., x be a finite set of extreme points of the convex set X. Also, let

the set X be strictly bounded. Now, let mx  be the optional solution of the LPP. If it can

be shown that mx  is an extreme point of the convex set of feasible solutions, then the

theorem is proved.

If possible, let mx  be an optimal solution, but not an extreme point. Then m mz c x
is the optimal value of the objective function z.

Since, by assumption, mx  is not an extreme point, so it can be expressed as a convex

combination of the extreme points. Then, we have

k

m i i
i 1

x x ,


   i  0 (i = 1, 2, ...., k),   
k

i
i 1

1.

 

Therefore,  
k k

m m i i i i
i 1 i 1

z c x c x (c x )
 

     

If  p i
i

c x Max c x , where px  is an extreme point, then replacing each ic x  by

pc x , we have

k k

m i p p i p p
i 1 i 1

z (c x ) c x c x z
 

        (say).

Thus, zm  zp which contradicts the assumption that zm is the optimal value of the
objective function.
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Hence, mx  must be an extreme point of X.

Theorem 7.3.6 : If the objective function of a LPP assumes its optimal value at
more than are extreme points, then every convex combination of these extreme points also
gives the optimal value of the objective function.

Proof : Let any objective function z = c x  assumes its optimal value z* at the extreme

points 1 2 kx , x ,...., x  of the convex set of feasible solutions of the corresponding LPP..

Then, we have

z* = 1 2 kc x c x c x .  

Now, let *x  be any convex combination of the extreme points 1 2 kx , x ,...., x . So

1 1 2 2 k kx* x x x       ,

Where i
1

λ   0 (i = 1, 2, - - - k), 1
k

i
i




 

Now 1 1 2 2 k kc x* = c (λ x + λ x + -- + λ x )

1 1 2 2 k k= λ  (c x ) + λ  (c x ) + - - - + λ  (c x )

1 2 k

1

= λ z* + λ z* + - - - + λ z*

= z*   1
k

i
i




  
 


Thus x* is also an optimal solution to the LPP..

Remark : If a LPP has an optimal solution then it has either a unique solution or it has
infinite number of optimal solutions.

7.4 A few Examples

Example 7.4.1 : Find the extreme point(s) of the convex set feasible solutions to
the equations.

2x1 + 6x2 + 2x3 = 3
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6x1 + 4x2 + 4x3 = 2

x1, x2, x3 

Solution : we know that every extreme point of the convex set of feasible solition of

the system Ax = b, x  0  corresponds to a basic feasible solution.

Thus, we have to find the basic feasible solution of the system of equations

1 1 2 2 3 3a  x  + a  x  + a  x  = b

Where 1 2 3

2 6 2
a  = , a  = , a  =  

6 4 4

     
     
     

and 
3

b = 
2

 
 
 

We write  1 1 2

2 6
B  = ,  =

6 4
a a

 
 
 

 1B 8 36 28 0     

   2 1 3 2

2 2
B  = ,  = B 4 0

6 4
a a

 
    

 

   3 1 3 3

6 2
B  = ,  = B 16 0

4 4
a a

 
   

 

Sin u all the square matices B1, B2, B3 are nonsingular Therefore any two columns

vectors of 1a , 2a , 3a  are linearly independent. Hence the system has 3 basic solutions.

Hence the vector

1
Bi ix = B  b

        for i = 1, 2, 3

1 1
1 1

2

4 6 31

6 2 228B

x
x B b

x
      

             
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1
2

0 
  
 

2

1 1
2

3

4 2 31

6 2 24B

x
x B b

x
      

            

7
2

2 
  
 

3

2 1
3

3

4 2 31

4 6 216B

x
x B b

x
      

           

1
2

0

 
  
 

Hence the basic solutions or

[0, ½, 0], [-2, 0, 7
2 ], [0, ½, 0]

But as the 2nd solution contains a negative value so it is  net feasible. Thus the basic
feasible solutions ie. the extreme point of the given problem is only [0, ½, 0].

Example 7.4.2 : If the convex set of the feasible solution of a LPP :

Optimize Z = c x

Subject to A x  = b , x

is a convex polyhedram then prove that at least one of the extreme points gives an
optimal solution.

Hence find the maximum and minimum values of the objective function z = x + 4y if
it is given that the convex set of feasible solution of the corresponding LPP is a strictly
bounded convex polyhedram with extreme points (1, 0), (5, 0), (2, 3), (0, 4), (0, 2).

Solution : Let us consider the maximization problem. The minimization can be treated
in a similar way.

Suppose 1 2 px , x , ......x  are the extreme points of the convex set of feasible solutions

of the LPP :
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Max. z = c x

Subject to A x  = b , x  

Let kx be the extreme point among 1 2 px , x , ......x  at which the objective function Z

attains its maximum value kz  (say) .

 k 1 2 k pz  = Max c x , c x , - - - c x , - - c x

kc x

Since convex set of feasible solution of the given LPP is a convex is aconvex
polyhedron and any point of a convex polyhedron can be expressed as a convex

combination of its extreme points hence if ox  be any point on the convex set of feasible

solution and zo be the value of the objective function at that point then zo = oc x and ox

can be expressed as a convex combination of 1x , 2x , - - px so that

o 1 i
1

x  x , λ   0 (i = 1, 2, - - p)
p

i
i




 

and  
1

 = 1
p

i
i





Thus  o o i
1

z  = c x  = c x
p

i
i





   i k
1 1

 c  x  c  x
p p

i i
i i

 
 

 

kc x

        o k z  z 

This shows the maximum value of z is attained at an extreme point.

In a similar way we can prwe the some result minimization problem, so the result is
valid for any optimization problem.

2nd part : Since it is given that the feasible solution of the given LPP is a convex
polyhedron them at least one of the extreme points give an optimal solution. So we now
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find the value of the objective function z = x + 4y at different extreme points.

We have (z)at(1,0) = 1, (z)at(5,0) = 5

(z)at(2,3) = 14, (z)at(0,4) = 16

(z)at (0,2) = 8,

Hence maximum value of z = 16 at x = 0, y = 4 and minimum value of z = 1 at
x = 0, y = 4 and minimum value of z = 1 at x = 1, y = 0

7.5  Summary

In this unit separating and supporting hyperplanes and their properties are discussed.

A few theorems on LPP which are related to convex sets are also presented. These

theorems are useful to find optimal solution of a LPP.

7.6 Exercise

1. Given that the following LPP

Minimize Z = 2x1  3x2 + x4

Subject to 3x1  2x2 + x3 = 15

2x1  4x2 + x4 = 8

x1, x2, x3, x4  0

has an optimal solution. Find the minimum value of Z and the corresponding value of the
solution set. Find also the maximum value of Z = 2x1  3x2 + x4 subject to the same
constraints and show that in this case the problem has more than one optimal solutions.

2. The convex set of feasiable solution of a LPP is bounded from be;ow only and it
has three extreme points (1, 1), (3, 2) and (4, 4). The objectivefunctions 2x1  3x2 is know
to have a finite maximum. Find the maximum value of the objective function and show that
the given LPP have infinite number of optimal solutions.

3. If the LPP

Max Z = 9x1 + 7x2

Subject to x1 + 2x2  7
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x1  x2  4

x1, x2  0

has an optimal solution. Find the maximum value of A and the corresponding value of
the solution set.

Answers

1. Min Z =  6 for the solution set [0, 2, 11, 0]

2. Min Z =  for the solution set [4, 0, 3, 0]

  or for the solution set [0, 0, 15, 8]

3. Max Z = at x1 = 5, x2 = 1

7.7 Multiple Choice Questions (MCQ)

1. Every basic feasible solution of a convex set of feasible solutions is

(a) an interior point

(b) a boundary point but not an extreme point

(c) an extreme point

(d) none of these

2. Consider the three sets in E2

H = {(x, y) : y = 0}, s = {(x, y) : y  0}

T = {(x, y) :  y  1
x , x > 0}. Then

(a) H, S, T all are half spaces

(b) exactly two sets out of three sets H, S, T are convex sets.

(c) H is a strictly separating hyperplane of two convex sets S and T.

(d) H is a separating hyperplane but not strictly separating hyperplane of two
convex sets S and T.

3. The Convex set of feasible solution of a LPP is strictly bounded convex
polyhedron with extreme points (1, 0), (4, 0), (3, 1), (0, 2), (0, 1).
The maximum value of the objective function is
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(a) 12 (b) 12

(c) 15 (d) 20

Answers

      1. (c) 2. (d) 3. (b)
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Unit - 8 Fundamental Properties of Simplex
Method

Structure

8.0 Objective

8.1 Introduction

8.2 Fundamental Theorem of LPP

8.3 Reduction of a Feasible Solution (F.S) to a Basic Feasible Solution (B. F. S)

8.4 Summary

8.5 Exercise

8.6 Multiple Choice Questions (MCQ)

8.0 Objective

After studying this chapter, the reader should be able to know

understand the fundamental theorem of LPP

know how a basic feasible solution can be found from a feasible solution of a

LPP.

8.1 Introduction

The simplex method is an iterative procedure which either solves a LPP in a finite
number of steps or gives an indication that there is an unbounded solution to the LPP. In
this chapter we shall discuss the theory behind this method. Mainly the fundamental
theorem and properties of the solution to the LPP will be proved and discussed with the
help of examples.

92
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8.2 Fundamental Theorem of LPP

Theorem 8.2.1 (Fundamental Theorem of LPP)

If any linear programming problem admits an optimal solution, then at least one basic
feasible solution must be optimal.

Proof : Let *x  be an optimal solution of a LPP given by

Maximize z = c x

subject to Ax b, x 0  ,

where x  = [x1, x2, ...., xn], A = (aij)m×n (m < n), c  = (c1, c2, ...., cn) and  b  = [b1, b2,
...., bn].

Without any loss of generality, we assume that first p-components of *x are non-zero
positive numbers and the remaning (n – p) components are zero.

Thus, *x  = [x1, x2, ...., xp, 0, 0, ...., 0], xj  0 (j = 1, 2, ..., p].

For this optimal solution, the constraints of the LPP can be written as

1 1 2 2 p px x ....... x b,      ......... (1)

where 1 2 p, ....,    are first p column vectors of A.

Also,
p

*
max j j

j 1

z z c x


   ............. (2)

Now, if 1 2 p, ....,    are linearly independent, then *x  is a basic feasible solution

of the LPP. If p = m, then the basic feasible solution will be non-degenerate and if p < m,
then the basic feasible solution is degenerate with (m – p) of variables being zero.

In this case, the theorem is obvious.

But if 1 2 p, ....,    are not linearly independent, then there exists at least are j 

0 (j = 1, 2, ....., p) such that

1 1 2 2 p p....... 0           ............... (3)
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Let at least one j > 0. If the non-zero j be not positive, it can be reduced to positive
by multiplying (3) by (–1). Also let

 = 
j

j
1 j p j
max , 0 .

x 

 
  

 
  .......... (4)

For such choice of , it is always positive.

Now, dividing (3) by  and then subtracting from (1), we get

p1 2
1 1 2 2 p px x ..... x b

                           

and hence

p1 2
1 1 2 px x , x ,....., x ,0,0,....., 0

  
       

........ (5)

is also a solution of the system Ax b.

From (4), it is clear that   
j

jx


 for j = 1, 2, ..., p and for at least one j,

 = 
j

jx


. Hence, xj –

j


  0 for all j and xj – j


 = 0 for at least one j.

Thus, all the compoments of 1x  are non-negative and it is a feasible solution which

contains not more than (p – 1) positive components.

If z1 is the value of the new objective function for the feasible solution 1x , then

1 1z c x  = 

p
j

j j
j 1

c x


 
     = 

p p

j j j j
j 1 j 1

1c x c
 

 
 

= 
p

*
j j

j 1

1z c


 
    [using (2)]
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Now, if 
p

j j
j 1

c 0,


   then z1 = z* and hence, 1x  is also an optimal solution.

When 
p

j j
j 1

c 0,


   then we can find a real number  such that

p

j j
j 1

c 0


  

and hence adding 
p

j j
i 1

c x

  on both sides, we get

p p p
*

j j j j j j
j 1 j 1 j 1

c c x c x z
  

       . ............ (6)

Again, multiplying (3) by  and adding to (1), we get

 1 1 1 2 2 2 p p p(x ) x ..... (x ) b            

and hence

[x1 + 1, x2 + 2, ....., xp + p,  0, 0, ....., 0] .......... (7)

is a solution of the system Ax b .

Now, choosing  in the following manner

j j
j j

jj j j

x x
max , 0 min , 0

   
              

we see that all xj + j  0; j = 1, 2,...., p and so the solution (7) is a feasible solution.

From (6), we see that the feasible solution (7) gives a greater value of the objective

function z*, the optimal value given by *x . This contradicts our assumption that z*
 is the

optimal value and hence we have
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p

j j
j 1

c 0


 

and thus 1x  is also an optimal solution.

Therefore, from the given optimal solution, we can construct a new optimal solution
in which number of non-zero variables is less than that of the given solution. If the vectors
associated with these non-zero variables are linearly independent, then the new solution will
again be a basic feasible solution and hence, the theorem is proved.

If again this new solution be not a basic feasible solution, we can further diminish the
number of non-zero variables as above. Continuing this process, ultimately, we get an
optimal solution of the LPP which is a basic feasible solution.

Remark : The fundamental theorem of LPP shows that if a LPP has an optimal
solution, then at least one basic feasible solution will be that optimal solution. So, the
optimal solution will be searched among the basic feasible solutions only, which are finite
in number.

The simplex method tells us how to find a new improved basic feasible solution (b.f.s.)
from a given basic feasible soltuion. By an improved b.f.s, it is meant that the value of the
objective function for this b.f.s. is at least as large as the value corresponding to old b.f.s.

Examples 8.2.1 : Solve the LPP

   Maximize Z = x1  x2 + x3

Subject to x1  2x2 + x3 = 3

2x1  x2 + x4 = 2

x1, x2, x3, x4  0

with the assumptiion that the optimal solution exists.

Solution : It is given that the problem has an optimal solution hence by fundamental
theorem of LPP at least one basic feasible solution must be optimal. Thus we shall at first
find all basic feasible solutions to the given system of equations.

1 1 2 2 3 3 4 4a x a x a x a x b   

Where 1 2 3 4

1 2 1 0
, , ,

2 1 0 1
a a a a

       
          
       
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3

2
b

 
  
 

Let 1 1 2 1

1 2
B [ , ] , B 5 ( 0)

2 1
a a

 
     

 

2 1 3 2

3 1 4 3

4 2 3 4

5 2 4 5

6 3 4 6

1 1
B [ , ] , B 2 ( 0)

2 0

1 0
B [ , ] , B 1 ( 0)

2 1

2 1
B [ , ] , B 1 ( 0)

1 0

2 0
B [ , ] , B 2 ( 0)

1 1

1 0
B [ , ] , B 1 ( 0)

0 1

a a

a a

a a

a a

a a

 
      

 
 

     
 
 

      
 
 

      
 
 

     
 

Since all the six square matrix are non singular hence there are six basic solution as
follows :-

7
1 51

1 4
2 5

1 2 31
B

2 1 25

x
b

x




      
               

1 1
2

3

1 1
3

4

2 1
4

3

3
2 21

5 7
4 2

3

0 1 3 11
B

2 1 2 22

1 0 3 3
B

2 1 2 4

0 1 3 21
B

1 2 2 71

1 0 31
B

1 2 22

x
b

x

x
b

x

x
b

x

x
b

x

x

x










       
                

       
                

       
                 

      
                

1
6

4

1 0 3 3
B

0 1 2 2
b       

         
      
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Out of these basic solutions only the following these solutions

[1, 0, 2, 0], [0, 2, 7, 0], [0, 0, 3, 2] are basic feasible solutions and the
corresponding values of the objective function Z are

1  0 + 2, 0  2 + 7, 0  0 + 3 respectively is 3, 5, 3 respectively.

Hence the maximum value of

Z = 5 for x1 = 0, x2 = 2, x3 = 7, x4 = 0

8.3 Reduction of a Feasible Solution (F.S.) to a Basic Feasible
Solution (B.F.S.)

Let 1x  = [x1, x2, ...., xn] be a feasible solution of the given system of equations

Ax b, x 0  .

Let, out of these n-components of 1x , k are non-zero and the remaning (n – k) are

zero. Without any loss generality, let it be assumed that first k-components of

1x  are non-zero.

Thus, let

1 1 2 k

(n k)

x x , x ,..., x , 0,0,....,0



  
  



Since 1x  is a feasible solution (F.S.), so we have

Ax b   or, 
k

j j
j 1

a x b


  ........ (1)

where ja  = [a1j, a2j, ....., amj], xj > 0 for all j = 1, 2, ...., k.

Now, if 1 2 ka , a ,...., a  are the vectors associated to the k non-zero variables in the

F.S., then there exist scalars 1, 2, ...., k (not all zero) such that

1 1 2 2 k ka a ...... a 0     
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     or,
k

j j
j 1

a 0

  . .......... (2)

If it is assumed that r  0, then from (2), we have

( j r )

k
j

r j
rj 1

a a





 

 .

Substituting this value of ra  in (1), we get

( j r)

k
j

j r j
rj 1

x x . a b




 
    . ................(3)

Equation (3) shows that

1 2 r 1
2 1 r 2 r r 1 r

r r r
x x x . , x x . ,...., x x . ,0,


        

r 1 k
r 1 r k r

r r
(n k)

x x . ,...., x x . , 0, 0, ....., 0




     


  ........... (4)

is also a solution of the given system Ax b . It is to be noted that this solution contains

at most (k – 1) non-zero variables. Now, to make 2x  a F.S., r is to be chosen such that

xj – xr . j

r
0






i.e.,
j r

j r

x x
0, 

   if j > 0

and j r

j r

x x
0 

 
, if  j < 0.

}
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Now, choosing r

r

x


 such that

jj

j jr

00 j r j

x xx
max min

  

   
        

 ............ (4)

we get all the non-zero components of 2x  as given in (4) to be positive and hence 2x

will necessarily be a feasible solution.

Now, if the vectors associated to the non-zero variables in this solution 2x  are linearly

independent, then this is a B.F.S. If, on the other hand, the above vectors are linearly
dependent, then using the same process discussed above, a new F.S. with less number of
non-zero variables and ultimately a B.F.S. can be obtained.

Since 
j

j

0 j

x
max
 

 
  

 is negative and 
j

j

0 j

x
min
 

 
  

 is positive, so the interval in (4) is non-

empty.

Again, if there is no j < 0, then there is no lower limit for r

r

x


 and if there is no j

> 0, then there is no upper limit for r

r

x


.

In particular, the vector ra , to be eliminated is so chosen for which

r j

jr

0 j

xx
min

  

 
   

   or  
r

j

jr

j0

xx
max

  

 
   

.

This is an outline of a procedure to get a B.F.S. from a given F.S.

Remark : If a LPP has a F.S., then it has a B.F.S. Since every LPP can be reduced

to its standard form in which the constraints are Ax b , x 0 , so this problem is the

same as discussed above and by this discussion, the existence of F.S. implies the existence
of a B.F.S. to a LPP.
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Example 8.3.1 :  x1 = 1, x2 = 2, x3 = 4 is a feasible solution of the following system
of equations :

2x1  + 3x2 – x3 = 4

3x1 – x2 + x3 = 5

Reduce this F.S. to a B.F.S.

Solution : The given system of equations can be written as

1 1 2 2 3 3a x a x a x b,    ........... (1)

where        1 2 3
2 3 1 4a , a , a and b3 1 1 5

    .

Since (1, 2, 4) is a F.S. of (1), so we get

1 2 3a 2a 4a b   . .......... (2)

Since the given F.S. contains three non-zero variables, so it is not basic. Thus, the

vectors associated to these variables are linearly dependent. So, the vectors 1 2 3a , a , a  are

linearly dependent. Thus, there exists scalars 1, 2, 3 (not all zero) such that

1 1 2 2 3 3a a a 0      . ............. (3)

This gives the following system of equations

21 + 32 – 3 = 0,

31 – 2 + 3 = 0.

Solving these, we get

31 2

3 1 3 2 2 9
 

 
      = k ( 0), say

So, taking k = 1, we have

1 = 2, 2 = –5, 3 = –11.

Then (3) becomes

1 2 32a 5a 11a 0   . ..................(4)
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Since the B.F.S. of the problem cannot have more than two non-zero variables, we
are to reduce one of one-zero variables from the given F.S. to zero. The variable to be
reduced to zero is found as follows :

jr 1 1
j

jr j 1 1

xx x x1min , 0 min
2

                
.

So, x1 is taken as zero in the new solution. Now x2 and x3 are found by the formula

new x j = given xj –
1
2

 j.

Therefore,

new x2 = 2 – 1
2

 × (–5) = 9
2

new x3 = 4 – 1
2

 × (–11) = 19
2

.

Since the vectors 2 3a , a  corresponding to the new non-zero variables are linearly

independent 
3 1since 2 01 1

     , so the new solution  9 190, ,
2 2  is a basic feasible

solution.

Again, for negative values of , we have

j 3r 2
j

jr j 2 3

x xx x
max , 0 max ,

              

   = max   3

3

x2 4 4,
5 11 11

    


.

So, x3 is taken as zero in the new solution. New x1 and x2 are found by the formula

new xj = given xj –   j
4

11
  .

Therefore,
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new x1 = 1 –   194 2
11 11

  

new x2 = 2 –  4 2( 5)
11 11

    .

Since the vectors 1a  and 2a  are linearly independent 
2 3since 11 03 1

     , so

the new solution is another basic feasible solution.

Another approach :

In the first case (for positive value of ), since x1 is taken as zero in the new solution,

so, to obtain new solution, we have to eliminate the corresponding vector 1a  from (2) and

(4).

Eliminating 1a  from (2) and (4), we get

 2 3 2 3
1 5a 11a 2a 4a b
2

   

or, 1 2 3
9 190.a a a b
2 2

   .

Thus,  9 190, ,
2 2  is also a feasible solution of (1) and since 2 3a , a  are linearly

independent, this solution is a basic feasible solution.

Similarly, in the second case (for negative values of ), eliminating 3a  from (2) and

(4), we get

1 2 3
19 2a a 0. a b
11 11

   ,

and since 1 2a , a  are linearly independent, so  19 2, , 0
11 11  is another basic feasible solution.
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8.4  Summary

In this chapter, fundamental theorem of LPP is proved. Reduction of a feasible

solution to a basic feasible solution is described. These are also explained with examples.

8.5 Exercise

1. The LPP

Minimize Z = 2x1  3x2 + x4

Subject to 3x1  2x2 + x3 = 15

2x1  4x2 + x4 = 8

x1, x2, x3, x4  0

has an optimal solution. Using the property of the fundamental theorem of LPP, find
the minimum value of Z and the corresponding solution set.

2. Reduce the feasible solution (2, 1, 1) of the system

x1 + 4x2 – x3 = 5

2x1 + 3x2 + x3 = 8

to a basic feasible solution.

3. Given that x1 = x2 = x3 = 1 is a feasible solution to the system of equations

x1 + x2 + 2x3 = 4

2x1 – x2 + x3 = 2

Reduce the given feasible solution to a basic feasible solution.

4. x1 = 2, x2 = 3, x3 = 1 is a feasible solution of the system

2x1 + x2 + 4x3 = 11

3x1 + x2 + 5x3 = 14

Reduce it to a basic feasible solution.
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Answers

1. Min Z =  6 at [0, 2, 11, 0]

2. 17 13 172
5 5 7 7, ,0  and 0, ,      

3. [0, 0, 2] and [2, 2, 0]

4.  51
2 2,0,  and 3,5,0  

8.6 Multiple Choice Questions (MCQ)

1. Consider the system of linear equations :-

3x1  5x2  7x3 = 21

6x1  10x2 + 3x3 = 42

Then in the above system

(a) x2 = 2, x2 = 3, x3 = 0 is a basic feasible solution.

(b) x1 = 2, x2 = 3, x3 = 0 is neither a feasible solution nor a basic feasible solution.

(c) x1 = 2, x2 = 3, x3 = 0 is a feasible solution and hence it is possible to reduce
this feasible solution to a basic feasible solution.

(d) none of these

2. Consider the LPP

Minimize Z = x1  2x2

Subject to 3x1  4x2  x3 = 12

x1, x2, x3,  0

Then

(a) Max Z = 4 at  x1 = 4, x2 = 0, x3 = 0

(b) Max Z = 6 at  x1 = 0, x2 = 3, x3 = 0

(c) Max Z = 10 at  x1 = 10, x2 = 0, x3 = 18

(d) The LPP has no finite optimal solution.
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Answers

1. (c)        2. (d)
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Unit - 9 Simplex Algorithm

Structure

9.0 Objective

9.1 Introduction

9.2 Some Definitions and Notations

9.3 Simplex Algorithm

9.4 Computational Procedure for Simplex Method

9.5 A Few Examples on Simplex Method

9.6 Summary

9.7 Exercise

9.8 Multiple Choice Questions (MCQ)

9.0 Objective

After studying this chapter, the reader should be able to know

describe the general numerical method of solving a LPP known as Simplex

algorithm or Simplex method.

build a simplex table and describle its components.

solve a LPP for ‘’ type of constraints by simplex method.

9.1 Introduction

We now develop some results which will enable us to solve a unear programming
problem by an iterative process which is known as ‘Simplex Method’. This method is an
iterative method by which a new basic feasible solution can be obtained from a given basic
feasible solution which improves the valu of the objective function. For this we shall
introduce a few definitions and notations to be used in our latter discussion in connection
with the simplex slgorithm or simplex method.

107
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9.2 Some Definitions and Notations

Consider a LPP in its standard form as given by

Maximize z = c x

subject to Ax b, x 0 

where A = (aij)m×n is a mxn (m < n), matrix given by

1 2 rA = (a , a , - -  a )

and j 1j 2j mja  = [a , a , - - a ]

The vectors associated to non-zero variables in a b.f.s. are denoted by

1 2 m, ,....,   which are nothing but m vectors of 1 2 na , a ,...., a . Thus, i ja   for some

j. Since 1 2 m, ,....,    are linearly independent, so they form a basis and the square matrix

B = ( 1 2 m, ,....,   ) is known as basis matrix. The variables corresponding to these vecors

1 2 m, ,....,    are called basic variables and are denoted by 1 2 mB B , Bx , x ...., x  and the

corresponding basic variable matrix Bx  is written as Bx  = [ 1 2 mB B , Bx , x ...., x ].

Thus, Bx  is a b.f.s. which means that the variables besides those in Bx  are all zero.

Thus, the system Ax b  reduces to BBx b  = and hence 1
Bx B b .

If the prices corresponding to the variables 1 2 mB B , Bx , x ...., x  are denoted

by 1 2 mB , B , Bc c ....., c respectively, then the price vector Bc  can be written as

Bc = 1 2 mB B B )(c , c ,....., c .

Since 1 2 m, ,....,    form a basis in Em, then each vector m
ja A E   can be

expressed as a linear combination of these vectors.

Let 
m

j 1 1j 2 2 j m mj i ij
i 1

a y y ..... y y


        
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       =  1 2 m, ,....,   [y1j, y2j, ...., ymj]

or, j ja By ,  where jy  = [y1j, y2j, ...., ymj].

Thus, 1
j jy B a .

Also, we define

zj = 1 2 mB j B 1j B 2 j B mjc y c y c y ..... c y   

The real number zj – cj = B j jc y c  is called the net evaluation for ja .

All these definitions and notations will play an important role during the development
of Simplex Method.

8.3 Simplex Algorithms

The simplex algorithm consists of several steps which lead to the optimal solution. In
effect, we first stant with an extreme point (a basic feasible solution) of the feasible space
and verity its optimality. If it is not optimal, we look for all the extreme points adjacent to
the first, that is the points which can be joined to thefirst by edges but choose the one which
is better than the first, ie hearer to the optimal solution and verify the optimality. If it is not
oplimal, we again look for the extreme ponts adjacent to the last and choose that point
which is better than the last.

This process is continued till we arrive at the optimal solution obiously, the process
does not require evaliation of the objective function at all the extreme points.

Proposition 1 : Theorem 9.3.1 (Optimality Criterion)

A basic feasible solution of a maximizing linear programming problem is an optimal
solution if the net evaluation zj – cj  0 for each j.

Proof : Consider a maximizing LPP of the form :

Maximize z = c x

subject to Ax b, x 0 

where A = (aij)m×n (m < n), x  = [x1, x2, ...., xn], c  = (c1, c2, ...., cn) and
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b  = [b1, b2, ...., bm].

Let *
Bx x , 0     be a basic feasible solution for which zj – cj  0 for all j and let

x   be any other feasible solution of the given LPP..

Then, we have

BAx b Bx 

or, 1
Bx   =  1 1B (Ax ) B A x y x    

or, 1 2 mB B Bx , x ,..., x    = 
11 12 1n 1

21 22 2n 2

m1 m2 mn n

y y y x

y y y x

y y y x

   
      
      





Therefore, i

n

B 2 j j
j 1

x y x


    (i = 1, 2, ..., m).

Now, zj – cj  0 implies zj  cj for all j.

Therefore, zjxj  cjxj  [  xj  0]

or, B

n m n

j i ij j j
j 1 i 1 j 1

x c y c x
  

 
   

  

or, B

m n n

i j ij j j
i 1 j 1 j 1

c x y c x
  

 
  

 
  

or, B B

m n

i i j j
i 1 j 1

c x c x
 

  

or, z*  z,

where z* is the value of the objective function for optimal solution and z be  that value
for any other feasible soution.

Thus, *x is the optimal solution of the LPP for which zj – cj  0 for all j.
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Again, if A = 1 2 n(a , a ,...., a )  and B =  1 2 m, ,....,   , then let j ja    for all j for

which ja B . In this case, we have

jy = 1 1
j j jB y B a    

= je , the unit vector..

Hence, zj – cj = B j jc y c = B j jc e c  = cBj – cj = 0. [ cBj = cj for ja B ]

Thus, zj – cj = 0 for all j for which ja B .

Note : With the help of this theorem it can be judged at any iteration of the simplex
method whether the optimal solution has been reached or not.

Remark : For a minimization linear programming problem, the optimatily criterion is
zj – cj  0 for all j.

Proposition 2 : Theorem 9.3.2 (Improvement Criterion)

If a basic feasible solution of a maximizing LPP be such that zj – cj < 0 holds for the
j-th column corresponding to a non-basic variable yij > 0 for some i= 1, 2, ...., m, then
there exists another basic feasible solution which improves the value of the objective
function.

Proof : Consider a maximizing LPP of the form :

Maximize z = c x

subject to Ax b, x 0  ,

where A = (aij)m×n (m < n) = 1 2 n(a , a ,...., a ) , x  = [x1, x2, ...., xn], c  = (c1, c2, ...., cn)

and b  = [b1, b2, ...., bm].

Let x  = Bx , 0    be a basic feasible solution of the given LPP, where B =

 1 2 m, ,....,   . Then there exists scalars y1j, y2j, ...., ymj (not all zero) such that

ja = 1j 1 2 j 2 mj my y y      .

If yrj  0, then we can write
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r =  j 1j 1 (r 1) j r 1 (r 1) j r 1 mj m
rj

1 a y y y y
y                ....(1)

Since m[x , 0] is a basic feasible solution, we get

1 2 mB 1 B 2 B mx x x b      

or, i r

(i r )

m

B i B r
i 1

x x b




    .   ................ (2)

Putting the expression of r  from (1) in equation (2), we get

r
i r

(i r )

m
ij B

B B i j
rj rji 1

y x
x x a b

y y



 
      . .............. (3)

This shows that

r
1 r r 1 r 1 r 1 r 1

ij (r 1) j (r 1) jB
B B B B B B

rj rj rj rj

y y yx
x x x ,..., x x , , x x ,

y y y y   
 

    


m m

mj
B B

rj

y
, x x

y


 




is a basic solution obtained by replacing r  by ra  in the basis.

Indeed, by a proper choice of r , it is possible to get a basic feasible solution. For

this, we need

i r

ij
B B

rj

y
x x 0

y
   and yrj > 0 for all i.

If yij > 0 and yrj > 0, these for all i

i r

ij
B B

rj

y
x x 0

y
 
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i.e.,
i rB B

ij rj

x x

y y


This is possible if

ir

ij

BB

y 0 ijrj

xx
min

yy 

 
  

 
.

It is to be noted here that rB

rj

x
0

y
  if yrj > 0.

So, If yrj is so chosen that yrj > 0 and ir

ij

BB

y 0 ijrj

xx
min

yy 

 
  

 
, then evidently the new

solution x obtained will be a basic feasible solution.

It may also be noted here that the existence of at least one yij > 0 is required for the

existence of new B.F.S. x  .

Now, for the improved basic feasible solution, we have to show that c x c x

where Bx x , 0    .

Let Bc  denote the corresponding cost vector to the basis of Bx  . Then, we have

i iB Bc c  for i = 1, 2, ...., m (i  r)

and rBc = cj for i = r..

Now, c x  = r
i i

(i r)

m
B

B B j
rji 1

x
c x c

y



 

= r
i i r

(i r)

m
ij B

B B B j
rj rji 1

y x
c x x c

y y



 
   
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= 
r

i i r

m
ij B

B B B j
rj rji 1

y x
c x x c

y y

 
     i r

ij
B B

rj

y
x x 0 for i r

y
 

   
 


= 
r

i i i

m m
B

B B j B ij
rji 1 i 1

x
c x c c y

y 

 
   

 

=  rB
j j

rj

x
c x z c

y
 

rB
j j

rj

x
c x 0 and z c 0 for all j

y
 

    
 


Thus, x  is another basic feasible solution which improves the value of the objective
function. Hence, the theorem is proved.

Remark : (i) The number yrj is called the key element or the pivot element. The
rule determining the key element is known as the minimum ratio rule.

(ii) For a minimization problem, the corresponding conditon will be zj – cj < 0 for
columns corresponding to a non-basic variable with at least one yij > 0.

(iii) If zj – cj < 0 for only one column say k-th column, then ka  is taken as the

incoming or entering vector which replace a vector of the basis for improvement of the
solution.

(iv) If zj – cj < 0 for more than one column and zk – ck = Min {zj – cj ; zj – cj <

0}, then ka  will be the entering vector. If this minimum is not unique, any one of the

columns having the same minimum is taken as the entering vector.

Proposition 3 : Theorem 9.3.3 (Unboundedness Criterion)

A maximizing linear programming problem will have no optimal solution if there exists
at least one column corresponding to a non-basic variable for which
zj – cj < 0 and yij  0 for all i.

Proof : Consider a maximizing linear programming problem as

Maximize z = c x

subject to Ax b, x 0  .
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Let ja  be a column vector corresponding to a non-basic variable with zj – cj < 0 and

yij  0 for all i.

If 1 2 m, ,...,    forms a basis, we can write

m

j ij i
i 1

a y


 

If Bx [x , 0]  is a basic feasible solution, then for any positive number , we can

write

i i

m m m

B i ij i j B i
i 1 i 1 i 1

x y a b x b
  

 
         

 
  

or,  i

m

B ij i j
i 1

x y a b


      .

This shows that 1 mB 1j 2 B mjx x y B ,..., x y , ,0,....,0         is a new B.F.S.

which improves the value of the objective function. Then we have

z c x   =  i i

m

B B ij j
i 1

c x y c


   

= i i

m

B B j j
i 1

c x (z c )


  

= z –  (zj – cj)

Thus, the value z of the new objective function can be made arbitrarily large by
choosing  sufficiently large, since zj – cj < 0. Hence there is no finite optimal value of the
objective function.

Remark : A LPP with such criterion is said to have an unbounded solution.

Proposition 4 : Theorem 9.3.4 (Multiplicity Criterion)

If, in the iteration of simplex method of a maximization LPP, at optimal stage when
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all zj – cj  0, there exists some columns corresponding to non-basic variables for which
zj – cj = 0, yij > 0 for at least one i, then there exists more than one optimal solution. In
this case, the LPP has infinitely many optimal solutions.

Proof : Let  Bx x , 0  be an optimal solution and let  Bx x , 0   be an improved

solution over x . Then, by Proposition 2, we know

r
r

B
B

ij

x
x

y
  and i i i

ij
B B B

rj

y
x x x

y
  ;  i = 1, 2, ...., m,  i  r

Then,  rB
j j

rj

x
z c x z (z c )

y
     .

As Bx , 0    is an optimal solution, there is no column vector ja  for which

zj – cj < 0. But by the given conditon

rB

rj

x
z z 0 z

y
    .

Hence, z is also the optimal value of the objective function  and B[x , 0] and

is an alternative optimal solution. Since a convex combination of two optimal solutions is

also an optimal solution, so the LPP has infinitely many optimal soltions.

On the basis of the above propositions, it is clear that from a given initial basic feasible

solution one can improve successively to arrive at the optimal solution. But the question

remains how to choose this initial basic feasible solution. The simple way to choose the

initial basic feasible solution (IBFS) is to start with unit vectors in the basis, if there be any.

The situation is very simple if all the constraints are inequalities requiring only slack variables

for reduction to standard form. In this case, as many slack variables are required as the

number of equations and hence, we get as many unit vectors to start with in the initial basis.

Let the given LPP be

Maximize z = c1x1 + c2x2 + ..... + cnxn

subject to a11 x1 + a12 x2 + ...... + a1n xn  b1
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a21 x1 + a22 x2 + ..... + a2n xn  b2
. . .. . .. . .

am1 x1 + am2 x2 + .... + amn xn  bm

and x1, x2, ....., xn  0 with b1, b2, ...., bm  0

Then, the standard form of this LPP is

Maximize z = c1x1 + c2x2 + ..... + cnxn + 0.xn+1 + ..... + 0.xn+m

subject to      a11x1 + a12x2 + ..... + a1nxn + xn+1 = b1

     a21x1 + a22x2 + ..... + a2nxn + xn+2 = b2
. . .. . .. . .

am1x1 + am2 + x2 + .... + amnxn + xn+m = bm

                      and x1, x2, ...., xn, xn+1, ...., xn+m  0

Hence, by choosing xn+1, xn+2, ...., xn+m as the basic variables, i.e., [1, 0, ....., 0],
[0, 1, 0, ...., 0], ....., [0, 0, ...., 0, 1] as the basic vectors, we get the initial basic feasible
solution as (b1, b2, ...., bm).

Based on the above results, we now give the computational procedure for simplex
method of a maximizing LPP in the following section.

9.4 Computational Procedure for Simplex Method

Step-1. Reduce the given LPP to a maximization problem with b 0  that is,

Maximize z  = c x

subject to  Ax b, x 0   and b 0 .

Step-2. Add slack variables to reduce the above LPP in Step-1 to the standard
form.

Step-3. Construct the simplex tableau given below, choosing the unit column vectors
corresponding to the slack variables as basic vectors and complete the net
evaluations zj – cj for each column.
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cj c1 c2 ............... cn

Bc B Bx b 1a 2a ............... an

1Bc 1 1Bx b1 y11 y12 ............... y1n

2Bc 2 2Bx b2 y21 y22 ............... y2n

      
      

mBc m mBx bm ym1 ym2 ............... ymn

zj – cj z z1 – c1 z2 – c2 ............... zn–cn

Simplex Tableau

Step-4. If zj – cj  0 for all j, then the present solution is optimal.

Step-5. If for some ja , zj – cj < 0 and yij  0 for all i = 1, 2, ..., m, then the solution

of the LPP is unbounded.

Step-6. If none of the above two criteria is satisfied, then choose the minimum most

value from zj – cj for all j, say, zk – ck. Then ka  is the entering vector. Since

least one yik > 0, then compute i

ik

B

y 0 ik

x
min

y

 
 
 

. If this minimum occurs for one

and only one value of i, say, i = r, then the vector r of the basis is the

departing vector determined by the key row (or, pivot row). If, on the other
hand, the above minimum occurs for more than one value of i, then more
than one variable will vanish in the next solution generating degeneracy of the
basic feasible solution. The method of dealing with degeneracy will be treated
separately. If zj – cj is minimum for more than one column, then any one of the
corresponding column vector may be taken as the departing vector.

Step-7. The next table is then constructed, replacing cr by ck, r  by ka  and xr by

xk. In the new table, the entire key row is divided by the key element so that
the (r, k)-th element of the new tableau becomes 1. The other rows are
computed as follows :

Subtract yik times the elements of the r-th row of the new table from the
elements of first row of the old table; subtract yik times the elements of the
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r-th row of the new table from the element of the second row of the old table
and so on.

Step-8. If the net evaluation zj – cj  0 for all j in the new table, then the present
solution is optimal. If not, repeat the earlier steps to proceed to the next
table.

The following examples will illustrate the method.

9.5 A Few Examples on Simplex Method

9.5.1 Example : Use simplex method to solve the following LPP :

Minimize z = 4x1 + 10x2

subject to 2x1 + x2  50

2x1 + 5x2  100

2x1 + 3x2  90

x1, x2  0.

Solution : Introducing slack variables x3, x4 and x5, we rewrite the given LPP in the
standard form as

Maximize z = 4x1 + 10x2 + 0.x3 + 0.x4 + 0.x5

subject to 2x1 + x2 + x3 + 0.x4 + 0.x5 = 50

2x1 + 5x2 + 0.x3 + x4 + 0.x5 = 100

2x1 + 3x2 + 0.x3 + 0.x4 + x5 = 90

x1, x2, x3, x4, x5  0.

Now, we solve this problem by Simplex Method through the following simplex tableau:

First Simplex Tableau

cj 4 10 0 0 0

Bc B Bx b 1a 2a 3a 4a 5a Min. Ratio

0
3a x3 50 2 1 1 0 0 50

1

0 4a x4 100 2 5 0 1 0
100

5

0 5a x5 90 2 3 0 0 1
90
3

zj – cj –4 –10 0 0 0
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In the 1st table, since z2 – c2 < 0, so 2a  is the entering vector and it is denoted by

. Now, since 100 20
50

  is the minimum ratio, so 5 is the key element and it is denoted

by a square box  and this implies that 4a  is the departing vector. Now, we go to the

Second Simplex Tableau.
Second Simplex Tableau

cj 4 10 0 0 0

Bc B Bx b 1a 2a 3a 4a 5a Min. Ratio Operations

0
3a x3 30

8
5 0 1 1

5
 0 75

4
R1 = R1 – 1 × R2

10
2a x2 20 2

5 1 0 1
5 0 50 R2 = 1

5 R2

0 5a x5 30 4
5 0 0

3
5

 1 75
2

R3 = R3 – 3 × R2

zj – cj 0 0 0 2 0

In the 2nd simplex tableau, we see that zj – cj  0 for all j. So, the solution at this
interation is optimal.

The optimal solution of the given LPP is
      x1 = 0, x2 = 20
and zmax = 10 × 20 = 200 units.
Again, in the 2nd simplex tableau, it is observed that zj – cj = 0 for a non-basic vector

1a . This implies that the LPP has an alternative optimal solution as shown in the 3rd simplex

tableau. In this case, we take 1a  as entering vector and following the same procedure, the

key element will be 
8
5 .

Third Simplex Tableau

cj 4 10 0 0 0

Bc B Bx b 1a 2a 3a 4a 5a Operations

4 1a x1
75
4

1 0
5
8

1
8

 0 1 1
5R R
8

 

10 2a x2
25
2

0 1 1
4

 1
4

0 2 2 1
2R R R
5

   

0 5a x5 15 0 0 1
2

 1
2

 1 3 3 1
4R R R
5

   

zj – cj 0 0 0 2 0
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In the 3rd simplex tableau, we see that all zj – cj  0. So, the solution at this iteration
is optimal and it an alternative optimal solution of the given LPP.

So, another optimal solution of the given LPP is

x1 = 75
4

, x2 = 25
2

and zmax = 4 × 75
4

 + 10 × 25
2

 = 200 units.

Again, since any convex combination of two feasible solutions of a LPP is also a
solution, so

        x  = 1 2B B
75 25x , x [0,20] (1 ) , ,
4 5

            0  1

is also an optimal solution of the LPP. Since  has infinite values in [0, 1], so the LPP has
an infinite number of optimal solutions.

Note : In this example, we have shown the simplex tables separately to explain the
different steps. But, in practice, simplex tables will be represented in a single tableau as
shown in the next example.

9.5.2 Example : Solve the following LPP by simplex method :

Minimize   z = x1 – 3x2 + 2x3

subject to 3x1 – x2 + 2x3  7

2x1 – 4x2  –12

4x1 – 3x2 – 8x3  –10

x1, x2, x3  0.

Solution : The given LPP can be written first with b 0  as

Minimize   z = x1 – 3x2 + 2x3

subject to 3x1 – x2 + 2x3  7

–2x1 + 4x2 + 0.x3  12

–4x1 + 3x2 + 8x3  10

x1, x2, x3  0.

Now, introducing slack variables x4, x5, x6 and reducing the objective function in the
maximization form, the LPP can be rewritten in the standard form as
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Maximize (–z) = – x1 + 3x2 – 2x3 + 0.x4 + 0.5x5 + 0.x6

subject to 3x1 – x2 + 2x3 + x4 + 0.x5 + 0.x6 = 7

–2x1 + 4x2 + 0.x3 + 0.x4 + x5 + 0.x6 = 12

–4x1 + 3x2 + 8x3 + 0.x4 + 0.x5 + x6 = 10

xj  0 (j = 1, 2, ...., 6)

Now, we solve this problem by simplex method through the following simplex tableau:

Simplex Tableau

cj –1 3 –2 0 0 0

Bc B Bx b 1a 2a 3a 4a 5a 6a Min. Ratio Operations

0 4a x4 7 3 –1 2 1 0 0

0 5a x5 12 –2 4 0 0 1 0 12
4

0 6a x6 10 –4 3 8 0 0 1
10
3

zj – cj 1 –3 2 0 0 0 Min. Ratio Operations

0 4a x4 10 5
2

0 2 1 1
4

0 5
2

10 20
5

 R1 = R1 – (–1) × R2

3 2a x2 3 1
2

 1 0 0 1
4

0 R2 = 1
4

R2

0 6a x6 1 5
2

 0 8 0 3
4

 1 R3 = R3 – 3 × R2

zj – cj
1
2

  0 2 0 3
4

1 Min. Ratio Operations

–1 1a x1 4 1 0 4
5

2
5

1
10 0 1 1

2R R
5

 

3 2a x2 5 0 1 2
5

1
5

3
10 0                2 2 1

1R R R
2

     

0 6a x6 11 0 0 10 1 1
2

 1  3 3 1
5R R R
2

     

zj – cj 0 0 12
5

1
5

4
5 0
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Since all zi  ci  0, optimality arises. The solution at this iteration is optimal.

The optimal solution is

x1 = 4, x2 = 5, x3 = 0

Now Max (2) = 1  4 + 3  5 = 11 unit.

Thus Zmin = 11

9.6  Summary

In this chapter, the simplex method for the solution of a LPP where the mitial basic

feasible solution to the problem can be easily found, is described in detail with numerous

illustrative examples.

9.7 Exercise

1. Solve the following LPP by Simpex method :-

(i)  Minimize Z = 4x1  8x2 + 5x3

subject to x1 + 2x2 + 3x3  18

x1 + 4x2 + x3  6

2x1 + 6x3 + 4x3  15

x1, x2, x3  0

(ii) Minimize z = –3x1 + x2

subject to –x1 + 3x2  9

x1 + x2  6

x1 – x2  2

x1, x2  0

(iii) Maximize z = –4x1 + 10x2

subject to –3x1 + 2x2  3

–2x1 + 5x2  0

x1, x2  0
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(iv) Maximize z = 2x1 + x2

subject to x1 – x2  10

2x1 – x2  40

x1, x2  0

(v) Minimize z = x1 – x2 + x3

subject to x1 – 2x2 + 3x3 – 4

x1 + x2 + x3  9

2x1 – x2 – x3  5

x1, x2, x3  0

Answers

1. (i) x1 = 14
2

, x2 = 0, x3 = 11
2

; zmax = 125
2

 units

(ii) x1 = 4, x2 = 2; zmin. = – 10

(iii) x1 = 
32

11
 , x2 = 104

11
 ; zmax. = 40 units

(iv) Unbounded solution

(v) x1 = 24
3 , x2 = 14

3 , x3 = 0;  zmin. = 1
3

4.10 Multiple Choice Questions (MCQ)

1. If ja  is a basic vector is a simplex table, then the corresponding net evaluation is

(a) zj – cj < 0 (b) zj – cj > 0

(c) zj – cj = 0 (d) either zj – cj = 0 or zj – cj > 0

2. If for a basic feasible solution Bx ,  the L.P.P..

Maximize z = c x

subject to  Ax b, x 0 
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has zj – cj  0 for all j, then Bx  is

(a) an optimal solution (b) a non-optimal solution

(c) only a basic feasible solution (d) none of these

3. In converting a  type constraint to equality typex in a L.P.P., we must add

(a) a surplus variable (b) an artificial variable

(c) a slack variable (d) both (a) and (b)

4. In converting a  type constraint to equality type in a L.P.P., we must subtract

(a) a surplus variable (b) a slack variable

(c) an artificial variable (d) None of these

5. The common element of key column and key row in a simplex table is called

(a) basic element (b) important element

(c) vital element (d) Key element

Answers

1. (c) 2. (a) 3. (c) 4. (a) 5. (d)
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Unit - 10 Simplex Alogrithm (II) : Big-M Method,
Two-phase Method

Structure

10.0 Objective

10.1 Introduction

10.2 Big-M Method

10.3 Two-Phase Simplex Method

10.4 Summary

10.5 Exercise

10.6 Multiple Choice Questions (MCQ)

10.0 Objective

After studying this chapter, the reader should be able to

solve a LPP for mixed type of constraints by simplex method

solve a LPP for mixed type of constraints by two phase simplex method

10.1 Introduction

We have learnt in the previous unit how a LPP can be solved by Simplex Algorithm.

We have seen that if an initial basic feasible solution (I.B.F.S.) to the problem is easily

identifiable, then we arrive at the initial simplex table without much labour. Unfortunately,

in practice, there exists LPP to which an I.B.F.S. may not be easily determined. Moreover,

the given LPP may even have no feasible solution at all.

These complications in solving a LPP by simplex method and their resolution will be

discussed in the present unit.

126
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1st Proof   CPP  21/03/2025

In order to able to obtain an I.B.F.S. easily, a special procedure is available. If

some of the variables in standard form of a LPP are surplus varibles, the corresponding

column vectors do not provide unit vectors for the initial basis. In order to have unit

vectors in the basis, new non-negative variables are introduced in the basis. These are

called artificial varibales. The vectors of the coefficient matrix corresponding to

these artificial variables are called artificial vectors. The new system of equations

invoking slack, surplus and artificial variables are called augmented system. The

artificial variables are brought in as a technique to have the initial basis made of unit

vectors otherwise they have no real significance and as such need to be removed from

the optimal solution.

There are two procedures for solving this new type of problem, viz.,

(i) Method of Penalties or Big-M Method

(ii) Two-Phase Method.

10.2 Big-M Method

A. Charnes suggested that a very high penalty can be paid for introducing the

artificial variables in the constraints of a given problem, by assigning a very large

negative cost (penalty) to the artificial variables in the objective function of the

problem.

A simple way to do this is to assign-M to the cost coeffient corresponding to the

artificial variables where M is a large positive number. This M is known as the

penalty.

The very purpose of introducing the artificial variables was just to obtain an

I.B.F.S. and so we would like to get rid of these variables once the very purpose

has been achieved. Thus the objective to huge penalty cost is to ensure that all

the artificial variables will be driven to zero when z is optimized by using simplex

method. This method is known as the Method of Penalties or the Big-M Method.

The following examples illustrate the method.

 Example 10.2.1 : Use Charnes’ Big-M method to solve the following LPP :
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Minimize  z = 4x1 + 2x2

subject to 3x1 + x2  27

x1 + x2  21

x1 + 2x2  30

x1, x2  0

Solution : Introducing surplus and artificial variables, the given LPP can be reduced

to its standard form as

Maximize (–z) = –4x1 – 2x2 + 0.x3 + 0.x4 + 0.x5 – Mx6 – Mx7 – Mx8

subject to 3x1 + x2 – x3 + 0.x4 + 0.x5 + x6 + 0.x7 + 0.x8 = 27

x1 + x2 + 0.x3 – x4 + 0.x5 + 0.x6 + x7 + 0.x8 = 21

x1 + 2x2 + 0.x3 + 0.x4 – x5 + 0.x6 + 0.x7 + x8 = 30

xj  0 (j = 1, 2, ....., 8)

Here, x3, x4, x5 are surplus variables and x6, x7, x8 are artificial variables. Now, we

solve this problem by simplex method through the following simplex tableau.
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1st Proof   CPP  21/03/2025
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Since all zj – cj  0, so optimality arises. It is seen that no artificial variable

appears in the optimal basis. Thus, the optimal solution of the LPP is

x1 = 3, x2 = 18 and Max (–z) = – Min. z = –4 ×3 – 2 × 18 = – 48. Therefore, zmin.

= 48 units.

Example 10.2.2 : Use Big-M method to solve the following LPP :

Maximize z = 5x1 – 4x2 + 3x3

subject to 2x1 + x2 – 6x3 = 20

6x1 + 5x2 + 10x3  76

8x1 – 3x2 + 6x3  50

x1, x2, x3  0

Solution : Using artificial variable x4 and slack variables x5 and x6, the LPP can

be written in the standard form as

Maximize z = 5x1 – 4x2 + 3x3 – Mx4 + 0.x5 + 0.x6

subject to 2x1 + x2 – 6x3 + x4 + 0.x5 + 0.x6 = 20

6x1 + 5x2 + 10x3 + 0.x4 + x5 + 0.x6 = 76

8x1 – 3x2 + 6x3 + 0.x4 + 0.x5 + x6 = 50

xj  0 (j = 1, 2, ....., 6)

Now, we solve the problem by simplex method through the following simplex

tableau.
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cj 5 –4 3 –M 0 0

Bc B Bx b 1a 2a 3a 4a 5a 6a Min. Ratio

–M 4a x4 20 2 1 –6 1 0 0
20
2

0 5a x5 76 6 5 10 0 1 0
76
6

0 6a x6 50 8 –3 6 0 0 1
50
8

zj – cj –2M–5 –M+4 6M–3 0 0 0 Min. Ratio Operations

–M 4a x4
15
2

0
7
4 –

15
2

1 0 –
1
4

15 7 30
2 4 7

 R1 = R1 – 2R3

0 5a x5
77
2

0
29
4

11
2 0 1 –

3
4

77 29 154
2 4 29

 R2 = R2 – 6R3

5 1a x1
25
4

1 –
3
8

3
4 0 0

1
8 — R3 = 

1
8 R3

zj – cj 0 7M 17
4 8

   15M 3
2 4

 0 0
5M

4 8
 Min. Ratio Operations

–4 2a x2
30
7 0 1 –

30
7 0 –

1
7 1 1

4R R
7

 

0 5a x5
52
7 0 0

256
7 1

2
7 2 2 1

29R R R
4

   

5 1a x1
55
7 1 0 –

6
7 0

1
14 3 3 1

3R R R
8

   

zj – cj 0 0
69
7 × 0

13
14

Since all zj – cj  0, optimality arises. It is observed that no artificial variable
appears in the optimal basis. Hence, the optimal solution of the LPP is

x1 = 
55
7 , x2 = 

30
7 , x3 = 0 and zmax. = 

55 30 1555 4
7 7 5

     units

Example 10.2.3 : Use Big-M method to solve the following LPP :

Maximize   z = 4x1 + 2x2

subject to 2x1 + x2  4

5x1 + 3x2  15

x1, x2  0
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Solution : Using slack variable x3, surplus variable x4 and an artificial variable x5, the

standard form of the given LPP is

Maximize z = 4x1 + 2x2 + 0.x3 + 0.x4 – Mx5

subject to 2x1 + x2 + x3 + 0.x4 + 0.x5 = 4

5x1 + 3x2 + 0.x3 – x4 + x5 = 15

x1, x2, x3, x4, x5  0

Now, we solve this problem by simplex method through the following simplex tableau

:

cj 4 2 0 0 –M

Bc B Bx b 1a 2a 3a 4a 5a Min. Ratio

0 3a x3 4 2 1 1 0 0 4 2
2


–M 5a x5 15 5 3 0 –1 1
15 3
5


zj – cj –5M–4 –3M–2 0 M 0 Min. Ratio Operations

4 1a x1 2 1 1
2

1
2

0 0 1
22 4 1 1

1R R
2



–M 5a x5 5 0 1
2

–
5
2

–1 1 1
25 10 2 2 1R R 5R  

zj – cj 0 M
2

  5M 2
2

 M 0 Operations

2 2a x1 4 2 1 1 0 0 1 1R 2R 

–M 5a x5 3 –1 0 –3 –1 1 2 2 1
1R R R
2

   

zj – cj M 0 3M+2 M 0

Since all zj – cj  0, so optimality arises. It is seen that the artificial variable x5

appears in the optimal basis at the positive level, that is, x5 = 3. This concludes that

the LPP has no feasible solution.
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10.3 Two-Phase Simplex Method

As in the case of ‘Big-M Method’, here also we are to eliminate the artificial
variables from the optimal soultion. In this case, the problem is solved in two phases.
In Phase-I, the artificial variables are eliminated and in the Phase-II, an optimal
solution of the problem is obtained by usual simplex method.

The computational procedure for solving a linear programming problem by ‘Two-
Phase Simplex Method’ is as follows :

Phase-I : In a maximization problem, we reconstruct the objective function as z*

= 0.x1 + 0.x2 + ...... + 0.xn – 1.xn+1 – 1.xn+2 – ..... – 1.xn+m, where x1, x2,....., xn

are orginal, slack and surplus variables and xn+1, xn+2, ......, xn+m are artificial
variables. Here, z* is called the Auxiliary objective function and the problem is called
an auxiliary LPP. Now, we solve this problem by simplex method to maximize the new
objective function z*.

To do so, the following cases may arise :

Case (i) : Max. z* = 0 and artificial variables either appears in the optimum basis
at zero level or no artificial vector appears in the optimum basis. Then, we will use
Phase-II to find an optimal solution of the given LPP.

Case (ii) : Max. z* < 0 and at least one artificial variable appears in the optimum
basis at the positive level. In this case, the LPP does not possess any feasible solution.
So, there is no need to consider Phase-II in this case.

Phase-II : Thus, if Phase-I provides a solution which gives Max. z* = 0, then
we go to Phase-II for optimal solution of the original problem. To start the Phase-II,
we first consider the original objective function by assigning the actual prices to each
of the original variables and a zero price to each of the artificial variables present in
the final iteration of Phase-I at the zero level. Then we take optimal solution obtained
in the last iteration of the Phase-I as initial basic feasible solution and proceed as usual
by simplex method until an optimum solution (if any) is obtained.

Note : The first tableau of the Phase-II is almost same with the last tableau of

the Phase-I with the changes in the row cj, in the column of Bc  and in the row of

zj – cj.

The following examples illustrate the method.

Example 10.3.1 : Solve the following LPP by using Two-Phase simplex method :
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Minimize z = x1 + x2

subject to 2x1 + 4x2  4

x1 + 7x2  7

x1, x2  0

Solution : Using surplus variables x3, x4 and artificial variables x5, x6, the given
constraints of the LPP can be written as

2x1 + 4x2 – x3 + 0.x4 + x5 + 0.x6 = 4

x1 + 7x2 + 0.x3 – x4 + 0.x5 + x6 = 7

xj  0  (j = 1, 2, ....., 6)

Now, changing the objective function to maximizing problem with surplus
variables, we get

Maximize (–z) = –x1 – x2 + 0.x3 + 0.x4

subject to the above constraints.

Phase-I : In Phase-I, the auxiliary objective function of the LPP is

z* = 0.x1 + 0.x2 + 0.x3 + 0.x4 – x5 – x6.

The auxiliary problem is to maximize z* subject to the above constraints.

Now, we solve this problem by simplex method through the following simplex
tableau.

cj 0 0 0 0 –1 –1

Bc B Bx b 1a 2a 3a 4a 5a 6a Min. Ratio

–1 5a x5 4 2 4 –1 0 1 0
4 1
4


–1 6a x6 7 1 7 0 –1 0 1 7 71 

zj – cj –3 –11 1 1 0 0 Min. Ratio Operations

0 2a x2 1 1
2 1 – 1

4 0 1
4 0 – 1 1

1R R
4



–1 6a x6 0 – 5
2 0 7

4 –1 – 7
4 1 0 2 2 1R R 7R  

zj – cj
5

2 0 7
4

  1 11
4 0

0 2a x2 1 1
7 1 0 – 1

7 0 1
7 1 1 2

1R R R
4

   

0 3a x3 0 – 10
7 0 1 – 4

7 –1 4
7 2 2

4R R
7

 

zj – cj 0 0 0 0 1 1
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Since all zj – cj  0, optimality arises for Phase-I problem. Also Max z* = 0 and no
artificial variable appears in the final basis. So, we pass on to the Phase-II.

Phase-II : In Phase-II, the objective function of the LPP is

Max (–z) = – x1 – x2 + 0.x3 + 0.x4

The final table of Phase-I will be the initial table of Phase-II with the changes in
the cost coefficients and we neglect the artificial vectors. The initial tableau is as
follows :

Phase-II Tableau

cj –1 –1 0 0

Bc B Bx b 1a 2a 3a 4a

–1 2a x2 1 1
7 1 0 – 1

7

0 3a x3 0
10
7

 0 1 – 4
7

zj – cj 6
7

0 0 1
7

Since all zj – cj  0, so optimality arises. The optimal solution is x1 = 0,
x1 = 1 and Max. (–z) = –1 i.e., zmin = 1 unit.

Example 10.3.2 : Solve the following LPP by Two-Phase simplex method :

Maximize z = 2x1 – x2 + x3

subject to x1 + x2 – 3x3  8

4x1 – x2 + x3  2

2x1 + 3x2 – x3  4

x1, x2, x3  0

Solution : Using slack, surplus and atrificial variables, the constraints may be
written as

x1 + x2 – 3x3 + x4 + 0.x5 + 0.x6 + 0.x7 + 0.x8 = 8

4x1 – x2 + x3 + 0.x4 – x5 + 0.x6 + x7 + 0.x8 = 2

2x1 + 3x2 – x3 + 0.x4 + 0.x5 – x6 + 0.x7 + x8 = 4

xj  0 (j = 1, 2, ...., 8)

Phase–I : In Phase I, auxiliary objective function is

z* = 0.x1 + 0.x2 + 0.x3 + 0.x4 + 0.x5 + 0.x6 – x7 – x8.

The auxiliary problem is to maximize z* subject to the above constraints. Now, we
solve this problem by simplex method through the following simplex tableau.
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Since all zj – cj  0, so optimality arises. No artificial variable appears in the final basis
and Max. z* = 0. So, we pass on to the Phase-II.

Phase-II : In Phase-II, the objective function of the LPP is

Max. z = 2x1 – x2 + x3 + 0.x4 + 0.x5 + 0.x6

The final table of Phase-I will be the initial table of Phase-II with the changes in
the cost coefficients and we neglect the artificial vectors. The simplex tableau is as
follows :

Phase-II Tableau

cj 2 –1 1 0 0 0

Bc B Bx b 1a 2a 3a 4a 5a 6a Min. Ratio

0 4a x4
45
7

0 0 – 19
7 1 1

14
5

14
45 1 90
7 14



2 1a x1
5
7 1 0 1

7 0 – 3
14 – 1

14 —

–1 2a x2
6
7 0 1 – 3

7 0 1
7 – 2

7
6 1 6
7 7



zj – cj 0 0 – 2
7 0 – 4

7  1
7 Min. Ratio Operations

0 4a x4 6 0 – 1
2 –

5
2

1 0 1
2 1 1 3

1R R R14  

2 1a x1 2 1 3
2 – 1

2 0 0 – 1
2 2 2 3

3R R R14 

0 5a x5 6 0 7 –3 0 1 –2 3 3R 7R

zj – cj 0 4 –2 0 0 –1

We see that Min {zj – cj : zj – cj < 0} = z3 – c3 and all the elements in the
corresponding column are all negative. Hence, the problem has an unbounded
solution.

Example 10.3.3 : Solve the following LPP by Two-Phase simplex method :

Maximize   z = 5x1 + 3x2

subject to 2x1 + x2  1

3x1 + 4x2  16

x1, x2  0
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Solution : Using slack, surplus and artificial variables, the constaints of the given
LPP can be written as

2x1 + x2 + x3 + 0.x4 + 0.x5 = 1

3x1 + 4x2 + 0.x3 – x4 + x5 = 16

x1, x2, x3, x4, x5  0

Phase-I : In Phase-I, the auxiliary objective function is

z* = 0.x1 + 0.x2 + 0.x3 + 0.x4 – x5

The auxiliary problem is to maximize z* subject to the above constraints. Now, we
solve this problem by simplex method through the following simplex tableau.

Phase-I Tableau

cj 0 0 0 0 –1

Bc B Bx b 1a 2a 3a 4a 5a Min. Ratio

0 3a x3 1 2 1 1 0 0 1 1
1


–1 5a x5 16 3 4 0 –1 1
16 4
4


zj – cj –3 –4 0 1 0 Min. Ratio Operations

0 2a x2 1 2 1 1 0 0 1 1R R

–1 5a x5 12 –5 0 –4 –1 1 2 2 1R R 4R  

zj – cj 5 0 4 1 0

Since all zj – cj  0, so optimality arises. We see that artificial variable x5

appears in the final basis at the positive level (i.e., x5 = 12) and hence Max. z* =
– 12 < 0.

Hence we conclude that the LPP has no feasible solution. There is no need to
consider Phase-II of the problem.

10.4 Summary

In this chapter, the solution of a LPP by simplex method is discussed when the LPP

has mixed type of constraints. To eliminate artificial variables appear in a LPP containing

mixed type of constraints, another method of solution known as Two-phase simplex

method is also presented with several examples.
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10.5 Exercise

1. Solve the following LPP by Charnes’ Big-M method :
(i) Maximize z = 3x1 – x2

subject to 2x1 + x2  2
x1 + 3x2  3

x2  4
x1, x2  0

(ii) Minimize z = 12x1 + 20x2

subject to 6x1 + 8x2  100

7x1 + 12x2  120

x1, x2  0

(iii) Maximize z = 3x1 + 2x2

subject to x1 + x2  1

2x1 + x2  4

5x1 + 8x2  15

x1, x2  0

(iv) Maximize z = 2x1 + x2 + 2x3

subject to x1 + x2 + 2x3  5

2x1 + 3x2 + 4x3 = 12

x1, x2, x3  0

(v) Minimize z = 2x1 + x2

subject to 3x1 + x2 = 3

4x1 + 3x2  6

x1 + 2x2  3

x1, x2  0

(vi) Maximize z = 3x1 + 2x2

subject to 2x1 + x2  2

3x1 + 4x2  12

x1, x2  0
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(vii) Maximize z = x1 – 2x2 + 3x3

subject to x1 + 2x2 + 3x3 = 15

2x1 + x2 + 5x3 = 20

x1, x2, x3  0

(viii) Maximize z = 2x1 – x2 + 2x3

subject to x1 + x2 – 3x3  8

4x1 – x2 + x3  2

2x1 + 3x2 – x3  4

x1, x2, x3  0

2. Use Two-Phase simplex method to solve the following LPP :

(i) Maximize z = 2x1 + 2x2

subject to 2x1 + x2  1

3x1 + 4x2  12

x1, x2  0

(ii) Minimize z = 4x1 + x2

subject to x1 + 2x2  3

4x1 + 3x2  6

3x1 + x2 = 3

x1, x2  0

(iii) Maximize z = –3x1 – 5x2

subject to x1 + 2x2  8

3x1 + 2x2  12

5x1 + 6x2  60

x1, x2  0

(iv) Maximize z = 3x1 + 2x2 + x3

subject to –3x1 + 2x2 + 2x3 = 8

–3x1 + 4x2 + x3 = 7

x1, x2, x3  0
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(v) Maximize z = 2x1 + 4x2 + x3

subject to x1 – 2x2 – x3  5

2x1 –x2 + 2x3 = 2

–x1 + 2x1 + 2x3  1

x1, x2, x3  0

Answer

1. (i) x1 = 3, x2 = 0 and zmax = 9

(ii) x1 = 15, x2 = 5
4

 and zmin = 205

(iii) x1 = 17
11

, x2 = 10
11

 and zmax = 71
11

(iv) x1 = 3, x2 = 2, x3 = 0 and zmax = 8

(v) x1 = 
3
5 , x2 = 

6
5  and zmin = 12

5

(vi) No feasible solution

(vii) x1 = 0, x2 = 
15
7 , x3 = 

25
7  and zmax = 

45
7

(viii) Unbounded solution

2. (i) No feasible solution

(ii) x1 = 
3
5 , x2 = 

6
5  and zmin = 

18
5

(iii) x1 = 2, x2 = 3 and zmax = 21

(iv) Unbounded solution

(v) Unbounded solution

10.6 Multiple Choice Questions (MCQ)

1. In phase-I simplex method for a maximization L.P.P., the coefficient of an artificial

variable in the auxiliary objective function is
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(a) M (b) 0 (c) –M (d) –1

2. If all zj – cj  0, but an artificial variable appears in the basis in an interation of

the simplex method, then the L.P.P. has

(a) no feasible solution (b) a unique solution

(c) an unbounded solution (d) infinitely many optimal solutions

3. In the Two-Phase simplex method for a maximization L.P.P. having an
optimal solution, the maximum value of the auxiliary objective function in
Phase-I in

(a) non-zero quantity (b) zero

(c) a negative quantity (d) a positive quantity

4. Which of the following is correct ?

(a) All artificial variables must appear in the final basis for on optimal
solution of a L.P.P.

(b) At least one artificial variable must appear in the final basis for an optimal
solution of a L.P.P.

(c) No artificial variable appear in the final basis for an optimal solution of
a L.P.P.

(d) Artificial variables may appear in the final basis at the zero level for an
optimal solution of a L.P.P.

Answers

1. (d) 2. (a) 3. (b) 4. (d)
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Unit - 11 Duality in Linear Programming Problem

Structure

11.0 Objective

11.1 Introduction

11.2 Concept of Duality

11.3 Mathematical Formulation of Dual Problem

11.4 A Few Examples

11.5 Duality Theorems

11.6 Duality and Simplex Method

11.7 Economic Interpretation of Duality

11.8 A Few Examples

11.9 Summary

11.10 Exercise

11.11 Multiple Choice Questions (MCQ)

11.0 Objective

After studying this chapter, the reader should be able to

understand the dual formulation procedure of a LPP

interpret primal-dual optimum solutions

understand the characteristics of dual problems.

11.1 Introduction

With every L.P.P. we can associate another L.P.P. which is derived from the first

L.P.P. following definite rules. Here the second L.P.P. will be called dual problem and

144
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the original L.P.P. is called primal problem. Either of the two linear programming problems

can be considered as the primal, with the remaining problem as the dual. The two problems

possess very closely related properties.

It will be shown in subsequent section that the optimal value (if exist) of the

objective functions of the two problems are same and the final table giving the

optimal solution for one will contain necessary indications for optimal solution of

the other.

The concept of duality will be made clear in the next section by considering the

problems of a dealer and a shop keeper.

11.2 Concept of Duality

We suppose that a dealer sells three nutrients A, B, C and the shop keepers make

two fodders X and Y (by purchasing these nutrients) for the consumption of the

animals.

The following table shows the amount of three nutrients available in the unit

quantity of the two fodders along with the minimum requirement of each nutrient for

one animal and the market price of unit quantity of each fodder.

Fodder Nutrient Market Price

A B C per unit

X 1 2 2 4

Y 3 4 1 3

Minimum
requirement 10 9 3

Now the objective of the dealer will be to fix the selling prices of A, B, C in

such a way that the resulting prices of the fodders X and Y do not exceed the existing

market price and the total selling price z becomes maximum. If the selling prices of

unit quantity of the nutrients A, B, C be respectively x1, x2, x3 then from the

objective of the dealer, we get the following linear programming problem :
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Maximize z = 10x1 + 9x2 + 3x3

subject to

x1 + 2x2 + 2x3  4

3x1 + 4x2 + x3  3

x1, x2, x3  0

Now we consider the same problem from the view point of a shopkeeper.

The objective of a shopkeeper will be to fix the quantities of the fodders X and Y in

such a way that the minimum requirement of the three nutrients for each animal is met and

at the same time the total cost (w) of purchasing the fodders is minimum.

For each animal, let 1 units of X and 2 units of Y be produced. Then from the

objective of the shopkeeper, we get the following L.P.P. :

Minimize w = 41 + 32

subject to 1 + 32  10

21 + 42  9

21 + 2  3

1, 2  0

One of the problems (A) and (B) will be called primal problem and the other

as dual problem.

Here we remark that the theorems on dual problems will remain unaltered,

whether we call “(A) the primal problem and (B) the dual problem” or “(B) the

primal problem and (A) the dual problem.”

Here the problem (A) is a maximization problem and the problem (B) is a

minimization problem.

In the following sections, we shall follow the convention of considerity the

maximization problem as the primal problem and the minimization problem as the

dual problem.

(A)

(B)
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11.3 Mathematical Formulation of Dual Problem

We express the primal problem in the following form :

Maximize z = c1x1 + c2x2 + ............. + cnxn

subject to a11x1 + a12x2 + ............ + a1nxn  b1

a21x1 + a22x2 + ............ + a2nxn  b2

..............................................................

..............................................................

am1x1 + am2x2 + ............ + amnxn  bm

                   x1, x2, .........., xn  0

Then the following L.P.P. will be called the dual of above primal problem :

Minimize w = b11 + b22 + ............ + bmm

subject to a111 + a212 + ......... + am1m  c1

a121 + a222 + ......... + am2m  c2

..............................................................

..............................................................

a1n 1 + a2n 2 + ............. + anm m  cn

1, 2, ............, m  0

In matrix notation, we write the above problems as

Primal problem :

Maximize z = c x

subject to   Ax b, x 0 

Dual problem :

Minimize w = b 

subject to   A c , 0    

where x  = [x1, x2, ......, xn],  b  = [b1, b2, ......, bm] are respectively n × 1 and

} ......(1)
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m × 1 column matrices and c  = (c1, ...., cn) is 1 × n row matrix, A is a matrix of order

m × n and   = [1, 2, ....., m] is a column matrix of order m × 1 [Here B denotes the

transpose of a matrix B].

If the primal problem be expressed in the form (1), then this form will be called the
standard form of the primal problem.

Remarks : From the definition of the dual problem we observe that—

(i) Number of constraints (except x 0 ) in the primal problem is equal to the

number of variables in the dual problem and conversely, the number of

constraints in the dual problem (except 0  ) is equal to the number of

variables in the primal problem.

(ii) Here the main constraints of the primal problem are of the type “” and the
main constraints of the dual problem are of the type “”.

(iii) Here b1, b2, ......, bm may not be positive.

(iv) The transpose matrix A of the coefficient matrix A of the constraints of the
primal problem is the coefficient matrix of the constraints of the dual
problem.

(v) x 0  means x1  0, x2  0, ......, xn  0 and 0   means 1  0, 2  0,

...... m  0.

 Some Definitions

(a) Symmetric problem

A primal problem (or its dual problem) will be called symmetric if all constraints
are in the form of inequalities.

(b) Unsymmetric problem

A primal problem (or its dual problem) will be called unsymmetric if all the
constraints are of the form of equalities.

(c) Mixed type problem

A primal problem (or its dual problem) will be called a mixed type problem if
at least one constraint is in the form of inequality and at least one constraint is in
the form of equality.
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In Section 11.4, we shall see how the dual problem can be constructed where the
primal problem is symmetric or unsymmetric or of the mixed type and we shall verify the
following theorems.

Theorem 1 : If a constraint of the primal problem be in the form of an equation, then
the corresponding variable of the dual problem will be unrestricted in sign.

Theorem 2 : If a variable in the primal problem be unrestricted in sign then the
corresponding constraint in the dual problem will be in the form of an equation.

11.4 A Few Examples

Example 11.4.1 : Find the dual of the following L.P.P :

Maximize z = x1 + 6x2

subject to x1 + x2  2

x1 + 3x2  3

x1, x2  0

Solution : The given primal problem is equivalent to the L.P.P.

Maximize z = x1 + 6x2

subject to –x1 – x2  – 2

x1 + 3x2  3

x1, x2  0

The last problem can be expressed as

Maximize z = (1, 6) [x1, x2]

subject to  
1

2

1 1 x 2

1 3 x 3

       
     

     
  and 

1

2

x 0

x 0

   
   

   
.

Then the required dual problem will be

Minimize w = (–2,  3)  [1, 2]

subject to 
1

2

1 1 1

1 3 6

      
           

  and  
1

2

0

0

   
      

.
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i.e., Minimize w = –21 + 32

subject to –1 + 2  1

–1 + 32  6

1, 2  0.

Example 11.4.2 : Find the dual of the following primal problem :

Maximize z = x1 – 3x2

subject to 3x1 + 2x2  6

3x1 – x2 = 4

x1, x2  0

Solution : The given L.P.P. is of the mixed type. First we shall express the primal
L.P.P. in the standard form.

Here the constraint 3x1 – x2 = 4 is equivalent to two constraints 3x1 – x2  4 and 3x1

– x2  4  i.e., 3x1 – x2  4 and –3x1 + x2  –4.

So the primal problem can be written as

Maximize z = x1 – 3x2

subject to 3x1 + 2x2  6

3x1 – x2  4

–3x1 + x2  –4

x1,  x2  0.

Now the dual problem of (1) will be

Minimize w = 61 + 42 – 42

subject to 31 + 32 – 32   1

21 – 2 + 2  –3

1, 2, 2  0

Writing 2 – 2 = 2, we find that 2 is unrestricted in sign.

So the above dual problem can be expressed as

(1)
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Minimize z = 61 + 42

subject to 31 + 32   1 } ..... (2)

21 – 2  –3

1  0, 2 is unrestricted in sign.

The problem (2) is the required dual problem of the primal problem (1).

Remark : It is observed that the number of variables in the given primal is two which

is equal to the number of constraints in the dual problem. Again the second constraint of

the primal problem being in the form of equality, the variable 2 in the dual problem is

unrestricted in sign.

Example 11.4.3 : Find the dual of the following L.P.P. :

Maximize z = 7x1 + 5x2 – 2x3

subject to x1 + x2 + x3 = 10

2x1 – x2 + 3x3  16

–3x1 – x2 + 2x3  5

x1, x2  0 and x3 is unrestricted in sign.

Solution : Here x3 is unrestricted in sign. So we can write x3 = x3 – x3 where x3
 0, x3  0.

Then the given primal problem can be expressed as

Maximize z = 7x1 + 5x2 – 2 (x3 – x3)

subject to x1 + x2 + x3 – x3  10

–x1 – x2 – x3 + x3  –10

2x1 – x2 + 3x3 – 3x3  16 ........ (1)

–3x1 – x2 + 2x3 – 2x3  5

x1, x2, x3, x3  0

Now the dual of the primal problem will be
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Minimize w = 101 – 101 + 162 + 53

subject to 1 – 1 + 22 – 33  7

1 – 1 – 2 – 3  5

1 – 1 + 32 + 23  –2

–1 + 1 – 32 – 23  2

1, 1, 2, 3  0.

Now writing 1 – 1 = 1, the problem (2) can expressed as

Minimize w = 101 + 162 + 53

subject to 1 + 22 – 33  7

1 – 2 – 3  5

1 + 32 + 23  –2

–1 – 32 – 23  2

1 unrestricted in sign,  2  0, 3  0.

We see that the constraints 1 + 32 + 23  –2 and –1 – 32 – 23  2 are

equivalent to the single constraint

1 + 32 + 23 = –2.

So the required dual problem will be

Minimize w = 101 + 162 + 53

subject to 1 + 22 – 33  7

1 – 2 – 3  5

1 + 32 + 23 = –2

1 unrestricted in sign, 2  0, 3  0.

Remark : It is observed that the first constraint of the primal problem being an

equality, the variable 1 of the dual problem is unrestricted in sign and the variable

x3 of the primal problem being unrestricted in sign, the corresponding constraint in

the dual problem is an equation.

(2)

(3)
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Example 11.4.4 : Find the dual of the following L.P.P. :

Maximize z = 3x1 – 2x2

subject to x1  4

x2  6

x1 + x2  5

–x2  –1

x1, x2  0

Solution : The given primal problem is in the standard form and it can be expressed
in the matrix form as follows :

Maximize z = (3, –2) 1

2

x

x

 
 
 

subject to  
1

2

1 0 4

0 1 x 6

1 1 x 5

0 1 1

   
            
       

  and  
1

2

x 0

x 0

   
   

   
.

The dual problem of this L.P.P. will be

Minimize w = (4, 6, 5, –1) 

1

2

3

4

 
  
 
  

subject to  

1

2

3

4

1 0 1 0 3

0 1 1 1 2

 
               
  

 and  

1

2

3

4

0

0

0

0

   
      
   
      
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i.e., Minimize w = 41 + 62 + 53 – 4

subject to 1 + 3  3

2 + 3 + 4  –2

and               1, 2, 3, 4 0.

11.5 Duality Theorems

In the following theorems, we have considered the primal problem in the standard
form i.e., the primal problem is taken as

Maximize z = c x

subject to   Ax b, x 0   .......... (1)

where x  = [x1, x2, ......, xn] is a (n × 1) column matrix, c  = (c1, c2, ...., cn) is a 1 × n
row matrix and A is a m × n martix. Now the dual problem of (1) will be

Minimize w = b 

subject to A c , 0      ........... (2)

where   = [1, 2, ......, m] is a m × 1 column matrix.

Theorem 11.5.1 : The dual of the dual problem of a primal L.P.P. is the primal
problem. [The dual of the dual is the primal]

Proof : Consider the primal problem as

Maximize z = c x

subject to   Ax b, x 0 

and its dual problem as

Minimize w = b 

subject to   A c , 0     .

Now this dual problem can be expressed as a maximizing problem as follows :
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Maximize (–w) = – b 

subject to   – A c       } (3)

                    0 

where (w)min = – (w)max.

According to the definition of dual problem, the dual of (3) will be

Minimize z1 =  c x 

subject to    A x b    

                        x 0

i.e., Minimize z1 = – c x

subject to  Ax b  

                   x 0
Again the problem (4) can be expressed as

Maximize z = – (– c x )

subject to    Ax b, x 0 

i.e., Maximize z = c x

subject to Ax b, x 0 
Now the problem (5) is the given primal problem. So the theorem is proved.

Theorem 11.5.2 : If x  and   are respectively the feasible solutions of the primal

problem (1) and its dual problem (2), then c x b  .

Proof : x  is a feasible solution of the primal problem (1). Then we have

Ax b, x 0   ....... (6)

Also   is a feasible solution of the dual problem (2). Then we have

A c , 0    ......... (7)

From (6) we get, Ax b     ( 0  ) ......... (8)

Again from (7) we get, (A ) c  

} (4)

} (5)
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So (A ) x c x     ( x   0 )

i.e., Ax c x    ........... (9)

From (8) and (9) we get,

c x b       or,,  c x b  

Siince b   being a matrix of order 1 × 1,  b b   

So it is proved that  c x b  .

Note : Here the primal problem (1) and the dual problem (2) are given at the
beginning of the Section 6.5.

Theorem 11.5.3 : If *x  and *  are respectively the feasible solutions of the primal

problem (1) and the dual problem (2) where * *c x b ,   then *x , *  are respectively

optimal solutions of the two problems.

Proof : Here, it is given that  * *c x b   ...... (10)

Let x  be a feasible solution of the primal problem (1). Again *  being a feasible
solution of the dual problem (2), by Theorem 11.5.2, we get

*c x b  . ............... (11)

From (10) and (11) we get *c x c x  from which we can say that *x  is an optimal

solution of the primal problem (1) where *c x  is the maximum value of the objective

function of this problem.

Again, *x  being a feasible soultion of the primal problem (1) for any feasible solution

  of the dual problem (2), by Theorem 6.5.2, we get

*c x b  . ............. (12)

From (10) and (12), we get, * *b c x b     .

So it is proved that for any feasible solution   of the dual problem (2),

*b b     from which we can say that *  is an optimal solution of the dual problem
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where *b   is the minimum value of the objective function of the dual problem.

Hence, the theorem is proved.

Theorem 11.5.4 : A feasible solution *x  to the primal problem (1) will be an

optimal solution of the problem if and only if there exists a feasible solution *  of the dual

problem (2) such that * *c x b  .

This theorem is sometimes refereed to as the Fundamental Duality Theorem
and is stated as follows :

If a finite optimal feasible solution exists for the primal, then there exists a finite
optimal feasible solution for the dual problem and conversely.

Proof : For solving primal problem (1) by simplex method we are to add m slack

variables. Here we observe that in the column vector b  = [ b1, b2, ..... bm], b1, b2,

.... bm are not necessarily non-negative.

If m slack variables be expressed by the column vector 1 2 ms s s sx x , x ,....., x   
then the primal problem (1) can be expressed as

Maximize z = c x ,

subject to m sAx I x b   .......... (13),

sx 0, x 0   and Im is an m × m unit matrix.

Now we assume that the primal problem (1) has a finite optimal soluion. Then
the problem (13) has an optimal basic feasible solution. We suppose that the vector
of the basic variables in the optimal basic feasible solution is

1 2 m
*
B B B Bx x , x ,......., x   

where B is the corresponding basis matrix and  1 2 mB B B Bc c ,c , ......, c  is the row

vector of the coefficients of the basic variables in the objective function.

We know that * 1
Bx B b .

Now, since we get an optimal solution of the problem (13) from *
Bx  we get

zj – cj  0 for all admissible values of j where
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zj = 
m

Bi ij
i 1

c y

 and [yij, yzj ...... ymj] = 1B  (A, Im).

Then we can write    1
B mc B A, I c, 0   .......... (14)

Now we denote the row matrix 1
Bc B  by *( )  .

Then from (14), we get

* *( ) A c, ( ) 0      ............. (15)

or,  * *A (c) , 0      ......... (16)

[Here 0  in (15) is a row matrix and 0  in (16) is a column matrix.]

From (16), we can say that *  satisfies the constraints of problem (2) which is the

dual of the primal problem (1). So *  is a feasible solution of the dual problem.

We shall prove that  * 1
Bc B    is an opitmal solution of the dual problem

(2).

Here the maximum value of the objective function of the primal problem will
be

Zmax = *
B Bc x

=  1 * 1
B Bc B b, x B b 

=     * * *b b b
      .

[ *( ) b   being a 1 × 1 matrix, we have *( ) b   =  *( ) b   ]

Now, for the above two solutions (one for the primal problem and the other for
the dual problem) the values of the objective functions of the primal problem and the

dual problem being equal, by Theorem 11.5.3, we can say that  * 1
Bc B    will be an

optimal solution of the dual problem.

Similarly, we can prove that if the dual problem (2) has an optimal solution *
then the primal problem (1) will also have an optimal solution and zmax = wmin.

Corollary : A linear programming problem has a finite optimal solution if and only
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if each of the given LPP (as primal problem) and its dual problem has at least one
feasible solution.

Proof : Try yourself.

Remark : If the optimal solution of the primal problem be found by simplex
method then, by Theorem 11.5.4, we get the following method of finding the optimal
solution of the dual problem :

If the primal problem be a maximization problem with constraints of the type “”,
then from the entries in the row for zj – cj (in the last table) we get optimal solution
of the dual.

Similarly if the primal problem be a minimization problem with “” constraints and
if this problem be solved by simplex method then from the table giving optimal solution,
changing the signs of the entries in the row zj – cj under the columns for “surplus”
variables we get optimal solution of the dual problem.

Theorem 11.5.5 : If the objective function of the primal problem be unbounded
then the dual problem has no feasible solution.

Proof : We assume that the objective function of the primal problem (1) is
unbounded. If possible let the dual problem (2) possess feasible solution. Now the
primal problem and the dual problem both having feasible solutions, from the corollary
of Theorem 11.5.4 we can say that the primal and the dual problem both have finite
optimal solutions—which is here impossible since the primal problem has unbounded
objective function i.e., the primal problem has no optimal solution. So it is proved that
the dual problem has no feasible solution when the objective function of the primal
problem is unbounded.

Theorem 11.5.6 : If the dual problem has no feasible solution and the primal
problem has a feasible solution then the objective function of the primal problem is
unbounded.

Proof : Try yourself.

11.6 Duality and Simplex Method

We have observed that if optimal soultion (when exists) of the primal problem (or
the dual problem) be found by Simplex method we can find optimal solution of the dual
problem (or the primal problem) from the same simplex table. In this connection we
shall mention three useful rules :
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First Rule : This rule has already been stated in the corollary of Theorem 11.5.4.

Second Rule : If a varvabile of the primal problem (on the dual problem) the

related to an artificial variable of the dual problem (or the primal problem) then in the

row for “net evaluation” in the simplex table giving optimal solution of the dual (primal),

if the penalty cost M in the entry under the corresponding artificial variable is taken

to be 0 we get the value of the corresponding primal variable (dual variable) in the

optimal solution. [Here we omit the proof of this rule–See Example 11.8.2 in Section

11.8]

Third Rule : If one objective function of the primal or the dual be unbounded

then the other problem has no feasible solution. [The proof of this rule follows from

Theorem 11.5.5 and Theorem 11.5.6]

Remark : We observe that duality theory is very helpful in solving L.P.P. by

simplex method when the number of constraints is greater than the number of decision

variables. For example, let the number of constraints be 7 and the number of variables

be 3 in the primal L.P.P. and if we proceed to solve the primal L.P.P. by simplex

method then the initial basis matrix will contain 7 rows and it needs enough time to

compute each simplex table. But if we convert the primal into its dual, we get only

three constraints instead if seven and the dual L.P.P. can be solved easily. Then solving

the dual L.P.P. we get the optimal value of the objective function of the dual as well

as optimal solution of the primal. Therefore, by using duality in some cases we can

solve problems easily and more quickly.

11.7 Economic Interpretation of Duality

We consider the primal problem

Maximize z = c x ,

subject to Ax b, x 0 

where c  = (c1, c2, ....., cn),  b  = [b1, b2, ....., bm] and A is m × n matrix.

Here cj is the value of each unit of output and b1, b2, ....., bm are upper bounds
of availability of input resource. The problem is to determine how much of each output
xj should be produced in order to maximize the total value of the output.
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The dual of the above primal is

Minimize w = b 

subject to A c , 0     .

Here bi (i = 1, 3, ....., m) is the given availability of each input and cj is the lower
bound on the unit value of each output.

The problem is to determine what unit values should be assigned to each input
i in order to minimize the total value of the input.

The primal problem is the problem of a manufacturer who attempts to maximize
the value of his production. The dual problem is the problem of an accountant who
wishes to determine a ‘value’ to each input for replacement. His object is to
determine his input valuations which will minimize the total cost to him.

11.8 A Few Examples

Example 11.8.1 : Find optimal solution (it exists) of the dual from the simplex
table for solving the primal problem given below :

Maximize z = 5x1 + 12x2 + 4x3

subject to x1 + 2x2 + x3  5

2x1 – x2 + 3x3 = 2

x1, x2, x3  0.

Solution : Here we have two dual variables 1, 2 where 2 will be unrestricted
in sign, since there are two constraints on the primal problem and the second constraint
is in the form of an equation.

Now by adding slack variable x4 and artificial variable x5 the modified primal
problem becomes

Maximize z1 = 5x1 + 12x2 + 4x3 + 0x4 – Mx5

subject to x1 + 2x2 + x3 + x4 = 5

2x1 – x2 + 3x3 + x5 = 2

x1, x2, x3, x4, x5  0

M (> 0) is a real number which can be taken to be greater than any number appearing
in the computation.
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Now we get the following tables in solving the problem by simplex method
(notations are usual) :

cj 5 12 4 0 –M

Bc B Bx b 1a 2a 3a 4a 5a

0 4a x4 5 1 2 1 1 0

–M 5a x5 2 2 –1 3 0 1

zj – cj –2M–5 M–12 –3M–4 0 0

 4a x4
13
3

1
3

7
3

0 1 1
3



4 3a x3
2
3

2
3

1
3

 1 0 1
3

zj – cj
8
3

7
3

 40
3

  0 0 4M
3



12 2a x2
13
7

1
7

1 0
3
7

1
7



4 3a x3
9
7

5
7

0 1 1
7

2
7

zj – cj
156

7
3
7

  0 0 40
7

4M
7



 2a x2
8
5

0 1 1
5

 2
5

1
5

5 1a x1
9
5

1 0
7
5

1
5

2
5

zj – cj
141

5
0 0

3
5

29
5

2M
5



In the last table, we find that there is no artificial variable among the basic

variables and zj – cj  0 for all values of j. So from the last table we get an optimal

solution of the primal problem. It is seen that optimal solution of the primal problem

is
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x1 = 
9
5 , x2 = 

8
5 , x3 = 0  and   zmax = 28 1

5 .

Again in the row for zj – cj in the last table, entries under the slack variable x4

and the artificial variables x5 are respectively 
29 2, M
5 5

 .

Now taking M = 0, we see that optimal solution of the dual problem will be

1 = 
29
5 , 2 = 2

5


and wmin = zmax = 28 1
5 .

Here we note that the dual variable is unrestricted in sign and 2 = 2
5

  < 0.

So the solution of the daul problem is 1 = 
29
5 , 2 =

2
5

  and wmin = 28 1
5 .

Example 11.8.2 : Using duality show that the following L.P.P. has no feasible

solution :

Minimize  z = x1 – x2

subject to 2x1 + x2  2

x1 + x2  –1

x1, x2  0.

Solution : The given problem can be expressed as

Minimize  z = x1 – x2

subject to 2x1 + x2  2

–x1 – x2  1

x1, x2  0.

Now the dual of this primal problem will be

Maximize  w = 21 + 2

subject to 21 – 2  1

1 – 2  – 1,

1, 2  0.
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Now this dual problem can be expressed as

Maximize  w = 21 + 2

subject to 21 – 2  1

–1 + 2  1

1 2  0.

The equivalent form of the last L.P.P. is as follows :

Maximize w = 21 + 2 + 0.3 + 0.4

subject to 21 – 2 + 3 = 1

–1 + 2 – 4 = 1

1, 2, 3, 4  0

where 3 is a slack variable and 4 is a surplus variable.

Now using artificial variable 5 we get the following modified form of dual

problem :

Maximize  w = 21 + 2 + 0.3 + 0.4 – M5

subject to 21 – 2 + 3 = 1

–1 + 2 – 4 + 5 = 1

1, 2, 3, 4, 5  0

M (> 0) can be taken to be greater than any number appearing in the computation.

Now we get the following tables in solving the last L.P.P. by simplex method

(notations are usual) :

cj 2 1 0 0 –M

Bc B B b 1a 2a 3a 4a 5a

0 3a 3 1 2 –1 1 0 0

–M 5a 5 1 –1 1 0 –1 1

zj – cj – M M – 2 –M–1 0 M 0
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cj 2 1 0 0 –M

Bc B B b 1a 2a 3a 4a 5a

0 3a 3 2 1 0 1 –1 1

1 2a 2 1 –1 1 0 –1 1

zj – cj 1 – 3 0 0 –1 M+1

2 1a 1 2 1 0 1 –1 1

1 2a 2 3 0 1 1 –2 2

zj – cj 7 0 0 3 –4 M+4

Hence we see that in the last table the most negative value of zj – cj is –4 and

this value is under the column 4a . But we see that y14 = –1 < 0, y24 = – 2 < 0, that

is, no entry of this column is positive. So the objective function of the dual problem
is unbounded.

Hence the given primal problem has no feasible solution.

11.9 Summary

First we have defined dual problem of a primal problem expressed in the form

Maximize z = c x

subject to Ax b, x 0  .

Then we have stated the method of constructing dual problem of the primal
problem given in any form (Maximization or minimization) and with constraints of the

type “  ”, “  ”, “ = ” and also for the problem where some variables are unrestricted
in sign. Here we have observed that (i) number of constraints in the primal problem

= number of variables in the dual problem and the number of variables in the primal

problem = the number of constraints in the dual problem, (ii) if a variable of the primal
problem be unrestricted in sign then the corresponding constraint in the dual problem
will be of the type “ = ” and if a constriant of the primal problem be of the type “ = ”,

then the corresponding variable in the dual problem will be unrestricted in sign.
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Finally, from the important theorems on Duality, we get the following results :

(a) In simplex method we get optimal solutions of the primal problem and the
dual problem (if the optimal solutions exist) from the same table.

(b) The optimal values of the objective functions of the primal and dual problems
will be same (when optimal solutions exist).

(c) If the objective function of the primal problem be unbounded then the dual
problem has no feasible solution and if the objective function of the dual
problem be unbounded then the primal problem has no feasible solution.

11.10 Exercise

Find the dual of the L.P.P. given below (1–5) :

1. Maximize   z = 3x1 + 4x2

subject to x1 + x2  12

2x1 + 3x2  21

x1  8

x2  6

x1, x2  0.

2. Minimize   z = 3x1 + x2

sibject to 2x1 + 3x2  2

x1 + x2  1

x1, x2  0.

3. Maximize   z = 2x1 + 3x2 + 4x3

subject to x1 + 5x2 + 3x3 = 7

2x1 – 5x2  3

3x1 – x3  5.

x1, x2  0 and x3 unrestricted in sign.

4. Maximize   z = 2x1 – 6x2

subject to x1 – 3x2  6

2x1 – 4x2  8
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x1 – 3x2  – 6

x1, x2  0.

5. Minimize z = 2x1 + 3x2 + x3

subject to 4x1 + 3x2 + x3 = 6

x1 + 2x2 + 5x3 = 4

x1, x2, x3  0.

6. Solve the following L.P.P. by solving its dual problem :

Maximize z = 3x1 + 2x2

subject to x1 + x2  –5

x1  4

x2  6

–x2  –1

and x1, x2  0

7. Solve the L.P.P. by simplex method and then find the optimal solution of the
dual problem :

Maximize z = 30x1 + 23x2 + 29x3

subject to 6x1 + 5x2 + 3x3  26

4x1 + 2x2 + 5x3 = 7

x1, x2, x3  0

8. Prove by duality that the objective function of the following is unbounded :

Maximize z = 3x1 + 4x2

subject to x1 – x2  1

x1 + x2  4

x1 – 3x2  3

x1, x2  0

9. Show by simplex method that the dual of the following L.P.P. has no feasible
solution :

Maximize z = x1 + 2x2



168 NSOU  NSE-MT-02

1st Proof   CPP  21/03/2025

subject to x1 + 2x2  1

–x1 + x2  1

x1  0, x2  0

10. Slove the following L.P.P. by simplex method without artificial variables

Minimize z = x1 + x2

subject to x1 + 2x2  12

5x1 + 6x2  48

x1  0, x2  0

[ Hint : Solve the dual problem ]

Answers

1. Minimize w = 211 + 212 + 83 + 64

subject to 1 + 22 + 3  3

1 + 32 + 4  4

1, 2, 3, 4  0

2. Maximize z = 211 + 2

subject to 21 + 2  3

31 + 2  1

1, 2  0

3. Minimize z = 71 + 32 – 53

subject to 1 + 22  2

–51 – 52 – 33  3

31 + 3 = 4

2, 3  0 and 1 unrestructed in sign.

4. Minimize w = 61 – 82 + 63

subject to 1 – 22 – 3  2

–31 – 42 + 33  – 6

1, 2, 3  0
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5. Minimize z = 61 + 42

subject to 41 + 2  2

1 – 52  3

1, 2 are unrestricted in sign.

6. x1 = 4, x2 = 1 and zmax = 10

7. x1 = 4, x2 = 7
2

, x3 = 0 and zmax = 161
2

1 = 0, 2 = 23
2

 and zmin = 161
2

8. x1 = 8, x2 = 0 and zmin = 8

11.11 Multiple Choice Questions (MCQ)

1. When all constraints are of the type “” in the primal and no variable is
unrestricted in sign, the dual will have

(a) all constraints are “” type (b) some constraints are “” type

(c) all constraints are “” type (d) none of the above

2. If the objective function of the dual is unbounded then the primal has

(a) an unbounded objective function

(b) no feasible solution

(c) infinite number of feasible solutions

(d)  none of these

3. If any of the constraints in the primal problem be a perfect “ = ”, then the
corresponding dual variable is

(a) always positive (b) always negative

(c) unrestricted in sign (d) none of these

4. If the primal objective be unbounded, then the dual problem has

(a) unbounded objective function (b) a finite optimal solution

(c) no feasible solution (d) none of these



170 NSOU  NSE-MT-02

1st Proof   CPP  21/03/2025

5. If a variable in the primal problem be unrestricted in sign, then the corresponding
constraint in the dual problem will be

(a) “  ” type (b) “ > ” type

(c) a perfect equality (d) none of these

6. The dual of the dual of a L.P.P.

(a) may not be the primal problem

(b) is the primal problem

(c) cannot be constructed

(d) either the dual or the primal

Answers

1. (c) 2. (b) 3. (c) 4. (c) 5. (c) 6. (b)
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Unit - 12  Transporation Problem

Structure

12.0 Objective

12.1 Introduction

12.2 Mathematical Formulation of a Transportation Problem

12.3 Some Theorems Related to the Solution of a Transportation Problem

12.4 Ideal of Loop and its Application in Solving Transportation Problem

12.5 A Few Examples

12.6 Some Methods of Finding Initial Basic Feasible Solution of A Balanced
Transportation Problem

12.7 Test for Optimality of a Basic Feasible Solution

12.8 A Few Examples

12.9 Unbalanced Transportation Problem

12.10 Summary

12.11 Exercise-1

12.12 Exercise-2

12.13 Multiple Choice Questions (MCQ) Answers

12.0 Objective

After studying this chapter, the reader should be able to

recognise a transportation problem

convert a transportation problem into a LPP

develop a transportation table and apply the transportation method to get the

solution

solve unbalanced and maximization transportation problems.

171
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12.1 Introduction

A special type of linear programming problem is a transportation problem. In this

problem, we are to find the minimum cost of transporting a single commodity from a

number of origins to different destinations. The capacity of production of the commodity

at each origin, the demand at each destination and the transporatation cost (per unit

commodity) from different sources to various destinations will be given. It is assumed

that the cost of transportation on a given route is proportional to the number of units

transported. Let us give one example of a transportation problem.

Let us suppose that there are 8 factories which produce a cold drink at different

parts of a country. The produced cold drink will be transported to 50 different cities

of the country. The units of cold drink produced at different factories (in a given time)

and known and also the units of demand of the cold drink at each city and the costs

of transportation of this commodity from each factory to each city are known. We are

to determine the units of the commodity to be transported from each factory to each

city satisfying the demand of each city and using all units of the commodity produced

at each factory so that the total cost of transportation is minimum.

12.2 Mathematical Formulation of a Transportation Problem

We suppose that there are m origins O1, O2, ......,Om and n destinations D1, D2,

....., Dn.

We suppose that ai ( > 0) units of a given commodity are available at the origin

Oi (i = 1, 2, ......, m) and demand of the commodity at the destination Dj is bj

(j = 1, 2, ...., n) units.

Let xij (i = 1, 2, ......, m; j = 1, 2, ...., n) units be transported from the origin

Oi to the destination Dj.

Then xij  0 and the values of these mn variables xij (i = 1, 2, ...., m; j = 1, 2,
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....., n) must satisty the conditions 
n

ij i
j 1

x a


  (i = 1, 2, ...., m) and 
m

ij j
i 1

x b




(j = 1, 2, ...., n).

Further we suppose that the transportation cost of unit commodity from the origin Oi

to the destination Dj is cij (i = 1, 2, ...., m; j = 1, 2, ...., n).

Then the total cost z of transportation is given by

z = (c11x11 + c12x12 + .....+ c1n x1n) + (c21x21 + c22x22 + .....+ c2n x2n) + ....... +
(cm1xm1 + cm2xm2 + .....+ cmn xmn)

= 

m n

ij ij
i 1 j 1

c x
 


Then the transportation problem can be expressed as a L.P.P. described below :

Minimize z = 

m n

ij ij
i 1 j 1

c x
 


subject to

n

ij i
j 1

x a ;


   i = 1, 2, ...., m;

m

ij j
i 1

x b ;


   j = 1, 2, ....., n;

and xij  0 (i = 1, 2, ....., m; j = 1, 2, ....., n).

If 

m n

i j
i 1 j 1

a b
 

   then the transportation problem is said to be balanced and if

m n

i j
i 1 j 1

a b
 

   then the problem is said to be unbalanced.

We observe that a transportation problem can be described by the following
table which is called a transportation table :
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Destinations

D1 D2 ...................... Dn

O1 c11 c12 ...................... c1n a1

O2 c21 c22 ...................... c2n a2

Origins

Om cm1 cm2 ...................... cmn am

b1 b2 ...................... bn

Table–1

Matrix form of a Transportation Problem (as L.P.P.)

If the transportation problem with m origins and n destinations be described by
the Table 1, then we can express the problem in the matrix form as follows :

Minimize z = c x

subject to  Ax b, x 0 

where x  = [x111, x12, ....., xij, ...... xmn] is a column vector with mn components,  c

= (c11, c12, ......, cij, ....... cmn) is a row vector with mn components, b  = [a1, a2, ......,
am, b1, b2, ....., bn] is column vector with m + n components and A =

11 12 ij mn[a , a ,.....a ,.....a ]  in (m + n) × mn coefficient matrix where ija  is the column

vector corresponding to the variable xij.

Now writing the constraints given by Ax b  in details we get

x11 + x12 + ....... + x1n  = a1

x21 + x22 + ....... + x2n = a2

.............................................................................................

.............................................................................................

xm1 + xm2 + ....... + xmn = am

x11 + x21 + ....... + xm1 = b1

x12 + x22 + ....... + xm2 = b2

..........................................................

..........................................................

..........................................................

...
...
...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
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.............................................................................................

.............................................................................................

x1n + x2n + ....... + xmn = bn

Let us give one example.

Let a transportation problem be described by the following table :

D1 D2 D3 ai

O1 2 1 3 10

O2 2 4 1 15

O3 1 1 5 5

O4 6 2 4 20

bj 30 10 10

Here we have 4 origins and 3 destinations and this is a balanced transportation
problem since here

4 3

i j
i 1 j 1

a b 50
 

   .

If we write the transportation problem as L.P.P., we get

Minimize z = 2x11 + x12 + 3x13 + 2x21 + 4x22 + x23 + x31 + x32 + 5x33 + 6x41

+ 2x42 + 4x43,

subject to x11 + x12 + x13 = 10

x21 + x22 + x23 = 15

x31 + x32 + x33 = 5

x41 + x42 + x43 = 20

x11 + x21 + x31 + x41 = 30

x12 + x22 + x32 + x42 = 10

x13 + x23 + x33 + x43 = 10

and xij  0 (i = 1, 2, 3, 4; j = 1, 2, 3)

Here the number of constraints expressed by equalities 4 + 3 = 7 and the number
of variables is 12.
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Here b  = [10, 15, 5, 20, 30, 10], c  = [2, 1, 3, 2, 4, 1, 1, 1, 5, 6, 2, 4].

Here the coefficient matrix A is

x11 x12 x13 x21 x22 x23 x31 x32 x33 x41 x42 x43

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

which is a matrix of order 7 × 12.

We observe that the column vector corresponding to the variable x12 is

12a  = 1

0

0

0

0

1

0

 
 
 
 
 
 
 
 
 
  

 = 1

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 + 0

0

0

0

0

1

0

 
 
 
 
 
 
 
 
 
  

 = 1 6e e

where ie  is the i-th column vector of the unit matrix of order 7 × 7.

In general we get ij i m ja e e  

[ here m = 4, n = 3 and so

12 1 4 2 1 0a e e e e ,   

23 2 4 3 2 7a e e e e etc.    ]
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12.3 Some Theorems Related to the Solution of a Transportation
Problem

The following theorems will give some characteristics of a transportation problem
which will be helpful in solving a transportation problem.

Theorem 12.3.1 : The number of basic variables of a balanced transportation

problem with m origins and n destinations will be at most (m + n – 1).

Proof : With usual notations, the transportation problem can be expressed as
follows :

Minimize z =

m n

ij ij
i 1 j 1

c x
 
 ,

subject to  

n

ij
j 1

x

  = ai; i = 1, 2, ....., m ........... (1)

m

ij
i 1

x

  = bj;  j = 1, 2, ......, n ............. (2)

              xij  0 (i = 1, 2, ...., m; j = 1, 2, ....., n)

Here 
m n m n

ij i j
i 1 j 1 i 1 j 1

x a b
   

 
  

  
     ................... (3)

m n

i j
i 1 j 1

here a b
 

 
 

  
 

Now from the constraints in (2) we get

n 1 m n 1

ij j
j 1 i 1 j 1

x b
 

  

 
 

 
    ............... (4)

From (3) and (4) we get



178 NSOU  NSE-MT-02

1st Proof   CPP  21/03/2025

m n m n 1

ij ij
i 1 j 1 i 1 j 1

x x


   

   
   

      
     = 

n n 1

j j n
j 1 j 1

b b b


 
  

or,
m n n 1

ij ij n
i 1 j 1 j 1

x x b


  

 
  

  
  

or,
m

in
i 1

x

  = bn which is the n-th constraint of the constraints in (2).

Thus it is seen that of the total m + n constraints in (1) and (2), one constraint is

reduntant. So in any basic solution of the system of equations given by (1) and (2), the

number of basic variables with be m + n – 1.

Theorem 12.3.2 : Every balanced transportation problem has always a feasible

solution.

Proof : With used notations, m + n constraints of the transportation problem
with m origins and n destinations can be taken as

n

ij
j 1

x

  = ai; i = 1, 2, ...., m ...................(5)

and
m

ij
i 1

x

  = bj;  j = 1, 2, ......., n ...............(6)

where ai > 0, bj > 0 (i = 1, 2, .....m; j = 1, 2, ....., n).

Also here 
m n

i j
i 1 j 1

a b S
 

    (say).

Then S must be positive.

Now we shall prove that xij = 
i ja b

S
 (i = 1, 2, ...., m; j = 1, 2, ...., n) will be a

feasible solution of the transportation problem.

Here we observe that xij > 0 for all i, j. Again taking xij = 
i ja b

S
 we get
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n n

i j
ij

j 1 j 1

a b
x

S 
 

= 
n

i
i j

j 1

a S1 a b
S S

  = ai for i = 1, 2, ....., m

m m m
i j

ij j i
i 1 i 1 i 1

a b 1x b a
S S  

    = 
jb S

S
 = bj  for j = 1, 2, ...., n

So xij = 
i ja b

S
 (i = 1, 2, ... m; j = 1, 2, ... n) satisfy all the constraints of (5) and

(6) of the transporation problem and also xij  0 (i = 1, 2, ... m; j = 1, 2, ... n).
Thus we get a feasible solution of the transportation problem.

Theorem 12.3.3 : For any transportation problem the value of the objective

function can never be unbounded and in any feasible solution, the value of any variable
cannot be made arbitrarily large.

Proof : We suppose that the transportation problem is

Minimize z = 
m n

ij ij
i 1 j 1

c x
 
 ,

subject to

n

ij
j 1

x

  = ai;   i = 1, 2, ......, m

m

ij
i 1

x

  = bj;  j = 1, 2, ...., n,

xij  0 (i = 1, 2, ...., m; j = 1, 2, ...., n).

Here we observe that for any feasible solution [x11, x12, ...., xij, ......, xmn],

xij  
n

ij
j 1

x

  = ai ( xij  0 for all i, j)  (i = 1, 2, ......, m).

and xij  
m

ij
i 1

x

  = bj, (j = 1, 2, ...., n).
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So we get, 0  xij  max {a1, a2, ....., am; b1, b2, ....., bn} for all i, j ........(7)

Again here cij  0 for all i, j.

Then for any feasible solution z = 
m n

ij ij
i 1 j 1

c x 0
 

 .

Now the transporation problem being a minimization problem and for any
feasible solution z being non-negative (i.e.,  0), the value of z can never be
unbounded.

Again from (7) we can say that value of xij cannot be made arbitrarily large.

So the theorem is proved.

Remark : Since every balanced transportation problem has a feasible solution
and the objective function of such problem can never be unbounded every balanced
transportation problem has an optimal soultion.

Now the transportation problem having some special characteristics, unlike the
laborious method of solving a general L.P.P. by simplex method, it will be possible
to obtain special method by which a transportation problem can be solved without
much labour.

12.4 Idea of Loop and its Application in Solving Transporation
Problem

A feasible solution [x11, x12, xij, .. .., xmn] of a transportation problem with m origins
and n destinations, is given in the following table :

D1 D2 ...................... Dn

O1 x11 x12 ...................... x1n

O2 x21 x22 ...................... x2n

............ (1)

Om xm1 xm2 ...................... xmn

Here each variable is put within a box. Total number of variables is mn and

..........................................................

..........................................................

...
...
...
...
...
...
.
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these are put inside mn boxes. The variable xij put within the box in the i-th row and j-

th column and this box will be called (i, j) cell.

We observe that if m = 3, n = 2 then the total number of variables will be 6 and

we will get 6 cells. Here the variables are x11, x12, x21, x22, x31, x32 and the

corresponding cells are (1, 1), (1, 2), (2, 1), (2, 2), (3, 1) and (3, 2) which are shown

in the following table :

D1 D2

O1 x11 x12

O3 x21 x22

O3 x31 x32

We have mentioned earlier that transportation costs c11, c12, ....., cij, ......, cmn are

shown in a table similar to the table (1) and such table is called transportation table

where the cost cij is shown in (i, j) cell.

Loop : A finite sequence of cells in a transportation table will be called a loop if

(i) any two adjacent cells are in the same row or in the same column of the

transportation table.

(ii) not more than 2 cells of the sequence are in the same row or in the same

column.

(iii) first cell and last cell of the sequence are in the same row or in the same

column.

(iv) at least two rows or two columns of the transportation table are to be used

in the sequence.

Some loops are shown by diagrams for the following transportation table [cells

of the loop are expressed by ‘.’].

D1 D2 D3 D4 D5

O1 c11 c12 c13 c14 c15

O2 c21 c22 c23 c24 c25

O3 c31 c32 c33 c34 c35

O4 c41 c42 c33 c44 c45
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(a) D1 D2 D3 D4 D5

O1

O2

O3

O4

Here the cells of the loop are (1, 1), (1, 3), (2, 3), (2, 1).

(b) D1 D2 D3 D4 D5

O1

O2

O3

O4

Here the cells of the loop are (1, 2), (1, 5), (2, 5), (2, 1), (4, 1) (4, 2).

(c) D1 D2 D3 D4 D5

O1

O2

O3

O4

Here the cells of the loop are (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) (3, 4), (4, 4),
(4, 1).

We observe that the total number of cells in any loop are always even and each
loop has at least 4 cells.

Use of loop in a transporation problem

We have seen that a transportation problem is a special kind of L.P.P. Further
we have proved that the number of basic variables in a transportation problem
with m origins and n destinations (total number of variables is mn) will be at most
m + n – 1.

Now we remember that in finding the basic solutions of the system of equations
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expressed by Ax b , the columns corresponding to the basic variables in the coefficient

matrix must be linearly independent.

In solving a transportation problem, by using loop we can easily determine

whether a given set of column vectors in the corresponding coefficient matrix are

linearly independent or not and for this we are to apply the following theorem which

is stated below (without proof) :

Theorem 12.4.1 : A set of column vectors of the coefficient matrix of a

transportation problem will be linealry dependent if and only if the set of cells (or a subset

of it) in the transportation table corresponding to these vectors form a loop.

12.5 A Few Examples

We consider the following transportation problem :

D1 D2 D3 D4 a0

O1 2 4 6 1 40

O2 3 4 2 3 30

O3 5 2 7 1 50

Oj 35 35 25 25

Two feasible solutions of this problem are displayed in the following tables :

(i) D1 D2 D3 D4 a0

O1 20 10 10 40

O2 15 15 30

O3 15 10 25 50

bj 35 35 25 25
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(ii) D1 D2 D3 D4 ai

O1 35 5 40

O2 30 30

O3 25 25 50

bj 35 35 25 25

Here we like to mention that when express a feasible solution of a transportation
problem in table, we shall assume that the value of the variable corresponding to an
empty cell will be 0 and in writing the solution these variables (whose values are 0)
will not be mentioned.

Then  the feasible solution given by (i) will be

x11 = 20, x12 = 10, x13 = 10, x22 = 15, x23 = 15, x31 = 15, x32 = 10, x34 = 25.

Here m = 3, n = 4. So the number of basic variables will be at most 3 + 4 –
1 = 6. So for this problem, in any basic solution (here the total number of variables
is 12), the values of at least 12 – 6 = 6 variables will be 0. In the feasible solution
(i), the values of only 4 variables are 0 and so this solution is not a basic solution.
Here the cells corresponding to the variables which have positive values are (1, 1),
(1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 4) and so loop can be formed with all
or some of these cells. Here we see that the cells (1, 2), (1, 3), (2, 3), (2, 2) have
formed a loop.

12.6 Some Methods of Finding Initial Basic Feasible Solution of
A Balanced Transporation Problem

(a) North-West Corner Method :

We consider the following transportation problem :

D1 D2 D3 D4 ai

O1 5 3 6 4 30

O2 3 4 7 8 15

O3 9 6 5 8 15

bj 10 25 18 7
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Here we note that the problem is balanced since ja  = 30 + 15 + 15 = 60 and

jb = 10 + 25 + 18 + 7 = 60.

In this method we start with the top most left corner of the above table (north-
west corner) and we allocate maximum units possible there, that is, x11 = min {30,
10} = 10.

So in the above transportation table we allocate 10 units in (1, 1) cell.

Now see that the requirement in the destination D1 was 10. So, requirement for
D1 is satisfied. So, the origin, O1 has the capacity of supplying 30 – 10 = 20 units.

Then we consider the cell (1, 2) which in adjacent to the cell (1, 1) and so we
allocate min {20, 25} = 20 units in (1, 2) cell.

Now it is seen that the units available at the origin O1 are exhausted. But the
demand of D2 is still unsatsified. So in the cell just below (1, 2) cell i.e., in (2, 2)
cell we allocate min {5, 15} = 5 i.e., x22 = 5. Now the origin O2 has still capacity
of supplying 10 units. Then in the cell (2, 3) which is adjacent to the right of the cell
(2, 2) and we allocate x23 = min {10, 18} = 10.

D1 D2 D3 D4

O1 5 3 6 4 30
20

O2 3 4 7 8 15
10

O3 9 6 5 8 15
7

10 25
5

18
8

7

Now the origin O2 is exhaused.

Then in the cell just below the (2, 3) cell i.e., in the (3, 3) cell we allocate x33

= min {8, 15} = 8

Now we consider the cell (3, 4) which is right to the cell (3, 3) and we allocate
x34 = min {7, 7} = 7

Now we see that every source is exhausted and the demand of each destination
is satisfied. So we get an initial feasible solution of the given problem is

10 20

105

8 7
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x11 = 10, x12 = 20, x22 = 5, x23 = 10, x33 = 8, x34 = 7.

In this case the cost of transportation is

10 × 5 + 20 × 3 + 5 × 4 + 10 × 7 + 8 × 5 + 7 × 8

= 50 + 60 + 20 + 70 + 40 + 56  = 296 units

The above solution is displayed in the following table

D1 D2 D3 D4

O1 5 3 6 4 30

O2 3 4 7 8 15

O3 9 6 5 8 15

10 25 18 7

We observe that the set of cells where allocations have been made in this
solution or a subset of these cells do not form loop. So, this solution is a basic
feasible solution.

(b) Matrix Minima Method :

In this method, we find the cell in the transporation table where the cost is
minimum. We allocate some units in this cell. We shall explain the method by an
example.

We consider the following transportation table :

D1 D2 D3 D4 ai

O1 1 2 1 4 30

O2 3 3 2 1 50

O3 4 2 5 9 20

bj 20 40 30 10

Here ia  = 30 + 50 + 20 = 100 and jb   20 + 40 + 30 + 10 = 100.

10 20

5 10

8 7
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Therefore i ja b  .

So, the transportation problem is balanced.

In the transportation table, the minimum cost is 1 which is in the cells (1, 1),
(1, 3) and (2, 4). We take any one of these cells. In particular we take the cell
(1, 1) and we allocate min {20, 30} = 20 in this cell. So, x11 = 20. Then the demand
of D1 is satisfied and so we can delete the column for D1 by dotted line.

D1 D2 D3 D4

O1 1 2 1 4 30
10

O2 3 3 2 1 50

O3 4 2 5 9 20

20 40 30 10

Then we get the following table

D2 D3 D4

O1 2 1 3 10

O2 3 2 1 50

O3 2 5 9 20

40    30
20

10

Now minimum cost in this matrix in 1 which is in the cells (1, 3) and (2, 4).
Taking (1, 3) cell we get x13 = min {30, 10} = 10. Then the origin O1 is exhausted.
So, the row corresponding to O1 is deleted by dotted line. Then we get the following
table.

D2 D3 D4

O2 3 2 1 50
40

O3 2 5 9 20

40    20 10

10

10

20
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Repeating the above procedure we get the following table :

D2 D3

O2 3 2 40
20

O3 2 5 20

40    20

D2

O2 3 20

O3 2 20
40

The final feasible solution is displayed in the following table :

D1 D2 D3 D4

O1 1 2 1 4 30

O2 3 3 2 1 50

O3 4 2 5 9 20

bj 20 40 30 10

So, the feasible solution is

x11 = 20, x13 = 10, x22 = 20, x23 = 20, x24 = 10, x32 = 20

and the cost of transportation

           = 20 × 1 + 10 × 1 + 20 × 3 + 20 × 2 + 10 ×1 + 20 × 2

          = 20 + 10 + 60 + 40 + 10 + 40

          = 180 units.

20 10

2020 10

20

20

20

20
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The set of cells in which allocations have been made in this solution or any subset of
these cells do not form loop. So this solution is an initial basic feasible solution.

(c) Vogel’s Approximation Method (VAM) :

In this method difference between the least cost in each row and the next cost are
shown within a paranthesis in the line of the corresponding row. Similarly difference
between the least cost and the next cost in each column are put within a paranthesis under
the corresponding column. These differences are called penalty. Now the greatest penalty
considering the rows and columns) which is in a row or in a column is noted and if this
greatest penalty be in a row then we allocate in the least cost cell of that row and if the
greatest penalty be in a column we allocate in the least cost cell of the column. We shall
explain the method by an example.

D1 D2 D3 D4 ai

O1 2 3 11 7 6

O2 1 2 6 1 1

O3 5 8 15 9 10

bj 7 5 3 2

Here ia  = 6 + 1 + 10 = 17 and jb   7 + 5 + 3 + 2 = 17.

Therefore i ja b  .

So, the transportation problem is balanced.

D1 D2 D3 D4 ai

O1 2 3 11 7 6 (1)

O2 1 2 6 1 1 (0)

O3 5 8 15 9 10 (3)

bj 7 5 3  2
1

(1) (1) (5) (6)

1
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Now for each row, difference between the least cost and the next cost in that are put
within a paranthesis in the line of the row. Again for each column the least cost and the next
cost are put within a paranthesis in the line of the column.

Now of these differences, greatest difference is 6 which is in the 4-th column. The we
are to allocate in the least cost cell of this column. Now the least cost in this column is 1
which is in (2, 4) cell. So x24 = min {2, 1} = 1. Then the source O2 is exhausted. So the
row for O2 is deleted by dotted line. Then we get following table :

D1 D2 D3 D4

O1 2 3 11 7 6
1

(1)

O3 5 8 15 9 10 (3)

7 5 3  1

(3) (5) (4) (2)

How we see that the greatest difference is 5 which is in the column for D2. Now the
least cost in this column is 3 which is in the cell (1, 2). So, we take x12 = min {5, 6} =
5. Now demand of D2 is satisfied. Then we get the following table :

D1 D3 D4

O1 2 11 7 1 (5)

O3 5 15 9 10 (4)

  7 
6

3  1

(3) (4) (2)

Finally we get the following table :

D1 D3 D4

O3 5 15 9 10

6 3  1

So, initial feasible solution is displayed in the following table :

6 3 1

1

5
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D1 D2 D3 D4

O1 2 3 11 7 6

O2 1 2 6 1 1

O3 5 8 15 9 10

7 5 3 2

So an initial feasible solution is
x11 = 1, x12 = 5, x24 = 1, x31 = 6, x33 = 3, x34 = 1.
and cost of the transportation

= 1 × 2 + 5 × 3 + 1 × 1 + 6 × 5 + 3 × 15 + 1 × 9
= 2 + 15 + 1 + 30 + 45 + 9
= 102 units

The set of cells in which allocations are made or any subset of these cells do
not form loop. So this initial feasible solution is basic.

(d) Row-Minima Method :

In this method, at first we select the minimum cost cell in the first row. Then
maximum possible units are allocated in that cell. If minimum cost occurs at more
than one cell then any cell with minimum cost can be selected. We shall explain the
method by an example.

We take the following transportation problem :

D1 D2 D3 D4 ai

O1 23 27 16 18 30
5

O2 12 17 20 51 40
18

O3 22 28 12 32 53
36

bj 22   35
17

25   41
36

1 5

1

136

25 5

22 18

17 36



192 NSOU  NSE-MT-02

1st Proof   CPP  21/03/2025

Here ia  = 30 + 40 + 53 = 123 and jb   22 + 35 + 25 + 41 = 123.

Therefore i ja b  .

So, the transportation problem is balanced.

We see that minimum in the first row is 16 which is in (1, 3) cell. Then we take

x13 = min {30, 25} = 25. Then the demand of D3 is satisfied. So the third column can

be deleted.

Now we see that source at O1 still contains 5 units. Again we see that the least

element in the 1st row is 18 which is in (1, 4) cell and so we take x14 = min

{41, 5} = 5.

Then the source at O1 is exhausted. So, we omit the source O1.

Now the least cost in the second row is 12 which is in (2, 1) cell. So we take

x21 = {40, 22} = 22. Now the demand for D1 is satisfied. So column for D1 omited.

Now in the second row we see that the minimum cost is 17 which is in (2, 2) cell

and so we take x22 = min {18, 35} = 18. So then the source at O2 is exhausted and

so the row for O2 is omitted. Now in the third row we find that the least cost is 28

which is in cell (3, 2) and so we take x32 = {17, 53} = 17.

So an initial feasible solution is

x13 = 25, x14 = 5, x21 = 22, x22 = 18, x32 = 17, x34 = 36

and cost of transportation

=  25 × 16 + 5 × 18 + 22 × 12 + 18 × 17 + 17 × 28 + 36 × 32

= 400 + 90 + 264 + 306 + 476 + 1152

= 2688 units

The cells in which allocations have been made in this solution and any subset

of these cells do not form loop. So the above feasible solution is a basic feasible

solution.

(e) Column-Minima Method :

This method is similar to the previous method (d). The only difference is that
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instead of taking row in the previous method, we proceed by taking column in this
method.

12.7 Test for Optimality of a Basic Feasible Solution

We know that the number of basic variables in a transportation problem with m
origins and n destinations will be at most m + n – 1. So if a basic feasible solution be
displayed in a transportation table then the number of occupied cells will be at most
m + n – 1.

Now we state (without proof) below a theorem by which we can say whether a
basic feasible solution of a balanced transportation problem will be optimal or not :

Theorem 12.7.1 : If in a basic-feasible solution, the number of basic variables
is m + n – 1 (m, n have usual meanings) and if the value of no basic variable is zero
i.e., if the solution be non-degenerate and if m + n numbers ui, j (i = 1, 2, .... m; j
= 1, 2, ..... n) can be found such that for each occupied cell (i, j), cij = ui + j then
the cell evaluation ij of each unoccupied cell will be cij – (ui + j) and the basic
feasible solution will be optimal solution if ij  0 for each cell (i, j) of the
transportation table. [cij is cost of transportation of unit commodity from the i-th origin
to the j-th destination.]

Remarks

1. If the number of occupied cells be m + n – 1, then from cij = ui + j (for each
occupied cell), we get m + n – 1 equations involving m + n unknown numbers
u1, u2, .... um; 1, 2, ..... n and in this case taking the value of anyone of
ui or j arbitrarily, u1, u2, .... um; 1, 2, ..... n can be determined. In general
we take ui = 0 or j = 0 if the maximum number of cells in the i-th row or
in the j-th column have allocations.

2. If for each unoccupied cell, ij = cij – (ui + j) > 0 then the transportation
problem has unique optimal solution. If for each unoccupied cell (i, j), ij 
0 and ij = 0 for at least one unoccupied cell then the transportation problem
will have more than one optimal solution i.e. here optimal solution will not be
unique.

3. If for at least one unoccupied cell (i, j), ij < 0 then the corresponding
feasible solution will not be optimal. In this case, for optimal solution we are
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to obtain another basic feasible solution in the following way : The cell (i, j)
for ij < 0 and | ij | is maximum will be taken as a new basic cell and
maximum allocation (consistent with the constraints of the problem) is to be
made in this cell and instead allocation in basic cell (i.e., a previous occupied
cell) is to be made 0. As a result we shall get a new basic feasible solution
for which total transportation cost will be less than the total cost for the
previous solution.

Again, we are to make optimality test with this new basic feasible solution.

If the new solution be an optimal solution then optimal solution of the given
problem is obtained otherwise following the previous method another basic
feasible solution is obtained and in this way finally we get optimal solution of
the given transportation problem.

For understanding the method clearly see examples given in Section 7-8.

4. As usual, the allocation in a cell (if not zero) is shown within a small square
in the upper left hand corner of that cell and cost in that cell will be shown
within a small square in the lower right hand corner of that cell. For each
unoccupied cell (i, j), value of ui + j will be displayed within a small circle
of that cell.

12.8 A Few Examples

Example 12.8.1 : 1. Solve the following transportation problem :

D1 D2 D3 D4 ai

O1 5 4 6 14 15

O2 2 9 9 6 4

O3 6 11 7 13 8

bj 9 7 5 6

Solution : Let us first find an initial basic feasible solution by VAM.

Here the problem is balanced since ia  = jb   27.
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D1 D2 D3 D4 ai

O1 5 4 6 14 15
8

(1) (1)

O2 2 9 9 6 4 (4)

O3 6 11 7 13 8 (1) (1)

bj 9 7 5 6
2

(3) (5) (1) (7)

(3) (7) (1) (1)

D1 D3 D4 ai

O1 5 6 14 8 (1)

O3 6 7 13 8 (1)

 9
1

5 2

(1) (1) (1)

D1 D3 D4

O3 6 7 13 8

 1 5 2

The feasible solution obtained by VAM is shown in the following transportation
table :

D1 D2 D3 D4 ai

8 7

O1 5 4 6 14 15

4

O2 2 9 9 6 4

1 5 2

O3 6 11 7 13 8

bj 9 7 5 6

8

7

4

1 5 2
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The basic feasible solution is x11 = 8, x12 = 7, x24 = 4, x31 = 1, x33 = 5, x34 = 2.

Here the number of basic variables is 3 + 4 – 1 = 6 and in the above solution the
value of no basic variable is 0. So the solution is non-degenerate basic feasible
solution.

Optimality Test

D1 D2 D3 D4 ai ui

8 7 6 12

O1 5 4 6 14 15 –1

–1 –2 0 4

O2 2 9 9 6 4 –7

1 5 5 2

O3 6 11 7 13 8 0

bj 9 7 5 6

j 6 5 7 13

Table–I

We know that the numbers ui (i = 1, 2, 3), j ( j = 1, 2, 3, 4) are obtained by
solving 6 equations given by cij = ui + j for each occupied cell (i, j) where one of
ui (i = 1, 2, 3), j (j = 1, 2, 3, 4) can be taken arbitrarily.

Now maximum number of cells (3 cells) have been given allocations in the third row
and so according to convention we take u3 = 0.

Then we get u1 = –1, u2 = –7, u3 = 0, 1 = 6, 2 = 5, 3 = 7, 4 = 13.

Now for each unoccupied cell (i, j), the value of ui + vj has been shown within a small
circle in Table-I.

The values of cell evaluations ij = cij  – (ui + j) are shown in the following table
(for all unoccupied cells (i, j) :

D1 D2 D3 D4

O1 0 2

O2 3 11 9

O3 6
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Here ‘dots’ represent basic cells.

Then it is seen that for each unoccupied cell ij  0

[for example  D14 = c14 – (u1 + 4)

= 14 – (–1 + 13) = 2

for (1, 4) cell].

So the solution obtained by VAM will be optimal solution.

So in this case an optimal basic feasible solution is

x11 = 8, x12 = 7, x24 = 4, x31 = 1, x33 = 5, x34 = 2

and the minimum transportation cost is

8 × 5 + 7 × 4 + 4 × 6 + 1 × 6 + 5 × 7 + 2 × 13

= 159 units.

Example 12.8.2 : Solve the following transportation problem :
ai

O1 1 5 8 6 8

O2 4 2 5 4 9

O3 6 4 3 1 13

bj 10 3 4 13

Solution : Here the problem is balanced since ia  + jb   30

Here the initial basic feasible solution is obtained by Row-minima method and
the solution is shown in the following table :

D1 D2 D3 D4 ai

8

O1 8

2 3 4

O2 9

4 9

O3 13

bj 10 3 4 13
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Here m + n – 1 = 3 + 4 – 1 = 6 and in the above table we find that there are 6
occupied cells and so this solution is non-degenerate.

The solution is x11 = 8, x21 = 2, x22 = 3, x24 = 4, x33 = 4, x34 = 9.
Optimality Test :

D1 D2 D3 D4 ai ui

8 –1 3 1

O1 1 5 8 6 8 –3

2 3 6 4

O2 4 2 5 4 9 0

1 –1 4 9

O3 6 4 3 1 13 –3

bj 10 3 4 13

j 4 2 6 4

Table–II

For each occupied cell (i, j) we get cij = ui + j which gives 6 equations (since there
are 6 occupied cells). Taking u2 = 0, solving these equations we get u1 = –3, u2 = 0, u3

= –3, 1 = 4, 2 = 2, 3 = 6, 4 = 4.

Now the values of ui + j [for all unoccupied cells (i, j)] are displayed in Table-II
within a small circle.

Here the values of cell evaluations ij = cij – (ui + j) are shown in the following table
[for all unoccupied cells] :

D1 D2 D3 D4

O1 6 5 5

O2 (–1)

O3 5 5

It is seen that 23 = –1 < 0.

So the solution obtained by ‘row minima’ method is not an optimal solution.
Now there is only one unoccupied cell where the cell evaluation is negative and the
cell is (2, 3).
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So we shall determine another basic feasible solution where (2, 3) cell will be a
basic cell.

Now a loop can be formed with the unoccupied cell (2, 3) and the occupied cells
(2, 4), (3, 4), (3, 3) [The loop is shown in the table given below].

D1 D2 D3 D4

O1

O2  4–

O3 4– 9+

We suppose that an allocation  (> 0) is given in (2, 3) cell. Then in order that the
constraints at the given transportation problem may be satisfied we alternately add and
subtract  in the cells of the loop (as shown in the above table).

Now in order that value of every allocation is “  ”, we are to select  (> 0) in such
a way that  = min. {4, 4} = 4.

So the new basic feasible solution thus obtained is shown in the following
table :

D1 D2 D3 D4 ai ui

8 –1 2 0

O1 1 5 8 6 8 –3

2 3 4 3

O2 4 2 5 4 9 0

2 0  13

O3 6 4 3 1 13 –2

bj 10 3 4 13

j 4 2 5 4

Table–III

In this solution there are five occupied cells. But here the number of basic variables
is 6. So the above solution is degenerate basic feasible solution.

The solution is

x11 = 8, x21 = 2, x22 = 3, x23 = 4, x34 = 13.





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Optimality Test :

Here the number of occupied cells is 5 which is less than m + n – 1 = 6. So we

are to add an unoccupied cell with these five occupied basic cells so that no loop can

be formed with these 6 cells or with any subset of this cells. We take (3, 3) as the

unoccupied basic cell where an amount  (> 0) is allocated and where  is sufficiently

small so that a ±  can be taken as a for any number a. As a result, the given problem

is modified, but at the optimal stage if we take  = 0 we shall obtain the optimal

solution of the given problem.

Thus as usual taking cij = ui + j [for each we shall get six equations involving

ui (i = 1, 2, 3), j (j = 1, 2, 3, 4) and the values of these 7 numbers u1, u2, u3, 1,

2, 3, 4 can be determined by solving the above equations with the extra condition

u2 = 0.

Then we get u1 = –3, u2 = 0, u3 = –2; 1 = 4, 2 = 2, 3 = 5, 4 = 4.

Now as usual we put the value of ui + j (for each unoccupied cell) within a small

circle in Table-III.

Now cell evaluations ij = cij – (ui + j) are shown in the following table for each

unoccupied cell.

D1 D2 D3 D4

O1 6 6 6

O2 1

O3 4 4
   

In the above table, dot’s represent the basic cells where in the particular basic cell (3,

3), an allocation  (> 0) is given.

In the last table, we find that all cell evaluations ij are “  0 ”. So an optimal solution

of the given problem can be obtained by taking  = 0. Then an optimal solution is

x11 = 8, x21 = 2, x22 = 3, x23 = 4, x34 = 13 which is a degenerate basic feasible

solution and minimum cost = 8 × 1 + 2 × 4 + 3 × 2 + 4 × 5 + 13 × 1 = 55 units.
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12.9 Unbalanced Transportation problem

If the total availability and the total requirments are not equal in a transportation

problem, i.e., if 
m n

i j
i 1 j 1

a b ,
 

   then we say that the transportation problem is

“unbalanced”.
In this case the unbalanced problem is to be transformed into a balanced

problem.

For this, a fictitious source 
m n

i j
i 1 j 1

for a b
 

 
 

 
   or a fictitious destination

m n

i j
i 1 j 1

for a b
 

 
 

 
   is introduced where the cost from the fictitious source to any

destination is taken to be “0” or the cost from any source to a fictitious destination is
taken to be “0”.

If a fictitious source is required then the amount of availability at this source will

be 
n m m n

j i i j
j 1 i 1 i 1 j 1

b a a b
   

 
  

 
   

Similarly, it a fictitious destination is required then the requirement at the fictitious

destination will be 
m n

i j
i 1 j 1

a b
 

   when 
m n

i j
i 1 j 1

a b
 

  .

Let us give an example.

We consider the following transportation problem :

D1 D2 D3 D4 ai

O1 10 8 2 7 50

O2 5 6 4 3 40

O3 12 21 9 8 30

bj 60 40 20 30
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Here i j
i j

a 120, b 150   .

Then in this case j i
j i

b a  .

So here a fictitious source O4 is required and availability of this source will be
150 – 120 = 30.

So the transformed balanced transportation problem will be as follows :

D1 D2 D3 D4 ai

O1 10 8 2 7 50

O2 5 6 4 3 40

O3 12 21 9 8 30

O4 0 0 0 0 30

bj 60 40 20 30

Now the balanced problem will be solved as usual. In the optimal solution of the
balanced problem, if there be any allocation in a cell for the fictitious row O4, we omit this
allocation and we get optimal solution of the unbalanced transportation problem. In this
case “30” units cannot be sent to any destination from the source O4, i.e., in this case “30”
units demand of the destination cannot be supplied.

If i j
i j

a b   then we can similarly solve the corresponding unbalanced

transportation problem taking a fictitious destination with each entry “0” in the
column for fictitious destination.

[As an illustration see solution of the unbalanced transportation problem given
in Ex-7 of Exercise-2 in Section 7.12]

12.10 Summary

At first we have described transporatation problem as a special type of
L.P.P. and then we have proved that any balanced transportation problem has an
optimal solution.



NSOU  NSE-MT-02 203

We have stated the theorem by which we can determine whether a given set

of column vectors of the coefficient matrix of the transportation problem will be

linearly dependent or not by observing whether the cells in the transportation

table corresponding to the variables of the column vectors form a loop or not. We

have discussed different methods of finding initial basic feasible solutions of a

transportation problem. Then we have described MODI method of testing

optimality of an initial basic feasible solution and also we have discussed the

method of obtaining an improved basic feasible solution if the initial basic feasible

solution (obtained by any method) is not optimal. At the end, we have discussed

how an unbalanced transportation problem can be solved.

12.11 Exercise-1

1. Express the following transportation problem as a L.P.P. :

(i) D1 D2 ai

O1 2 1 10

O2 3 4 12

bj 8 14

(ii) D1 D2 D3 D4 ai

O1 2 1 3 2 30

O2 3 1 0 4 50

O3 5 3 2 4 20

bj 20 40 30 10

2. Examine whether the solution displayed in the following table is a basic feasible
solution or not. Is this solution non-degenerate?



204 NSOU  NSE-MT-02

1st Proof   CPP  21/03/2025

D1 D2 D3 D4 ai

20 10

O1 30

30 20

O2 50

10 10

O3 20

bj 20 40 30 10

3. Write the coefficient matrix of the Problem 1 (i) and show that the rank of this
matrix will be 3.

Answers

1. (i) Minimize z = 2x11 + x12 + 3x21 + 4x22

subject to x11 + x12 = 0

x21 + x22 = 12

x11 + x21 = 8

x12 + x22 = 14

x11, x12, x21, x22  0

(ii) Minimize z = 2x11 + x12 + 3x13 + 2x14 + 3x21 + x22 + 4x24 + 5x31 + 3x32

+ 2x33 + 4x34

subject to x11 + x12 + x13 + x14 = 30

x21 + x22 + x23 + x24 = 50

x31 + x32 + x33 + x34 = 20

x11 + x21 + x31 = 20

x12 + x22 + x32 = 40

x13 + x23 + x33 = 30

x14 + x24 + x34 = 10

xij  0;    i = 1, 2, 3 ; j = 1, 2, 3, 4
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2. Non-degenerate basic feasible solution.

3. The coefficient matrix of the Problem 1 (i) is 

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 
 
 
 
 
 

12.12 Exercise-2

1. Find the initial basic feasible solution of the following transportation problem by

(i) North-West Corner (ii) Vogel’s approximation method

D1 D2 D3 ai

O1 5 1 8 12

O2 2 4 0 14

O3 3 6 7 4

bj 9 10 11

Which method of solution is better in respect of transportation cost ?

2. Find the initial basic feasible solution by Matrix-Minimum method.

D1 D2 D3 D4 D5 ai

O1 2 11 10 3 7 4

O2 1 4 7 2 1 8

O3 3 9 4 8 12 9

bj 3 3 4 5 6
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3. Solve the following Transportation Problems :

(i) D1 D2 D3 ai

O1 30 20 10 500

O2 5 15 25 500

bj 300 300 400

(ii) D1 D2 D3 ai

O1 7 3 4 2

O2 2 1 3 3

O3 3 4 6 5

bj 4 1 5

4. Find the basic feasible solution of the Transportation problem below :

W1 W2 W3 W4 ai

O1 19 30 50 10 7

O2 70 30 40 60 9

O3 40 8 70 20 18

bj 60 40 20 30

5. Solve the following Transportation Problem and prove that optimal solution
is unique :

D1 D2 D3 ai

O1 6 8 4 14

O2 4 9 3 12

O3 1 2 6 5

bj 6 10 15
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6. Solve the following Transportation problem :

D1 D2 D3 ai

O1 0 2 1 5

O2 2 1 5 10

O3 2 4 3 5

bj 5 5 10

7. Solve the following unbalanced transportation problem :

D1 D2 D3 D4 ai

O1 3 8 7 4 30

O2 5 2 9 5 50

O3 4 3 6 2 80

bj 20 60 55 40

Solution : Here ia = 160 and jb  175. So the problem is unbalanced.

Here j ib a 15   .

Then a fictitious source O4 is introduced where availability is 15 units.

Now the transformed transportation problem is

D1 D2 D3 D4 ai

O1 3 8 7 4 30

O2 5 2 9 5 50

O3 4 3 6 2 80

O4 0 0 0 0 15

bj 20 60 55 40
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Here a basic feasible solution obtained by VAM is shown in the following table :

D1 D2 D3 D4 ai

20 10

O1 3 8 7 4 30

50

O2 5 2 9 5 50

10 30 40

O3 4 3 6 2 80

15

O4 0 0 0 0 15

bj 20 60 55 50

Optimality Test :

Here the number of occupied cells (basic cells) is 7 (m + n – 1 = 4 + 4 – 7 = 7).
From seven equations given by cij = ui + j [taking each basic cell (i, j)] and taking
u3 = 0 we get u1 = 1, u2 = –1, u3 = 0, u4 = –6, 1 = 2, 2 = 3, 3 = 6, 4 = 2.

Then the values of cell evaluations ij are computed and shown within small
circles (taking all unoccupied cells) in the following table :

D1 D2 D3 D4 ui

20 4 10 1

O1 3 8 7 4 1

4 50 4 4

O2 5 2 9 5 –1

2 10 30 40

O3 4 3 6 2 0

4 3 15 4

O4 0 0 0 0 –6

j 2 3 6 2
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Here we see that ij = cij – (ui + j)  0 for all values of i, j.

So the basic feasible solution obtained by VAM is the optimal solution.

Then optimal solution of the given transportation problem is x11 = 20, x13 = 10,

x22 = 50, x32 = 10, x33 = 30, x34 = 40

and minimum cost is

20 × 3 + 10 × 7 + 50 × 2 + 10 × 3 + 30 × 6 + 40 × 2 = 520 units.

[Here we observe that for the unbalanced problem x43 = 15 has been omitted— this

means that 15 units of demand of D3 cannot be supplied].

8. Find the minimum Transportation cost of the following unbalanced

Transportation problem :

D1 D2 D3 ai

O1 4 3 2 10

O2 1 5 0 13

O3 3 8 6 12

bj 8 5 7

Answers

1. (i) x11 = 9, x12 = 3, x23 = 7, x23 = 7, x33 = 4;  cost = 104

(ii) x11 = 2, x12 = 10, x21 = 3, x23 = 11, x31 = 4;  cost = 38

Vogel’s approximation method is better.

2. x11 = 1, x14 = 3, x21 = 2, x25 = 6, x32 = 3, x34 = 2

3. (i) x12 = 100, x13 = 400, x21 = 300, x22 = 200; Minimum  cost = 10500

(ii) x13 = 2, x21 = 1, x23 = 2, x31 = 4, x33 = 1

Minimum cost = 33.

4. x11 = 5, x14 = 2, x22 = 2, x23 = 7, x32 = 6, x34 = 12

5. x12 = 5, x13 = 9, x21 = 6, x23 = 6, x32 = 5;  unique.
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6. x13 = x21 = x22 = x33 = 5; Minimum cost = 35.

8. Minimum transportation cost = 23.

12.13 Multiple Choice Questions (MCQ)

1. What is the number of non-basic variables in the balanced TP with 4 rows and

5 columns?

(a) 4 (b) 5 (c) 12 (d) 20

2. The number of basic variables in a transportation problem of m sources and n

destinations is at most

(a) m + n + 1 (b) m + n (c) m + n – 1 (d) m – n + 1

3. The initial basic feasible solution of a transportation problem becomes non-

optimal if the matrix [ij] = [cij] – [ui + j] has

(a) at least one negative element (b) at most one negative element

4. The solution of a transportation problem is never unbounded

(a) True (b) False

5. In a transportation problem with m origins and n destinations (balanced)

number of independent constraints are

(a) m + n (b) mn (c) m + n – 1 (d) m + n + 1

6. When the total availability is not equal to the total demand, that type of

transportation problem is known as

(a) balanced transportation problem (b) Unbalanced transportation problem

(c) degenerate (d) non-degenerate

7. Which of the following is not a method to obtain the initial basic feasible

solution in transportation problem?

(a) VAM (b) Least cost method

(c) North-West Corner Method (d) MODI Method

8. In a transportation problem, the number of the cells required for forming a

loop is

(a) even (b) odd (c) prime (d) none of these
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9. The initial solution of a transportation problem can be obtained by applying any

known method. However the only restriction is that

(a) the solution should be non-degenerate

(b) the solution must be optimal

(c) the rim conditions are satisfied

(d) all of these

10. The dummy source or destination in a transportation problem is created to

(a) satisfy rim condition

(b) prevent solution to become degenerate

(c) to sove the balance transportation problem

(d) none of these

Answers

1. (c) 2. (c) 3. (a) 4. (a) 5. (c) 6. (b)

7. (d) 8. (a) 9. (c) 10. (a)
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Unit - 13  Assignment Problem

Structure
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13.0 Objective

After studying this chapter, the reader should be able to

recognize an Assignment problem

find the mathematical formulation of an Assignment problem

solve assignment problems by using Hungarian Method

solve unbalanced, maximization Assignment problems

212
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13.1 Introduction

In practical field, we get some problem which will be called assignment problems,
let us give an example of such a problem. We suppose that the manager of a firm
wants to assign five jobs 1, 2, 3, 4, 5 to five person A, B, C, D, E. In this case we
can assume that these five person are not equally efficient in each job. As a result the
cost (say wages) of completing a job depends on the person and the job. Now the
manager of the firm will assign only one job to exactly one person and in this five jobs
1, 2, 3, 4, 5 will be assigned to the five persons A, B, C, D, E. The assignment
problem is to find the best assignment of five jobs to five persons i.e., the problem is
to find the minimum assignment cost on the maximum profit of the owner of factory
when five jobs are assigned to five persons on one to one basis i.e., only one job is
assigned to only one person.

We now suppose that m jobs are to be assigned to m persons (or machines or
other facilities). We suppose cij will be cost when i-th job is assigned to j-th facility
(i = 1, 2, ...., m; j = 1, 2, ...., m). Unless otherwise stated by assignment problem we
shall understand the problem of finding assignments for which the total cost is
minimum.

In this case the problem will be described by the following table where the entries
cij form a matrix of order m × m and this matrix is called cost matrix.

Facilities

1 2 3 ................ m

1 c11 c12 c13 ................ c1m

Jobs 2 c21 c22 c23 ................ c2m

3 c31 c32 c33 ................ c3m

...............................................................................

m cm1 cm2 cm3 ................ cmm

If the cost matrix is given then the assignment problem is the problem “how m
jobs can be assigned to m facilities such that each job is assigned to exactly one
facility and each facility has exactly one job so that the total assignment cost is
minimum.”
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If the profit matrix be given then the assignment problem is the problem “how
the jobs can be assigned to the facilities such that each job is assigned to exactly
one facility and each facility has exactly one job so that the total profit becomes
maximum”.

Here we note that the number of jobs and the number of facilities are equal and
so for an assignment problem the cost matrix (or profit matrix) is a square matrix.

Unless otherwise stated we shall assume that the matrix of a given assignment
problem is the cost matrix.

13.2 Mathematical Formulation of an Assignment Problem

We suppose that there are m jobs and m facilities and let the given cost matrix be
[cij]m×m where cij will be the cost if the i-th job is assigned to j-th facility.

Now we define the variables xij (i = 1, 2, ..., m; j = 1, 2, ..., m) as follows :

xij = 1 if i-th job is assigned to j-th facility

   = 0 otherwise

According to the conditions of an assignment problem for any definite value of i, xij

= 1 for exactly one value of j and for any definite value of j, xij = 1 for exactly one value
of i. These conditions can be expressed as

m

ij
j 1

x

  = 1; i = 1, 2, ......, m

and
m

ij
i 1

x

  = 1;  j = 1, 2, ....., m

We note that the total cost z is given by z = 

m m

ij ij
i 1 j 1

c x
 


Then the assignment problem (for the cost matrix) can be mathematically
formulated as
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Minimize z = 

m m

ij ij
i 1 j 1

c x
 


subject to 

m

ij
j 1

x

  = 1; i = 1, 2, ......, m

       and 
m

ij
i 1

x

  = 1;  j = 1, 2, ....., m

and xij  0 such that

     xij = 1,  if i-th job be assigned to the j-th facility

        = 0, otherwise

and as such the assignment problem is not a linear programming problem as the
variables xij can assume only 0 and 1.

13.3 Solution of an Assignment Problem

Here we shall assume that for the cost matrix [cij]m×m, cij  0 for all i, j. Now i-th
job is assigned to j-th facility then xij = 1, otherwise xij = 0.

Then if it is possible to make assignments in such a way that the corresponding cij is
0 then for such assignments total cost will be 0 which is minimum in this case and
remembering this we can determine appropriate algorithm for solving assignment and this
algorithm (computational procedure) depends on the two theorems stated below (without
proof)

Theorem 13.3.1 : If a constant (positive or negative) be added to each element

of a row and/or a column, then the transformed assignment problem and the given
assignment problem have the same optimal assignments.

[The assignments for which the total cost of the assignment problem is minimum will
be called optimal assignments or optimal solution]

Theorem 13.3.2 : If cij  0 for all i, j and if xij = xij
* (i = 1, 2, ..., m; j = 1, 2,
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..., m) are determined for which 
m m

*
ij ij

i 1 j 1

c x 0
 

  (for minimizing problem) then the

solution xij
*; i = 1, 2, ..., m; j = 1, 2, ...., m will be optimal solution.

Then from the above two theorems we see that several elements of the cost
matrix can be made zero by subtracting suitable positive number from the rows and/
or the columns of the cost matrix.

Then in this way it will be possible to find assignments for which the values of the
corresponding cij’s will be zero and these assignments must optimal assignments.

13.4 Computational Proceduce (Hungarian Method)

If some elements of the given cost matrix are not non-negative then applying
Theorem 8.3.1 each element of the cost matrix can be made non-negative (i.e.,  0).
Then we are to follow the following steps :

Step 1 : The minimum element of each row of the cost matrix is to be subtracted
from each element of the row.

Now we shall get at least one zero in each row of the cost matrix. Then the
minimum element of each column is to be subtracted from each element of that
column.

The matrix thus obtained will be starting cost matrix.

Now assignments are to be made on the cells having zero cost. The assignments
are optimal assignments if it is possible to make all assignments only in the cells with
cost zero.

In the next step we shall mention a method by which it will be possible to say
whether the assignments obtained in Step 1 will be optimal or not.

Step 2 : We are to draw minimum number of vertical and horizontal lines
through all zeros of the starting matrix.

Now there are two possibilities :

(i) Total number of straight lines drawn to the order of the cost matrix.

(ii) Total number of straight lines drawn is less than the order of the cost matrix.
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In case (ii) we are to go to Step 3 and in case (i) we shall get optimal
assignments.

Step 3 : Starting from the first row, in examining each row of this starting matrix
if we get only one 0 then 0 is put in  for assignment and then we draw
vertical line through this marked 0. After examining all rows in this way,
the columns will also be examined in the same manner. In this case
starting from first column and whenever only one 0 is found in the
uncrossed column, the 0 is put in  and we draw herizontal line through
each such 0.

Now from all marked 0 (which one within ) we shall get optimal assignment.

In case (ii) of Step 2 we are to go to Step 4.

Step 4 : We take the minimum of the terms which are outside the lines drawn in
Step 2 and we subtract this minimum element from each element
outside the lines and further this element is to be added to the
intersecting point (if any) of horizontal line and vertical line. As a result
we shall get more zeros in the modified matrix.

Then we are to follow Step 2 with the modified matrix. Again if we do not get
all assignments then we are to repeat Step 4 and Step 2 and finally we shall get optimal
assignments in Step 3.

Step 5 : After making the two operations (with row or column) successively
ultimately either get

(i) there is no unmarked 0

(ii) in a row or a column there will be more than one unmarked 0.

In case (i), unique optimal assignment will be obtained. In case (ii), of the
unmarked zeros in a row (or column) we select one 0 arbitrarily and we ignore the
other 0’s in the row (or column).

If we repeat this operation several times, finally we obtain a matrix which contains
no unmarked 0. In this case we will get more than one optimal assignments. But for
each such optimal assignment the minimum cost will be same.

The computational procedure will be understood clearly by the examples given in
the section 8.8.
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13.5 Assignment Problem as Maximization Problem

If the given matrix of an assignment problem be profit matrix then the assignment
problem will be a maximization problem since here assignments are made in such a
way that the total profit becomes maximum.

In this case each element in the profit matrix is subtracted from the largest element
of the profit matrix and considering the transformed matrix thus obtained as a cost
matrix, optimal assignments are to be determined.

We observe that for these optimal assignments the cost of the transformed
assignment problem will be minimum and consequently the profit of the given
assignment problem will be maximum. So the optimal assignments of the transformed
problem will be optimal assignments of the given assignment problem. Then the
maximum profit is computed from the given profit matrix corresponding to the optimal

assignments.

13.6 Assignment Problem with Restricted Assignments

If some assignment be impossible, that is, if some job, say i-th job cannot be
performed by some particular facility, say j-th facility, then we avoid this effectively by

putting a large cost in the (i, j)-th cell or we write  (or – ) in that cell which

prevents that particular assignment from being effective in the optimal solution.

13.7 Unbalanced Assignment Problem

If the number of jobs and the number of facilities be not equal, then the problem
is said to be unbalanced. In this case we add a fictitious job or facility whichever has
the deficiency, with zero cost. Then we apply the assignment algorithm to this resulting
balanced problem.

13.8 A Few Examples

Example 13.8.1 : A company has one car at each of the four depots I, II, III

and IV. A customer in each of the towns A, B, C, D requires a car. The distance (in
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miles) between the depots (origins) and the towns (destinations) where the customers
one’s is given in the following distance matrix :

I II III IV

A 10 14 19 13

B 15 19 7 18

C 13 15 22 14

D 18 20 10 9

How should the cars be assigned to the customers so as to minimize the distance
travelled.

Solution : The least element in the first row is 10. We subtract 10 from each element
of this row. Similarly the least element of the other rows are subtracted from the elements
of the corresponding rows. Then we get the following matrix :

I II III IV

A 0 4 9 3

B 8 12 0 11

C 0 2 9 1

D 9 11 1 0

Now the least element of each column (of the last matrix) is subtracted from all
elements of the corresponding column and get the following matrix :

I II III IV

A 0 2 9 3

B 8 10 0 11

C 0 0 9 1

D 9 9 1 0
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Now it is seen that in each of the cells (1, 1), (2, 3), (3, 1), (3, 2) and (4, 4) there
is 0. The minimum number of dotted lines are drawn to cover all zeros.

Here the number of dotted lines is 4 which is the order of the given matrix. So
optimal stage is reached. In (1, 1) cell of the first row there is one zero and no zero
in the other cells of this row. Enclosing this zero with in  we delete the first column
by drawing a dotted line. In the second row there is only one zero in (2, 3) cell.
Enclosing this zero within  we delete the third column by drawing a dotted line. In
the third row there is only one unmarked zero in (3, 2) th cell. Enclosing this zero
within  we delete the second column by drawing a dotted line. In the fourth row there
is only one zero in (4, 4) cell and putting this zero within  we delete the fourth column
by a dotted line. So assignments will be made in the cells (1, 1),
(2, 3), (3, 2) and (4, 4) in the table below.

I II III IV

A 0 2 9 3

B 8 10 0 11

C 0 0 9 1

D 9 9 1 0

So the solution of the assignment problem can be stated as follows :
A  I, B  III, C  II, D  IV

and the minimum distance is (10 + 7 + 15 + 9) k.m. = 41 k.m.

Example 13.8.2 : Jobs in machines I, II, III, IV are to be given to four persons
A, B, C, D. Assignment costs (in rupees) are given in the following table :

I II III IV

A 18 26 17 11

B 13 38 14 26

C 38 39 18 15

D 19 26 24 10

Find the minimum cost of assignment.
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Solution : The minimum element of the first row is subtracted from each

element of this row. Similarly the minimum element of each of the remaining rows

is subtracted from the elements of the corresponding rows. Then we get cost

matrix in the following table :

I II III IV

A 7 15 6 0

B 0 25 1 13

C 23 24 3 0

D 9 16 14 0

Again the minimum element of each column (of the last matrix) is subtracted

from the elements of the corresponding columns and we get the matrix in the

following table :

I II III IV

A 7 0 5 0

B 0 10 0 13

C 23 9 2 0

D 9 11 13 0

Here we see that zeros are in the cells (1, 2), (2, 1), (2, 3), (3, 4) and (4, 4).

The minimum number of dotted lines are drawn covering all zeros. Here the

number of lines is 3  4 which is the order of the given cost matrix. So the optimal

stage is not reached. In the last table we find that the minimum of the elements which

are not on the lines is 2. Now we subtract 2 from the elements which are not on the

lines and we add 2 at each junction of the horizontal and vertical lines. The remaining

elements remain unchnaged. Then we get the matrix in the following table :
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I II III IV

A 5 0 3 0

B 0 12 0 15

C 21 9 0 0

D 7 11 11 0

Again the minimum number of lines are drawn to cover all the zeros of the last

matrix.

Here the number of lines is 4 = order of the cost matrix. Assignments are made in

the cells having zero within .

So the solution of the assignment problem can be stated as follows :

Optimal assignments :

A  II, B  I, C  III, D  IV

and the minimum cost is Rs. (26 + 13 + 18 + 10) = Rs. 67

Example 13.8.3 : Four operators are to be appointed for running four machines.

The costs (in rupees) of running a machine by an operators are given in the following table

:

Machine

1 2 3 4

A 5 5  2

B 7 4 2 3

C 9 3 5 

D 7 2 6 7

Denoting the machines as 1, 2, 3, 4 and operators and A, B, C, D, it is given

that machine 3 cannot be given to the operator A and machine 4 cannot be given to

the operator C. Find which machine can be assign to which operator such that total

cost is minimum.

O
pe

ra
to

r
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Solution : Since machine 3 cannot be assign to operator A and machine 4 cannot be

assign to operator C, we have use symbol  in the cells (A, 3) and (C, 4).

Now the minimum cost in the first row is 2 and we subtract 2 from each element of

the first row. Similarly the minimum element of other rows is subtracted from each element

of the corresponding rows.

Then we get the cost matrix in the following table :

1 2 3 4

A 3 3  0

B 5 2 0 1

C 6 0 2 

D 5 0 4 5

Again, minimum of each column is subtracted from each element of the

corresponding columns. Then we get the cost matrix in the following table :

1 2 3 4

A 0 3  0

B 2 2 0 1

C 3 0 2 

D 2 0 4 5

Here we see, that the minimum number of dotted lines (horizontal and vertical)

covering all zeros is 3 which is less than 4 which is the order of the given cost

matrix. So the optimal stage is not reached. Now we subtract the minimum element

which does not lie on the lines drawn in the last matrix from the elements of this

matrix outside the lines. Here the minimum element is 1. Also we add 1 to each

junction of horizontal and vertical lines and other elements remain unchanged. Then

we get the cost matrix in the following table :



224 NSOU  NSE-MT-02

0 4  0

1 2 0 0

2 0 2 

1 0 4 4

[Here we note that  – 1,  + 1 both can be replaced by ]

Now the minimum number dotted lines (horizontal and vertical lines) covering
all zeros is 3, which is less than 4 which is the order of the given cost matrix, so the
optimal stage is not reached. Again, repeating the last process we get the cost matrix
in the following table :

1 2 3 4

A 0 5  0

B 1 3 0 0

C 1 0 1 

D 0 0 3 3

Here, we see that the minimum number of lines covering all zeros in the last
matrix is 4 which is equal to the order of the given cost matrix.

So the optimal stage is reached.

Now assignments can be given only on the cells having cost 0 enclosed within .

So optimal solution of the given assignment problem can be stated as follows :

Optimal assignments :

A  4, B  3, C  2, D  1

and the minimum cost is Rs. (2 + 2 + 3 + 7) = Rs. 14.

Example 13.8.4 : Find the assignments q machines to the jobs that will manimise
the profit with the following profit matrix :
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J1 J2 J3 J4 J5

M1 62 78 50 101 82

M2 71 84 61 73 59

M3 87 92 111 71 81

M4 48 64 87 77 80

Solution : This an unbalanced problem and so it can be converted to a balanced
problem by introducing a fictitious machine M5 with zero profit for each job. The
converted profit matrix is as follows :

J1 J2 J3 J4 J5

M1 62 78 50 101 82

M2 71 84 61 73 59

M3 87 92 111 71 81

M4 48 64 87 77 80

M5 0 0 0 0 0

Here, we see that the maximum element in the profit matrix is 111. Now we
subtract each element (except the elements in the row for the fictitious machine M5)
of the last matrix from 111. Then the modified matrix is

J1 J2 J3 J4 J5

M1 49 33 61 10 29

M2 40 27 50 38 52

M3 24 19 0 40 30

M4 63 47 24 34 31

M5 0 0 0 0 0

Now taking the last matrix as a cost matrix we are to find the assignments for
which the cost is minimum for this cost matrix and we know that for the same
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assignments the profit for the given profit matrix will be maximum and the maximum value
can be obtained from the given matrix.

We subtract the minimum element of each row of the last matrix from the elements
of the corresponding row. Then the modified matrix becomes

J1 J2 J3 J4 J5

M1 39 23 51 0 19

M2 13 0 23 11 25

M3 24 19 0 40 30

M4 39 23 0 10 7

M5 0 0 0 0 0

Now we subtract minimum element of each column from the elements of the
corresponding columns. Here we observe that the modified matrix is the same as the
last matrix.

Here we see that number of dotted lines covering all zeros is 4 which is less that
the order of the last matrix. So optimal stage is not reached. Now we subtract the
minimum element 7 (outside the lines) from the elements outsides the lines and we
add 7 at each junction of horizontal and vertical lines. Then the modified matrix
becomes.

J1 J2 J3 J4 J5

M1 32 23 51 0 12

M2 6 0 23 11 18

M3 17 19 0 40 23

M4 32 23 0 10 0

M5 0 7 7 7 0

Here, we see that the minimum of dotted lines covering all zeros of the last
matrix is 5 which is also the order of the matrix. So optimal stage is reached.
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Then optimal assignments are

M1  J4, M2  J2, M3  J3, M4  J5

(M5 being fictitious the assignment M5  J1 cannot be taken)

Then for the above assignment the profit corresponding to the given profit matrix will
be maximum and maximum profit will be

101 + 84 + 111 + 80 = 376 units

So the required optimal solution is given by

Optimal assignments : M1  J4, M2  J2, M3  J3, M4  J5

and maximum profit is 376 units.

13.9 Travelling Salesman Problem

“Travelling Salesman problem” is explained below :

We suppose that a salesman is to visit n towns. Now we assume that the
distances between any two towns (or the time of reaching any town from any other
town or the cost of journey from one town to another town) are known. Starting from
any town a travelling salesman is to return to the starting time after visiting every town.
The problem of travelling salesman is to find the route such that the total distance
travelled (or total time of travel or the total cost of journey) is minimum. Here we
observe that any town can be taken as the starting town.

Mathematical formulation of the problem

We suppose that the distance (or time or cost) from i-th town to the j-th town
is cij and let xij = 1, if the salesman directly goes from the i-th town to the j-th town.
= 0, otherwise.

[i = 1, 2, ...., n; j = 1, 2, ...., n if there are n towns.]

The problem is to find the values of the variables xij for which the total distance (or
cost of time)

z = 
n n

ij ij
i 1 j 1

c x
 
  is minimum,

subject to the condition that xij should be so chosen that no town is visited twice
before the completion of the tour. These constraints are mathematically put as
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n

ij
j 1

x

  = 1,  i = 1, 2, ....., n

n

ij
i 1

x

  = 1,   j = 1, 2, ....., n.

and xij = 1  or  0,  xii  1

Further cii = , by convention as xii can never be unity as a town cannot follow
the same town.

The distance (or time or cost) matrix for n towns – travelling salesman problem
will be as given below :

To

1 2 ................ n

1  c12 ................ c1n

From 2 c21  ................ c2n

.....................................................

.....................................................

n cn1 cn2 ................ 

From the mathematical formulation of ‘Travelling salesman problem’ we observe
that travelling salesman problem is very similar to assignment problem. The only
difference is that the former has an additional restriction (starting from any town the
salesman is to return to starting town after visiting every town) and for this restriction,
after solving this problem as an assignment problem if we get optimal assigment of the
type 1  2  3  .......... n  i or of the similar type (called a route) which has
no sub-loop then from this optimal assignment we get the solution of the travelling
salesman problem.

But in solving the problem as an assignment problem if we get one or more sub-
loops the travelling salesman problem can be solved by applying the enumerative
method after the problem is solved by assignment technique. For example, for four
towns 1, 2, 3, 4 if we have optimal assignment 1   4, 2   3,
3  2,  4  1 (when the problem is solved as an assignment problem) we are to
apply the enumerative method since here we have two sub-loops 1  4  1 and
2  3  2 (See examples in the Section 8.10).
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13.10 A Few Examples

Example 13.10.1 : Solve the following travelling salesman problem :
A B C D E

A  6 12 0 4

B 6  10 5 4

C 8 7  11 3

D 5 4 11  5

E 5 2 7 8 

Solution : In solving the problem as assignment problem (minimization problem) by
Hungarian method, we get the matrices successively as follows :

A B C D E

A  6 12 0 4

B 2  6 1 0

C 5 4  8 0

D 1 0 7  1

E 3 0 5 6 

(i)

A B C D E

A  6 7 0 4

B 1  1 1 0

C 4 4  8 0

D 0 0 2  1

E 2 0 0 6 

(ii)
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Here the minimum number of lines covering all zeros is 4 < 5.

A B C D E

A  5 6 0 4

B 0  0 1 0

C 3 3  8 0

D 0 0 2  2

E 2 0 0 7 

(iii)

Here the minimum number of lines is 5, which is equal to the order of the matrix. So
optimal assignment of the assignment problem will be A  D, B  A, C  E, D  B,
E  C i.e. assignments are made in the cells (A, D), (B, A),
(C, E), (D, B), (E, C).

Here the minimum cost is 0 + 6 + 3 + 4 + 7 = 20.

But these optimal assignments do not satisfy the conditions of ‘travelling
salesman problem’ since here we have two sub loops (A, D), (D, B), (B, A) and
(C, E), (E, C). Now we shall solve the problem by enumerative method.

We observe that in the matrix of the table (iii) the minimum non-zero element
is 1 which is the cell (B, D).

But for the loop (A, D), (D, B), (B, A) the cell (B, A) cannot be replaced by
(B, D) because the cell (D, B) is present in this loop. The next non-zero element in
the matrix is 2 which is in (E, A) cell and in (D, C) cell. Now if we take (D, C) cell
instead of (D, B) cell and (E, A) cell instead of (E, C) cell we get no route. Again
0 being in the (B,C) cell, for the loop A  D  B  A if we take (B, C) cell instead

of (B, A) and (E, A) instead of (E, C) we get A  D  B  C  E  A which

is a route and for this route cost is 20 + (10 – 6) + (5 – 7) = 22 units. Further we

observe that total cost will be greater than 22 for other routes. So the solution of the

given travelling salesman problem will be A  D  B  C  E  A and the

minimum cost is 22 units.
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Example 13.10.2 : Solve the travelling salesman problem with the following
cost matrix :

1 2 3 4 5

1  4 7 3 4

2 4  6 3 4

3 7 6  7 5

4 3 3 7  7

5 4 4 5 7 

Solution : We subtract the least element (of the first row) 3 from all the elements
of the first row. Similarly we subtract the least element of each row from all the
elements of the corresponding row and we get the following matrix :

 1 4 0 1

1  3 0 1

2 1  2 0

0 0 4  4

0 0 0 0 

(i)

Next we subtract the least element of each column from all the elements of the
corresponding column of the matrix in (i) and we get the following matrix :

 1 3 0 1

1  2 0 1

2 1  2 0

0 0 3  4

0 0 0 3 

(ii)
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Now we draw the minimum number of lines to cover all zeros of the matrix in (iii).
Here the number of lines is 4 which is less than the order of the matrix. So optimal
stage is not reached.

Now in the matrix (ii) we subtract the least element 1 (of the elements lying
outside the lines drawn) from all the elements outside the lines and we add 1 to each
junction of the horizontal and the vertical lines. The remaining elements of this matrix
are unchanged.

Then we get the following matrix :

 0 2 0 0

0  1 0 0

2 1  3 0

0 0 3  4

0 0 0 4 

(iii)

The minimum number of lines required to cover all zeros in the matrix (iii) is

5 which is the order of the matrix. So optimal stage is reached. Now assignments are

made in the cells containing 0’s which are put inside .

Then optimal assignments are 1  4, 2  1, 3  5, 4  2, 5  3 and the

minimum cost is 3 + 4 + 5 + 3 + 5 = 20 units.

The optimal assignments contain two sub-loops 1  4  2  1 and 3  5  3.

Now we see that the next non-zero minimum element in the matrix (iii) is 1.

But 1 appears in the cell (2, 3) and in the cell (3, 2). Now if we assign 1 at the

cell (2, 3) instead of ‘0’ assignment at (2, 1), the resulting route will be 1  4 
2  3  5  1 with cost = 3 + 3 + 6 + 5 + 4 = 21 units. If an assignment (1 unit)

is made at the cell (3, 2) instead of ‘0’ assignment at the cell (3, 5) the resulting route

will be 1  5  3  2  4  1 with cost = 4 + 5 + 6 + 3 + 3 = 21 units.

Hence an optimal route is 1  4  2  3  5  1 or 1  5  3  2 
4  1 with minimum cost 21 units.
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13.11 Summary

In this unit, we have first stated the meaning of assignmnent problems. Then
we have explained Hungarian method of solving assignment problems. Finally we
have observed the travelling salesman problem which is very similar to assignment
problem. We have explained the enumerative method of solving travelling salesman
problems.

13.12 Exercise

1. Solve the following assignment problems for minimum cost :

(i) J1 J2 J3 J4

1 10 12 19 11

2 5 10 7 8

3 12 14 13 11

4 8 15 11 9

(ii) A B C D

I 1 4 6 3

II 9 7 10 9

III 4 5 11 7

IV 8 7 8 5

(iii) 1 2 3 4 5

A 8 4 2 6 1

B 0 9 5 5 4

C 3 8 9 2 6

D 4 3 1 0 3

E 9 5 8 9 5
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(iv) J1 J2 J3 J4 J5

1 4 2 7 3 1

2 2 9 2 7 1

3 6 8 7 6 1

4 4 6 5 3 1

5 5 3 9 5 1

2. Solve the following assignment problems for maximum profit :

(i) A B C D E

1 32 38 40 28 40

2 40 24 28 21 36

3 41 27 33 30 37

4 22 38 41 36 36

5 29 33 40 35 39

(ii) J1 J2 J3 J4 J5

A 2 4 3 5 4

B 7 4 6 8 4

C 2 9 8 10 4

D 8 8 12 7 4

E 2 8 5 8 8
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3. Solve the following unbalanced problems for minimum cost :

(i) A B C D

1 10 12 8 6

2 6 9 12 14

3 3 8 7 12

(ii) W V Y Z

A 18 24 28 32

B 8 13 17 19

C 10 15 19 22

4. 5 operators are to be appointed for 5 machines. The times (hours) required

by each operator to complete a job in each machine are given in the following matrix

where the machine 3 cannot be operated by the operator A and the operator C cannot

work in machine 4.

Find how the machines can be assigned to the operators such that the jobs will

be comleted in minimum time.

Machine

1 2 3 4 5

A 5 5 – 2 6

B 7 4 2 3 4

JOBS C 9 3 5 – 3

D 7 2 6 7 2

E 6 5 7 9 1
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5. Solve the following ‘travelling salesman’ problems :

(i) A B C D E

A  5 8 4 5

B 5  7 4 5

C 8 7  8 6

D 4 4 8  8

E 5 5 6 8 

(ii) 1 2 3 4 5

1  14 10 24 41

2 6  10 12 10

From 3 7 13  8 15

4 11 14 30  17

5 6 8 12 16 

(iii) A B C D E

A  7 6 8 4

B 7  8 5 6

C 6 8  9 7

D 8 5 9  8

E 4 6 7 8 

Answers

1. (i) 1  J2, 2  J3, 3  J4, 4  J1 ; Minimum cost = 38 units

(ii) I  A, II  C, III  B, IV  D ; Minimum cost = 21 units

(iii) A  5, B  1, C  4, D  3, D  2, ; Minimum cost = 9 units



NSOU  NSE-MT-02 237

   (iv) 1  J4, 2  J3, 3  J5, 4  J1, 5  J2, ; Minimum cost = 13 units.

2. (i) 1  B, 2  A, 3  E, 4  C, 5  D ;

or, 1  B, 2  E, 3  A, 4  C, 5  D ;

or, 1  B, 2  A, 3  E, 4  D, 5  C ;

or, 1  B, 2  E, 3  A, 4  D, 5  C ;

Maximum profit = 191 units.

(ii) A  J5, B  J1, C  J4, D  J3, E  J2 ;

or, A  J2, B  J1, C  J4, D  J3, E  J5 ;

or, A  J4, B  J1, C  J2, D  J3, E  J5 ;

Maximum profit = 41 units.

3. (i) 1  D, 2  B, 3  A; Minimum cost = 18 units.

(ii) A  W, B  X, C  Y,

or, A  W, B  Y, C  X  ; Minimum cost = 50 units.

4. A  4, B  3, C  5, D  2, E  1;

or, A  4, B  3, C  2, D  1, E  5; Minimum time = 15 hours.

5. (i) A  D  C  E  B  A ; Minimum cost = 28 units.

(ii) 1  3  4  2  5  1 ; Minimum cost = 48 units.

(iii) A  E  B  D  C  A ; Minimum cost = 28 units.

or, A  C  D  B  E  A ; Minimum cost = 30 units.

13.13 Multiple Choice Questions (MCQ)

1. An assignment problem is a special type of

(a) transportation problem (b) LPP

(c) non-linear programming problem (d) none of these
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2. An assignment problem can be solved by

(a) Hungarian method (b) VAM

(c) Matrix minima method (d) none of these

3. In an assignment problem of assigning n jobs to n machines, the number of

decision variables and number of constraints are respectively

(a) n2 and 2n (b) 2n2 and 2n (c) 2n and 2n (d) n3 and n + 1

4. Solution of an assignment problem

(a) is always unique (b) may or may not be unique

(c) may not exist (d) none of these

5. An assignment problem is

(a) a minimization problem

(b) a maximization problem

(c) a maximization or a minimization problem

(d) never a maximization problem

6. The assignment problem is a special case of transportation problem in

which the number of origins

(a) equals the number of destinations

(b) is greater then the number of destinations

(c) is less than the number of destinations

(d) none of these

Answers

1. (a) 2. (a) 3. (a) 4. (b) 5. (c) 6. (a)



NSOU  NSE-MT-02 239

1st Proof   CPP  21/03/2025

Unit - 14 Game Theory

Structure

14.0 Objective

14.1 Introduction

14.2 Two-Person zero-sum Game, Pay-off Matrix and Strategies of a Game

14.3 Pure and Mixed Strategies

14.4 Optimal Strategies and Value of a Game

14.5 The Maximin (Minimax) Criterion and Saddle Point

14.6 A Few Examples

14.7 Solution of Two-person Zero-sum Game with Mixed Strategies

14.8 An Example

14.9 Rules of Dominance

14.10 An Example

14.11 Expectation Function and Some Important Theorems

14.12 Transformation of a Game Problem to a L.P.P.

14.13 Fundamental Theorem on Two-Person zero-Sum Game

14.14 An Example

14.15 Graphical Method of Solution

14.16 An Example

14.17 Summary

14.18 Exercise

14.19 Multiple Choice Questions (MCQ)

14.0 Objective

After studying this chapter, the reader should be able to

understand decision making with an active opponent
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examine situations where one decision maker competes with or is in conflict with

another decision maker

appreciate the various procedures used in the selection and execution of various

strategies which result in arising this game.

14.1 Introduction

In real life, we observe situations of conflict and competition between two or
more opponents. These situations of competition are reffered to as a game. Game
theory deals with making decisions under conflict caused by opposing interests. This
theory was organized by J. V. Neumann in 1928 and later developed by G. B.
Dantzig.

A game may be a parlor game, such as chess or bridge. More generally, games
involve conflict situation in economic, social, political or military activities.

Two person game as the name is implies, involve a conflict of interest between
two “persons”, where “persons” may be people, companies, countries etc.

A two-person zero-sum game is one in which at the end of a play, one person
gains what the other loses. We shall restrict our discussion to two-person zero-sum
game.

A table showing how payments should be made at the end of the game is called
a pay-off matrix. The matrix associated with the game indicates the pay-off to each
opponents, called players.

A strategy of a player is the course of action taken by the player. For two-
person game, there are two players, say, A and B. If the player A has m strategies
available to him and the player B has n strategies available to him, then the pay-off
for various strategy combinations is represented by m × n pay-off matrix. The game
is called a finite game if the number of strategies available to each player be finite,
otherwise it is called an infinite game.

A player chooses one of his courses of action quite ignorant of the strategy used
by his opponent. For two-person game, the pay-off matrix indicates the gains to the
player A (whose strategies are written on the left of the matrix) for each possible
outcome of the game. A loss is considered as a negative gain.



NSOU  NSE-MT-02 241

1st Proof   CPP  21/03/2025

In a two-person zero-sum (also called a rectangular game) with players A and B,
the pay-off matrix of the player B is just the negative of the pay-off matrix written for
the player A; because in such games the gains of one are the negatives of gains of the
other.

In the given pay-off matrix, A is the maximizing player and B is the minimizing
player.

Generally, the pay-off matrix written for the maximizing player where we note that
this matrix represents the losses for the minimizing player.

In a two person zero-sum game with players A and B, our object is to determine
the optimal strategies (if any) of the players such that the guaranteed gain of the
maximizing player A is maximum, say,  and for these strategies the minimum loss of
the minimizing player B can be kept at the same amount .

14.2 Two-Person zero-sum Game, Pay-off Matrix and Strategies
of a Game

At each play of a game, each player chooses only one strategy from these

strategies available to the player. We have stated in Section 9.1 that a two-person

zero-sum game is one in which at the end of a play, one player gains what the other

player loses. Here each player has predetermined courses of action from which the

player selects only one course of action at each play. These predetermined courses of

action of the players are called strategies of the game.

Here we shall consider only finite games in which the number of available

strategies of each player is finite.

By a “game” we shall mean “Two-person zero-sum game”.

Pay-off matrix

Let the strategies of the maximizing player a be A1, A2, ...., Am and those of the

minimizing player B be B1, B2, ...., Bn. If the player A chooses the strategy Ai

(i = 1, 2, ...., m) and B chooses Bj (j = 1, 2, ...., n), we suppose that the payment

to A by B is aij. The negative of aij indicates the payment from A to B. So if A chooses

strategy Ai and B chooses strategy Bj then the amount of gain of A will be aij which

is also the amount of loss of B.
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In this case we get a matrix of order m × n given below.

a11 a12 ............. a1n

a21 a22 ............. a2n

......................................

......................................

am1 am2 ............. amn

This matrix is called the pay-off matrix of the game and the game is expressed

in the following way :
Player B

B1 B2 .................... Bn

A1 a11 a12 .................... a1n

A2 a21 a22 .................... a2n

Player A

Am am1 am2 .................... am

Here the object of the maximizing player A is to select his strategy in such a
way that his guaranteed gain (whatevere strategy be chosen by the minimizing player
B) becomes maximum and the object of the minimizing player B is to select his
strategy in such a way (whatever strategy be selected by A) that his loss can be kept
at the minimum possible amount.

Here the pay-off matrix [aij]m×n is mentioned as the pay-off matrix of the player
A and the game will be called a m × n game. The pay-off matrix of the player B will
be [–aij]m×n .

An example of a pay-off matrix

We suppose that the strategies of A are A1, A2, A3 and those of B are B1, B2.
Payments to be made according to the selection of strategies are described in the
following table :

...
...

...
...

...

...............................................

...............................................
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Selected strategies Payments

A : A1 ; B : B1 B gets Rs. 3 from A

A : A1 ; B : B2 A gets Rs. 2 from B

A : A2 ; B + B1 B gets Rs. 4 from A

A : A2 ; B : B2 A gets Rs. 5 from B

A : A3 ; B : B1 A gets Rs. 1 from B

A : A3 ; B : B2 B gets Rs. 8 from A

It is seen from the above table that the pay-off of the player A will be

B1 B2

A1 –3 2

A2 –4 5

A3 1 –8

and the pay-off matrix of B will be

B1 B2

A1 3 –2

A2 4 –5

A3 –1 8

14.3 Pure and Mixed Strategies

We have already mentioned that in each play of a game each player selects only
one strategy from his strategies.

If in each play of a game a player selects a definite strategy then we say that
the player follows pure strategy and the selected definite strategy is called a pure
strategy.

If a player instead of selecting a definite strategy from his strategies, he selects
his given strategies with definite probabilities then we say that the player follows
mixed strategy. We now explain the concept of mixed strategy by an example.
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We suppose that the given strategies of the maximizing player A are A1, A2, A3. If the
player A follows mixed strategy then in each play of the game, A selects exactly one
strategy at random from A1, A2, A3. Let the probabilities of selecting A1, A2, A3 be
respectively p1, p2, p3. Then p1  0, p2  0, p3  0, p1 + p2 + p3 = 1.

If in particular p1 = 1
2

, p2 = 1
3 , p3 = 1

6  then we shall understand that in large number

of plays of the game, say 6000 plays, the strategy A1 is selected approximately 6000

× 1
2

= 3000 times, A2 is selected approximately 6000 × 1
3 = 2000 times and A3 is

selected approximately 6000 × 1
6  = 1000 times.

Here a follows mixed strategy which is expressed by writing  1 1 1, ,
2 3 6 .

In particular, if p1 = 1, p2 = 0, p3 = 0 then in large number of plays of the game,
we can say that the player A approximately selects A1 and does not select A2, A3 in
each play of the game—so in this case we can say that the player A follows pure
strategy A1.

Similarly, if p1 = 0, p2 = 1, p3 = 0; p1 = 0, p2 = 0, p3 = 1 the player A follows pure
strategy A2 and pure strategy A3 respectively. Then a pure strategy can be regarded as a
particular mixed strategy.

Remark : The given strategies of the players A and B of a given game are sometimes
mentioned as the pure strategies of the players.

14.4 Optimal Strategies and Value of a Game

In this section, we shall assume that each player follows pure strategy.

Let A be the maximizing player and B be the minimizing player of a game.

If the guaranteed gain of the player A be  i.e., the amount of gain of A can never be
less than  (whatever be the strategy followed by B) and if A gains  by following certain
strategy, Ar then the strategy Ar, is called the best strategy of the player A.

Again, if the loss of the player B can be kept at the minimum possible amount, say

  by following strategy Bs (whatever be the strategy followed by A) then the strategy Bs

is called the best strategy of the player B. In this case we like to mention that if B follows
a strategy other than Bs then the loss of B can be made greater than   if A follows
approximate strategy. If     (= , say) then  is called the value of the game and in
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this case the best strategies of A and B are respectively called optimal strategies of the
players A and B.

Let us explain clearly the concept of optimal strategies and value of the game by
considering an example given below.

We consider a game with the following pay-off matrix :

B

B1 B2 B3

A1 18 5 6

            A A2 9 8 10

A3 – 4 7 3

In the above pay-off matrix, we find that the entry in the (1, 1) cell is 18 which
is maximum in the row corresponding to A1 and from this it may appear that if the
maximizing player A follows the stretegy A1 then his maximum gain of A may be 18.
But this amount of gain is not guaranteed because in this case the amount of gain may
be reduced to 5 or 6 according as the player B selects B2 or B3. Again it is observed
that the entry in the (3, 1) cell is – 4 which is minimum on the row corresponding to
A3 and from this it may appear that if the minimizing player B selects B1, then the
minimum amount of loss can be – 4 (i.e., B gains 4). But this amount of loss is not
guaranteed because the amount of loss of B can be increased to 18 or 9 according
as the maximizing player selects A1 or A2. We observe that if the player A selects A2

then A gains at least 8 units what ever strategy may be followed by B and this amount
of gain is guaranteed. Further, it is seen that if A selects a streategy other than A2 then
the guaranteed amount of gain can be reduced to 5 or – 4 (i.e., loss 4). So if A selects
stretegy A2 then the guaranteed amount of gain will be maximum and this amount is 8
units.

Again it seen that if the player B selects strategy B2 then the amount of loss of
B can never exceed 8 units andif B selects a strategy other than B2 i.e., if B selects
B1 or B3 then the amount of loss may be increased to 18 units or 10 units. So if B
selects strategy B2 then the minimum amount of loss can be kept at 8 units and if B
follows any other strategy then it is not sure that the minimum loss can be less than
8 units.

So for this game the best strategies of A and B are respectively A2 and B2 and
the value of the game will be 8 units.
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Remark : To solve a game with players A & B means “to find the optimal strategies
of the players A and B and the value of the game (if exists).” In the next section we shall
see how the optimal strategies and the value of a game can be determined by following
pure strategies and further we shall note that it is not possible to solve any game by
following only pure strategies.

14.5 The Maximin (Minimax) Criterion and Saddle Point

From the discussion in the last section, it is clear that if we are asked to solve
a game with two players we mean that we are to determine the strategy if each player
in such a way that the guarantead pay-off of the player from the opponent becomes
maximum where, this pay-off cannot be decreased by selection of any strategy of the
opponent.

This principle of selection of strategy is called maximin and minimax criterion.

Now we state clearly this principle :

If a player lists the worst possible outcomes of all its stategies, then he will choose
that strategy to be the most suitable for him which corresponds to the best of these
worst outcomes.

Let us apply this principle to the following game :

B

B1 B2 B3

A1 2 5 2

                  A A2 –1 2 –8

A3 –2 3 2

Here, we see that for the maximizing player A, the worst outcomes (row minima) of
the strategies A1, A2, A3 are respectively 2, –8, –2,

Now max {2, –8, –2} = 2

So by “maximin” criterion, the player A should select the strategy A1.

Again, for the minimizing player B, the worst outcomes (column maxima) of the
strategies B1, B2, B3 are respectively 2, 5, 2.

Now, min. {2, 5, 2} = 2.

So, by “minimax” criterion, the player B should select B1 or B3. So in this case
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value of the game will be 2 and the pure optimal strategies will be (A1, B1) or (A1, B3)
where in the parenthesis the first entry indicates the optimal strategy of the player A and
the second entry indicates the optimal strategy of the player B.

Now, in the following table we express “row minima” within a square and “column
maxima” within a circle.

B

B1 B2 B3 row min

A1 2 5 2 2

                  A A2 –1 2 –8 –8

A3 –2 3 2 2

            column max 2 5 2

For this game, we find that

max (row min) = min (col. max)

                 = value of the game = 2.

In the pay-off matrix, a cell where the entry is max (row min) = min (col. max) is
called a saddle point of the game.

So for the above game the cells (1, 1), (1, 3) are the saddle points and the entry in
each of these cells is 2 which is the value of the game.

Thus we see that if a game has a saddle point then the entry in the corresponding cell
of the pay-off matrix will be the value of the game.

Precise Definition of the saddle point of a given pay-off Matrix

Let [aij]m×n be the pay-off matrix of a game. A position (p, q) of the matrix [aij]m×n

will be called a saddle point of the matrix if apq is the minimum element in the pth row and
it is also the maximum element of the qth column of the matrix [aij]m×n.

i.e., apq  apj for j = 1, 2, ...., n

     apq  aiq for i = 1, 2, ...., m

Some theorems related to the existence of a saddle point

Theorem 14.5.1 : If [aij]m×n be the pay-off matrix of a game, then 
ji

max min aij

 
j i

min max aij.
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Proof : Let ij pqji
max min a a 

 
  and ij rsj i

min max a a  

Then apq is a minimum element of the p-th row and ars is a maximum element of the
s-th column of the pay-off matrix [aij]m×n.

So, we get apq  aps ......... (1)

ars  aps ......... (2)

From (1) and (2) we get

apq  aps  ars

 apq  ars

So it is proved that

ij ijj ji i
max min a min max a     

Theorem 14.5.2 :  If [aij]m×n be the pay-off matrix of a game, then a saddle point

of the game will exist if and only if ij ijj ji i
max min a min max a     

.

Proof : Let the position (p, q) be a saddle point of the game.

Then we get apq  aiq;  i = 1, 2, ....., m ........ (1)

and          apq  apj;  j = 1, 2, ....., n ........(2)

From (1) we can say that 
i

max aiq  apq and from (2) we can say

     
j

min  apj  apq

  
i

max aiq  apq 
j

min  apj

Now  ij iqj i i
min max a max a  and pj ijj ji

min a max min a

So  ij iq pj ijj j ji i i
min max a max a min a max min a  

 ij ijj iji
min max a max min a  ....... (3)
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Again from Theorem 9.5.1, we get

ij ijj ji i
max min a min max a   ....... (4)

Now, from (3) and (4) it is proved that

 ij ijj ji i
max min a min max a     ......... (5)

Now, let ijj
min a  be maximum when i = p.

Then pj ijj ji
min a max min a  

 
 ......... (6)

Again let iji
max a  be minimum when j = q.

Then iq ijji i
max a min max a   

 ........... (7)

From (5), (6) and (7) we get,  pj iqj i
min a max a  ..........(8)

Again pj iqj i
min a max a  ............(8a)

So from (8) we get, iq pqi
max a a  from which we can say

apq  aiq; i = 1, 2, ...., m .........(9)

Again iq pqi
max a a  ........... (8b)

So from (8) we get pj pqj
min a a  from which we can say that

apq  apj; j = 1, 2, ..., n ...........(10)

Now from (9) and (10), we can say that the position (p, q) is a saddle point of the
game. So the theorem is proved.

Remarks (i) If the position (p, q) is a saddle point of the game with pay-off
matrix [aij]m×n, then from (5), (8), (8a), (8b) we can say that the

value of the game will be apq where ijji
max min a 

 
 =
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ijj i
min max a    and in this case the optimal strategies to the

maximizing player A and the minimizing player B will be respectively
the pure strategies Ap and Bq.

(ii) If the game has no saddle point, then it is not possible to find the value
of the game only by following pure strategies.

14.6 A Few Examples

Example 14.6.1 : Solve the game with pay-off matrix given below :
B

B1 B2 B3 B4 B5

A1 11 4 3 10 2

A A2 8 7 6 8 9

A3 4 6 6 5 10

A4 7 8 4 4 3

Solution : B1 B2 B3 B4 B5 row min

A1 11 4 3 10 2 2

A2 8 7 6 8 9 6

A3 4 6 6 5 10 4

A4 7 8 4 4 3 3

col.max 11 8 6 10 10

Here, max (row min) = max {2, 6, 4, 3} = 6

and min (col. max) = min {11, 8, 6, 10, 10} = 6

So here max (row min) = min (col. max) = 6

So the game has a saddle point at the position (2, 3). Then the value of the game

will be 6 and optimal pure strategies are A : A2, B : B3 which will be described as

(A2, B3).
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Example 14.6.2 : Show that the following game has no saddle point :
B

B1 B2 B3 B4

A1 2 1 2 –1

A A2 1 3 1 3

A3 3 1 3 –1

A4 –1 3 –1 7

Solution : B1 B2 B3 B4     row min

A1 2 1 2 –1

A2 1 3 1 3

A3 3 1 3 1

A4 –1 3 –1 7

col.max 3 3 3 7

Here, max {row min} = max {–1, 1, 1, –1} = 1

and min {col. max} = min {3, 3, 3, 7} = 3

So max {row min}  min {col. max}

So the given game has no saddle point.

Example 14.6.3 : If the pay-off matrix of the following game has a saddle point
at (2, 2) then find all values of x and y. Further prove that the game cannot have saddle
point at (2, 3) for any values of x and y.

B
B1 B2 B3

A1 5 x 9

A A2 y 8 13

A3 9 6 7

Solution : First part : Here, it is given that the game has a saddle point at (2, 2).
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Now the element of the pay-off matrix at the position (2, 2) is 8. So the minimum
element in the second row of the pay-off matrix is 8 and the maximum element in the
second column of this matrix is 8. The we get y  8 and x  8. Again we see that (2,
2) will be a saddle point whenever x  8 and y  8. Hence, the required values of
x, y are given by x  8, y  8.

Second Part : The element (2, 3) position of the pay-off matrix is 13 which is
the maximum element in the third column of the matrix and 13 cannot be minimum
element in the second row because the second row has an element 8 which is less than
13. So, the game cannot have saddle point at the position (2, 3) for any values of x
and y.

14.7 Solution of Two-person Zero-sum Game with Mixed Strategies

In Section 9.5, we have noted that it is not possible to slove any game by
following pure strategies only. In Section 9.3, we have got the idea of mixed
strategies. In this section, we shall see how a game of 2 × 2 pay-off matrix having
no saddle point can be solved by following mixed strategies and later we shall see
that applying the rules of dominance (Section 9.9) in many cases, solution of a
game with pay-off matrix of any order can be made to depend on the solution of
a 2 × 2 game.

Solution of a Game with 2 × 2 pay-off Matrix having no Saddle Point

Let the pay-off matrix (which has no saddle point) of a 2 × 2 game be

B

B1 B2

A1 a b
                     A

A2 c d

Now, we shall see how the value of the game and the optimal strategies can be
determined by following mixed strategies.

If A follows mixed strategy, then in any play of the game A selects a strategy
at random from the strategies A1, A2 with probabilities, say x1, x2 (0  x1  1, 0 
x2  1) respectively. Now since A1, A2 are never selected simultaneously and one of A1,
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A2 must be selected. Then, we have x1 + x2 = 1. The problem of finding the mixed
strategy of A is the problem of finding the values of x1, x2 where x1  0, x2  0 and
x1 + x2 = 1. Then we can take x1 = x, x2 = 1 – x where 0  x  1. So A selects
A1, A2 with probabilities x, 1 – x respectively where 0  x  1.

Similarly, the problem of finding the mixed strategy of B is the problem of finding
the values of the probabilities y1, y2 of the strategies B1, B2 where 0  y1  1, 0 
y2  1 and y1 + y2 = 1. Then we can take y1 = y, y2 = 1 – y where 0  y  1. So
B selects B1, B2 with probabilities y, 1 – y respectively where 0  y  1.

Let us first consider the problem of the maximizing player A. If the player B
selects B1 then from the above pay-off matrix we see that the expected gain of the
player A will be ax + c (1 – x) = g1 (say) and if the player B selects B2 then the
expected gain of A will be bx + d (1 – x) = g2 (say).

Now, let min {g1, g2} = g.

So it is seen that whatever strategy (B1 or B2) be selected by the minimizing
player B, the guaranteed expected gain of a will be g when A selects A1 with
probabilities x. Now the problem of A is to find x such that g becomes maximum.

Here g1  g, g2  g .............(1)

Now we consider the problem of the minimizing player B. If the player A selects
A1 then from the pay-off matrix we find that the expected loss of B will be ay + b (1
– y) = l1 (say) and if A selects A2 then the expected loss of B will be cy + d (1 –
y) = l2 (say).

Now let max {l1, l2} = l.

So it is seen that whatever strategy (A1 or A2) be selected by the maximizing
player A, the expected loss of B can never exceed l1 when B selects B1 with
probability y.

Now the problem of B is to find y such that l become minimum.

Here l1  l, l2  l ......... (2)

From (1) and (2) we find that

              ax + c (1 – x)  g bx + d (1 – x)  g

and          ay + b (1 – y)  l, cy + d (1 – y)  l
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We observe that if it is possible for which l1 = l2
 = l and g1 = g2 = g then for

such that values of x, y, (g)max = (l)min =  (say)

and in this case the value of the game will be  and the optimal strategies of the players
can be determined from the values q, x, y.

Now the given pay-off matrix having no saddle point the value of a, b, c, d will
be such that in any case the equations g1 = g2, l1 = l2 have solution for x, y (0  x
 1, 0  y  1). So the given 2 × 2 game can be solved by following mixed strategies.

Note : For a 2 × 2 game with pay-off matrix

B

B1 B2

A1 a11 a12

                     A
A2 a21 a22

having no saddle point following the above method, it can be shown that the value

 of the game is given by  = 11 22 12 21

11 22 12 21

a a a a

a a (a a )


    and the optimal strategies of

the players A, B are given by A 
22 21 11 12

11 22 12 21 11 22 12 21

a a a a
,

a a (a a ) a a (a a )

  
       

and  B 
22 21 11 12

11 22 12 21 11 22 12 21

a a a a
,

a a (a a ) a a (a a )

  
        .

14.8 An Example

Example 9.8.1 : Solve the following 2 × 2 game

B

B1 B2

A1 8 5
                     A

A2 4 7
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Solution : Here, max {row min} = max {5, 4} = 5

and               min (col. max) = min {8, 7} = 7.

So we have max (row min )  min (col. max).

Then the given game has no saddle point.

So it is not possible to solve the game following only pure strategies.

Let us solve the problem using mixed strategies.

We suppose that the player A selects A1, A2 with probabilities x, 1 – x respectively
and B selects B1, B2 with probabilities y, 1 – y where 0  x  1, 0  y  1.

Now the problem of A is to find the value of x for which min. {g1, g2} = g (say)
becomes maximum where g1 = 8x + 4 (1 – x) and g2 = 5x + 7 (1 – x).

Then we have g1 = 8x + 4 (1 – x)  g and g2 = 5x + 7 (1 – x)  g

Similarly for the problem B we find that l1 = 8y + 5 (1 – y)  l

                                         l2 = 4y + 7 (1 – y)  l

where we are to find the value of y such that l = max {l1, l2} becomes minimum.

Now g1 = g2, l1 = l2 give

8x + 4 (1 – x) = 5x + 7 (1 – x)

8y + 5 (1 – y) = 4y + 7 (1 – y)

from which we get 6x = 3, 6y = 2.

So x = 1
2

, y = 1
3  where we note that 0 < 1

2
 < 1,  0 < 1

3  < 1.

So for x = 1
2

, y = 1
3 , g will be maximum and l will be minimum and

(g)max = 1 18. 4. 6
2 2
   and (l)min = 1 28. 5. 6

3 3
  .

Therefore, for x = 1
2

, y = 1
3 , g will be maximum and l will be minimum and (g)max =

(l)min = 6.
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So the value of game is 6 and the optimal strategies are A :  1 1,
2 2  B :  1 2,

3 3

14.9 Rules of Dominance

The principles of dominance are used to reduce the size of the pay-off matrix of

a game many observation and in many cases the game may be sloved only by adopting

this method.

Rule 1 : For the maximizing player A

If each element in one row, say k-th row of the pay-off matrix (aij)m×n is less than

or equal to the corresponding element of some other row, say r-th, then A will never

choose k-th strategy Ak. The optimal strategies and value of the game remain unaltered

after the deletion of the k-th row from the pay-off matrix. The k-th row is then said

to be dominated by the r-th row.

Rule 2 : For the minimizing player B

If each element in one column, say k-th column of the pay-off matrix is greater

than or equal to the corresponding element in some other column, say, r-th then the

column is said to be dominated by the r-th column. Here the player B will never

choose the k-th strategy Bk.

The optimal strategies and the value of the game remain unaltered after the

deletion of the k-th column of the pay-off matrix.

Rule 3 : Modified dominance property

If a row of the pay-off matrix, say, i-th row be dominated by a column

combination of other two or more rows, then the i-th row is delected from the pay-

off matrix.

If a column of the pay-off matrix, say j-th column, dominate a convex combination

of other two or more columns, then the j-th column is deleted from the pay-off matrix.
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14.10 An Example

Example 14.10.1 : Solve the following game using rules of dominance :

B
B1 B2 B3 B4

A1 1 –1 2 1

A A2 2 2 0 1

A3 3 –2 1 –2

A4 3 1 –3 2

Here, A is the maximizing player and B is the minimizing player. We see that each

element in the column for B1 is greater than or equal to the corresponding element in

the column for B2 and for three elements [1, 3, 3 for B1, –1, –2, 1 for B2] we have

1 > –1, 3 > –2, 3 > 1. So, by the principle of dominance, the column B1 can be

discarded.

Then, the transformed game becomes

B2 B3 B4

A1 –1 2 1

          A A2 2 0 1

A3 –2 1 –2

A4 1 –3 2

Again, we see that elements of 1
2

 (A1 + AA2) [a convex combination of rows

forA1 and A2] are 1
2

, 1, 1 and 1
2

 > –2, 1 = 1, 1 > –2 where –2, 1, –2 are the

corresponding elements in the row for A3. So, by the principle of dominance, the row

for A3 can be discarded and the transformed game becomes
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B2 B3 B4

A1 –1 2 1

A2 2 0 1

A4 1 –3 2

Now the elements of 1
2

 (B2 + B3) are 1
2

, 1, –1 and the corresponding

elements in the column for B4 are 1, 1, 2 where 1 > 1
2

, 1 = 1, 2 > – 1. Then, by

the principle of dominance, the column for B4 can be discarded and the transformed
game becomes

B2 B3

A1 –1 2

A2 2 0

A4 1 –3

Here, we see that the elements of 1 2
31 A A

4 4
  are 5 1,

4 2
 and the corresponding

elements in the row for A4 are 1, –3 where 5
4

 > 1, 1
2

 > –3.

So, by the principle of dominance, the row for A4 can be discarded and the
transformed game becomes

B2 B3

A1 –1 2

A2 2 0

which represents a 2 × 2 game.

For this game, we see that max (row min) = max {–1,0} = 0 and min (col. max)
= min {2, 2} = 2 where 0  2. So this game has no saddle point. Then this 2 × 2 game
can be solved by following mixed strategies. Then using ‘Note’ given at the end of

the Section 9.7, we find that the value  of this game = 
1 0 2 2 4

1 0 (2 2) 5
    
    .
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Also, the probabilities of selecting A1, A2 are 0 1 1 2,
1 0 (2 2) 1 0 (1 2)

  
       

 i.e.,

32 ,
5 5  respectively and the probabilities of selecting B2, B3 are 0 2 ,

1 (2 2)


   

1 2
1 0 (2 2)

 
   

 i.e., 
32 ,

5 5  respectively..

So, the optimal strategies of the given game are A :  32 , , 0, 0
5 5  and

B :  320, , , 0
5 5  and the value of the game is 4

5 .

14.11 Expectation Function and Some Important Theorems

Let [aij]m×n be the pay-off matrix of a game where in any play of the game, the

maximizing player A selects one strategy from the given strategies A1, A2, ....., Am and the

minimizing player B selects one strategy from the strategies B1, B2, ..., Bn.

If mixed strategies be followed we assume that the player A selects A1, A2, ...., Am

respectively with probabilities x1, x2, ....., xm and the player B selects B1, B2 ...., Bn with

probabilities y1, y2, ....., yn respectively where x1 + x2 + ....+ xm = 1, y1 + y2 + ....+ yn

= 1 and xi  0, yj  0 (i = 1, 2, ....., m; j = 1, 2, ....., n).

B

y1 y2 y3 ................. yn

x1 a11 a12 a13 ................. a1n

x2 a21 a22 a23 ................. a2n

A x2 a31 a32 a33 ................. a3n

....................................................................

....................................................................

xm am1 am2 am3 ................. amn

...
...

...
...

...
.
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Here aij is the pay-off of A when the players A and B select respectively the pure

strategies Ai, Bj. Then if the player B selects the pure strategy Bj, the expected pay-

off of the player A will be 
m

ij i
i 1

a x

  when A follows mixed strategy X = (x1, x2, ....,

xm).

Then if the player B follows mixed strategy Y = (y1, y2, ....., yn), the expected
pay-off of A will be called expectation function and it will be denoted by E(X, Y).

Then, we get E (X, Y) = 

m n

ij i j
i 1 j 1

a x y
 


Now let 
ji

m n

ij i jyx i 1 j 1

max min a x y
 

   and 
j i

m n

ij i jy x i 1 j 1

min max a x y
 

 

[Here we have assumed that   and   exist]

Here we observe that   = 
i

m m m

i1 i i2 i in ix
i 1 i 1 i 1

max min a x , a x , a x
  

   
  

    
  

and   = 
i

n n n

1j j 2 j j mj jy j 1 j 1 j 1

a y , a y , a ymin max
  

   
  
    

  

Now for solving a game problem with mixed strategies, the object of the

maximizing player A is to find the values of x1, x2, ....., xm for which the guaranteed

expected gain becomes maximum and further we observe that this maximum guaranted

expected gain is  . Also the object of the minimizing player B is to find the values of

y1, y2, ...., yn such that for any given values of y1, y2, ....., yn the maximum expected

loss of B becomes minimum and we observe that this minimum expected loss is  .

Now if   =   ( =  say) for the mixed strategies X = (x1, x2, ...., xm), Y = (y1,

y2, ...., yn) then the value of game will be  and (X, Y) will give optimal strategies

of the game.
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[Here we remember that the mixed strategy X = (x1, x2, ...., xm) will be a pure
strategy Ai if xi = 1 and x1 = x2 = ....... = xi–1 = xi+1 = ..... xm = 0 and the mixed strategy
Y = (y1, y2, ...., yn) will be a pure strategy Bj if yj = 1 and y1 = y2 = ...... = yj–1 = yj+1

= ...... yn = 0]

In Section 9.13, we shall see that if mixed strategies be allowed, then for any “Two-
person zero-sum game” value of the game and optimal strategies can be determined.

Some Important Theorems

Theorem 14.11.1 : If a number P be added to each element of the pay-off matrix
of a game with value  then the value of the transformed game will be  + p but the optimal
strategies will remain unaltered.

Proof : We suppose that the pay-off matrix of a game with value  is [aij]m×n. Now
we add a definite number P to each element at these matrix. Then the transform matrix will
be [aij + P]m×n. If the expectation functions of the given game and the transformed game
are respectively E(x, y) and E(x, y); then we get

E(x, y) = 

m n

ij i j
i 1 j 1

a x y
 
 ,

E(x, y) =  
m n

ij i j
i 1 j 1

a P x y
 



where X = (x1, x2, ...., xm)  & Y = (y1, y2, ...., yn)

and xi  0 (i = 1, 2, ......, m), yj  0 (j = 1, 2, ....., n) and 

m n

i i
i 1 j 1

x y 1
 

   .

Now, if an optimal strategy of the game be expressed by (X
°
 ,Y

° 
), then

 = E (X
°
 ,Y

° 
) = 

ji

m n

ij i jyx i 1 j 1

max min a x y
 


and E (X, Y) = 
m n

ij i j
i 1 j 1

(a P)x y
 


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= 

m n m n

ij ij i j
i 1 j 1 i 1 j 1

a x P x y
   

 

= E (X, Y) + P (x1 + x2 + .....+ xm)(y1 + y2 + .......+ yn)

= E (X,Y) + P.1.1

= E (X,Y) + P

So, we get for any X, Y

E (X, Y) = E (X, Y) + P ..........(1)

Now, P being a definite number, from (1) we get

         
ji yx

max min E (X, Y) = 
ji yx

max min E (X, Y) + P

= E (X
°
 ,Y

° 
) + P

=  + P

Then, we get E (X
°
 ,Y

° 
) = E (X

°
 ,Y

° 
) + P,

so E (X
°
 ,Y

° 
) =  + P ......... (2)

From (2) we can say that (X
°
 ,Y

° 
) also gives an optimal strategy of the transformed

game and the value of the transformed game will be  + P.

Hence, the theorem is proved.

Theorem 14.11.2 : If the pay-off matrix of a game be skew-symmetric, then the
value of the game will be zero.

Proof : We suppose that the pay-off matrix of the given game is [aij]m×n. Then the

expectation function of the maximizing player will be E(X, Y) = 

m n

ij i j
i 1 j 1

a x y
 
  where X

= (x1 + x2, ...., xm), Y = (y1 + y2, ....., yn) are respectively the mixed strategies of the
maximizing player A and the minimizing player B.

Here, the matrix [aij]m×n is skew-symmetric. So here m = n and aij = –aji (i = 1, 2,
..., n; j = 1, 2, ....., n). Then X = (x1 + x2, ...., xn) and Y = (y1 + y2, ....., yn) and E(X,

Y) = 

m n

ij i j
i 1 j 1

a x y
 
 .



NSOU  NSE-MT-02 263

1st Proof   CPP  21/03/2025

Now if (X
°
 ,Y

° 
) give an optimal strategy of the game and if  be the value of the game,

then  = E (X
°
 ,Y

° 
) = 

YX
max min E (X, Y).

Then we get,  = 
Y

min E (X
°
 ,Y) ........... (3)

From (3) we get E (X
°
 ,Y)   which is true for any mixed strategy Y = (y1, .... yn)

of the minimizing player B.

Then for Y = X
°
  = (x° 1, x° 2, ....., x° n) we get E (X

°
 ,Y

° 
)  ........... (4)

But E (X
°
 ,Y

° 
) = 

n n

ij
i 1 j 1

a
 
 x° i x° j

= 

n n

ij
i 1 j 1

( a )
 

 x° i x° j

(since here aij = – aij)

=  –
n n

ij
i 1 j 1

a
 
 x° i x° j

(interchanging the dummy indices i and j)

Therefore, E (X
°
 , X

°
 ) = – E (X

°
 , X

°
 )

  2E (X
°
 , X

°
 ) = 0

So, E (X
°
 , X

°
 ) = 0.

Then from (4), we get  0 ............ (5)

Again  = 
Y X

min max E (X, Y) = 
X

max  E (X ,Y
° 

)

So for any mixed strategy X = (x1, x2, ....., xn) of the maximizing player A we get
E (X ,Y

° 
)  .

Then taking X = Y
°  

= (y°1, y°2, ......, y°n)

We get, E (Y
°
, Y

° 
)  ............ (6)
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Again, E (Y
°
, Y

° 
) = 

n n

ij
i 1 j 1

a
 
  y°i y°j

   = 
n n

ij
i 1 j 1

a
 

  y°i y°j

    = – E (Y
°
, Y

° 
)

 2E (Y
°
, Y

° 
) = 0

So E (Y
°
, Y

° 
) = 0.

Then from (6) we get  0. ............. (7)

Then from (5) and (7) we get  = 0.

So the theorem is proved.

14.12 Transformation of a Game Problem to a L.P.P.

Let [aij]m×n be the pay-off matrix of a m × n game with value . Here we can

assume that each element aij of the pay-off matrix is greater than 0 (i = 1, 2, ...., m;

j = 1, 2, ...., n) since if the elements are not all positive, by adding an appropriate

positive number P to each element of the pay-off matrix each element of the

transformed matrix can be made positive and we know that the value of the game

corresponding to the transformed pay-off matrix will be  + P while the optimal

strategies will remain unaltered.

Now we suppose that the mixed strategies of the maximizing player A and the

minimizing player B are respectively (x1, x2, ....., xm) and (y1, y2, ......, yn).

Then the player A chooses his available strategies A1, A2, ....., Am with

probabilities x1, x2, ....., xm respectively and the player B chooses his available

strategies B1, B2, ...., Bn with probabilities y1, y2, ....., yn respectively, where

m n

i i
i 1 j 1

x y 1
 

    and xi  0, yj  0 (i = 1, 2, ...., m; j = 1, 2, ...., n).



NSOU  NSE-MT-02 265

1st Proof   CPP  21/03/2025

y1 y2 ................. yn

B1 B2 ................. Bn

x1 A1 a11 a12 ................. a1n

x2 A2 a21 a22 ................. a2n

......................................................

......................................................

......................................................

xm Am am1 am2 ................. amn

Problem of the player A

Let g1 be the expected gain of the maximizing player A when B chooses B1 where
A follows mixed strategy (x1, x2, ....., xm).

Then g1 = a11 x1 + a21x2 + ............ + am1 xm

Similarly, we get

g2 = a12 x1 + a22 x2 + ....................... + am2 xm

..............................................................................

..............................................................................

gn = a1n x1 + a2n x2 + ........................ + amn xm

where g2, g3, ........... gn are expected gains of A when the minimizing player B chooses
B2, B3, ........ Bn respectively.

Let min {g1, g2, ........... gn} = g .......... (1)

Here g > 0 since aij > 0 for all i, j and 
m

i
i 1

x 1


 , xi  0 (i = 1, 2, ......, m).

Then, if A follows mixed strategy (x1, x2, ......, xm), then the expected gain of A will be at
least g.

Now the object of the player A is to find the values of x1, x2, ......, xm such that g becomes

maximum i.e. 1
g

 becomes minimum ( here g > 0).

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
.
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From (1), we can write

g1  g, g2  g, ................... gn  g

or,
1 2g g

1, 1,
g g

 
   ...................... 

ng
1

g


 .

Then, we get

a11
1 2 m

21 m1

x x x
a a 1,

g g g
   

  


a12 
1 2 m

22 m2

x x x
a a 1,

g g g
   

  


..................................................................

..................................................................

a1n
1 2 m

2n mn

x x x
a a 1,

g g g
   

  


and taking 
1 2 m

1 2 m

x x x
X , X X

g g g
  

  
  we get

 aij X1 + a2j X2 + .......... amj Xm  1;  j = 1, 2, ......., n.

Again 1 2 mx x x1
g g

  


 


= X1 + X2 + ....... + Xm

where X1  0,  X2  0, ............ Xm  0.

Then, the problem of the player A can be expressed as a L.P.P. given below :

Minimize 1
g

 = X1 + X2 + ............. + Xm

subject to the constraints

a11 X1 + a21 X2 + ........... + am1 Xm  1,

a12 X1 + a22 X2 + ........... + am2 Xm  1,
...................................................................

...................................................................
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a1n X1 + a2n X2 + ........... + Xmn Xm  1,

X1  0, X2  0, ............. Xm  0.

Problem of the player B

Let max {l1, l2, ............. lm} = l .......... (2),

where for mixed strategy (y1, y2, ........, yn) of B, the expected losses of B are l1, l2, ......
lm when A chooses respectively the strategies A1, A2, ...... Am.

Then li = ai1 y1 + ai2 y2 + ......... + ain yn for i = 1, 2, ........, m.

Now from (2), we can write l1  l, l2  l, ......... lm  l and l being positive we

get i


l

l
 1;  i = 1, 2, ........, m.

The object of the player B is to find the values y1, y2, ......, yn such that l becomes

minimum i.e., 1
l  becomes maximum ( here l > 0).

Now from i 1


l

l
 (i = 1, 2, ....., m), we get

1 2
i1 i2

y y
a a

 l l
 + ......... + n

in

y
a 1

l
 for i = 1, 2, ...., m

and taking 1 2 n
1 2 n

y y y
Y , Y , Y  

  


l l l
, we get

ai1 Y1 + ai2 Y2 + ........ + ain Yn  1 for i = 1, 2, ....., m

Again 1 2 ny y y1   


 


l l
 = YY1 + Y2 + ......... + Yn,  where Y1  0,

Y2  0, ........ Yn  0.

Then, the problem of the player B can be expressed as a L.P.P. given below :

Maximize 1
l  = YY1 + Y2 + ........ + Yn

subject to the constraints

a11 Y1 + a12 Y2 + .............. + a1n Yn  1,

a21 Y1 + a22 Y2 + .............. + a2n Yn  1
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....................................................................

.....................................................................

am1 Y1 + am2 Y2 + ............. + amn Yn  1,

Y1  0, Y2  0, ............... Yn  0.

We observe that the problem of B (as L.P.P.) is the dual of the problem of A (as
L.P.P.) and vice-versa.

Now (l)min = 
j i

m n

ij i jy x i 1 j 1

min max a x y
 
  and (g)max = 

ji

m n

ij i jyx i 1 j 1

max min a x y
 


In the next section, we shall prove that (l)min = (g)max =  (say) which is the value
of the game.

Thus it is proved that any game problem can be solved by reducing the game problem
to a L.P.P.

14.13 Fundamental Theorem on Two-Person zero-sum Game

Statement of the Fundamental Theorem on game problem

Theorem 14.13.1 : If mixed strategies be followed, then for any two-person zero-
sum game, the value of the game and optimal strategies will exist.

Proof : Let [aij]m×n be the pay-off matrix of a game where we can assume that each
element aij > 0 [For explanation see Theorem 9.11.1 of Section 9.11].

Let (x1, x2, ......, xm) be the mixed strategy of the maximizing player A and (y1, y2,
......, yn) be the mixed strategy of the minimizing player B i.e., the player A chooses at
random his available strategies A1, A2, ......., Am with probabilities x1, x2, ......., xm

respectively and the player B chooses at random his strategies B1, B2, ....., Bn with

probabilities y1, y2, ......, yn respectively, where 
m n

i j
i 1 j 1

x y 1
 

    and xi  0, yj  0 (i

= 1, 2, ...., m; j = 1, 2, ....., n).

We have seen in Section 9.12 that game problems of A and B can be converted to
two linear programming problems.

The problem of A as L.P.P. is given below :
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Minimize 1
g

 = X1 + X2 + ....... + Xm

subject to a11 X1 + a21 X2 + ........... + am1 Xm  1

a12 X1 + a22 X2 + ........... + am2 Xm  1

.................................................................

..................................................................

a1n X1 + a2n X2 + ........... + amn Xm  1

X1, X2, ............. Xn  0 where   Xi = 
ix

g  ;  i = 1, 2, ......, m.

The problem of B as a L.P.P. is as follows :

Maximize 1
l  = YY1 + Y2 + ........ + Yn

subject to a11 Y1 + a12 Y2 + .............. + a1n Yn  1

a21 Y1 + a22 Y2 + .............. + a2n Yn  1

....................................................................

.....................................................................

am1 Y1 + am2 Y2 + ............. + amn Yn  1

Y1, Y2, ......, Yn  0 where Yj = 
jy

l
     (j = 1, 2, ......, n).

Here, we observe that one of these two problems (as L.P.P.) is the dual of the

other.

Now we shall show that the problem of A has a feasible solution.

Let a =  11 12 1n

1
a ,a , amin   where min {a11, a12, ......, a1n} > 0 since here  a11,

a12, ......, a1n > 0.

Then a > 0 and a.a11  1, a.a12  1, a.a13  1, ....... a.a1n  1.



270 NSOU  NSE-MT-02

Thus, X1 = a, X2 = 0, ........., Xm = 0 satisfy all the constraints of A’s problem. Then
(a, 0, ......., 0) is a feasible solution of the L.P.P. for A. Again we observe that the objective
function of this L.P.P. is X1 + X2 + ...... + Xm  0 for any feasible solution and so the
objective function of the L.P.P. (as a minimization problem) cannot be unbounded. So the
problem of A (as L.P.P.) has finite optimal solution.

Now, from the Fundamental Theorem on Duality, we know that

“If any one of the primal problem on the dual problem has finite optimal solution, then
the other has also finite optimal solution and the optimal values of the objective functions
of the two problems are same.”

So the problem of B (as L.P.P.) has also finite optimal solution and  
maxmin

1 1
g

  
  l

i.e., (g)max = (l)min.

Then the game has a value which is equal to (g)max [or (l)min] and from the optimal
solutions of the two problems we can find the optimal strategies of the game. So the
theorem is proved.

Remark : If the game problem be converted to a L.P.P. by adding P to each element
of the pay off matrix, then the value of the given game will be (g)max –P = (l) – P while
the optimal strategies will remain unaltered.

14.14 An Example

Example 14.14.1 : The pay-off matrix of a game is given below. Solve the
following game problem by transforming it to a L.P.P. :

Player B

B1 B2 B3

A1 1 –1 3

Player A A2 3 5 –3

A3 6 2 –2

Solution : Here we add 4 to each element of the pay-off matrix (so that each
term becomes positive) and the transformed matrix becomes
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B1 B2 B3

A1 5 3 7

A2 7 9 1

A3 10 6 2

Let the mixed strategies of the player A be given by (x1, x2, x3) and the mixed

strategies of the player B be given by (y1, y2, y3) where x1 + x2 + x3 = 1, y1 + y2 + y3

= 1 and xi  0, yj  0 (i = 1, 2, 3; j = 1, 2, 3).

Then the problem of A (as L.P.P.) will be

Minimize 1
g  = X1 + X2 + X3

subject to 5X1 + 7X2 + 10X3  1

3X1 + 9X2 + 6X3  1

7X1 + X2 + 2X3  1

X1, X2, X3  0

and the problem of B (as L.P.P.) will be

Maximize 1
l
 = YY1 + Y2 + Y3

subject to 5Y1 + 3Y2 + 7Y3  1

7Y1 + 9Y2 + Y3  1

10Y1 + 6Y2 + 2Y3  1

Y1, Y2, Y3  0.

Here Xi = 
ix

g   (i = 1, 2, 3) and  YYJ = 
jy

l
 (j = 1, 2, 3).

Now let us solve the problem of B (which is a L.P.P. for finding maximum value of
the objective function) by simplex algorithm.

Adding slack variables Y4, Y5, Y6 we find that the L.P.P. for the problem of B can
be expressed as
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Maximize 1
l  = YY1 + Y2 + Y3 + 0.Y4 + 0.Y5 + 0.Y6

subject to 5Y1 + 3Y2 + 7Y3 + 4Y4 = 1

7Y1 + 9Y2 + Y3 + Y5 = 1

10Y1 + 6Y2 + 2Y3 + Y6 = 1

Yj  0  (j = 1, 2, 3, 4, 5, 6)

Simplex Table-I

cj 1 1 1 0 0 0

Bc BY b 1a 2a 3a 4a 5a 6a

0 Y4 1 5 3 7 1 0 0

0 Y5 1 7 9 1 0 1 0

0 Y6 1 10 6 2 0 0 1

zj – cj 0 –1 –1 –1 0 0 0

min  1 1 1 1, ,
3 9 6 9



Simplex Table-II

cj 1 1 1 0 0 0

Bc BY b 1a 2a 3a 4a 5a 6a

0 Y4
2
3

8
3 0

20
3 1 – 1

3 0

1 Y2
1
9

7
9 1 1

9 0 1
9 0

0 Y6
1
3

16
3 0 4

3 0 – 2
3 1

zj – cj
1
9

2
9

 0
8
9

  0 1
9 0
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min 

2 1 1
3 9 3 1, ,
2 1 4 10
3 9 3

 
   
  

Simplex Table-III

cj 1 1 1 0 0 0

Bc BY b 1a 2a 3a 4a 5a 6a

1 Y3
1

10
2
5 0 1

3
20

1
20

 0

1 Y2
1

10
11
15 1 0 1

60
 7

60 0

0 Y6
1
5

8
15

 0 0 1
5

 3
5

 1

zj – cj
1
5

2
15 0 0 2

15
1

15 0

Here zj – cj  0 for all j.

So optimal solutions of the primal problem and the dual problem can be found

from simplex Table III. For the problem of B we get Y1 = 0, Y2 = 1
10 , YY3 = 1

10  and

from these values optimal strategies of B can be determined, where Y1 + Y2 + Y3 =
1
5  which is the maximum value of 1

l . So the minimum value of l is 5 which is the value
of the transformed game.

So the value of the given game will be 5 – 4 = 1.

Now the optimal strategies of B are given by y1 = 5Y1 = 0, y2 = 5Y2 = 1
2

,

y3 = 5Y3 = 1
2

.

Again, from the entries in the row for zj – cj in Simplex Table III, we can say

X1 = 2
15 , X2 = 1

15 , X3 = 0 from which the optimal strategies of the player A can

be obtained. So for the optimal strategies of the player A we have x1 = 5X1 = 2
3 ,

x2 = 5X2 = 1
3 , x3 = 5X3 = 0.
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Then the value  of the given game is 1 and the optimal strategies of the players A

and B are respectively  2 1, , 0
3 3  and  1 10, ,

2 2 .

14.15 Graphical Method of Solution

The graphical method is only applicable to those games in which one of the players
has two strategies. It reduces the original 2 × n or m × 2 to a 2 × 2 game. Consider the
following pay-off matrix of a 2 × n game.

Player B

B1 B2 ........... Bn

Player A A1 a11 a12 ........... a1n

A2 a21 a22 ........... a2n

It is assumed that the game does not have a saddle point. Let the optimum mixed
strategy for A be given by

A1    A2

SA = [x1    x2] where x2 = 1 – x1 and 0  x1  1.

The average (expected) pay-off for A when he plays SA against Bs pure
strategies B1, B2, ....., Bn is given by

B’s Pure strategy A’s expected pay-off g

B1 g1 = a11x1 + a21x2

   = a11x1 + a21 (1–x1)
B2 g2 = a12x1 + a22 (1 – x1)

 
Bn gn = a1nx1 + a2n (1–x1)

According to the maximum criterion for mixed strategies player A should select
that value of x1 which maximizes his minimum expected pay-offs. This can be done
by plotting the expected pay-off lines as functions of x1.

gj = (a1j – a2j) x1 + a2j; j = 1, 2, ....., n

Since A is the maximizing player, the highest point on the lower envelope of



NSOU  NSE-MT-02 275

1st Proof   CPP  21/03/2025

these lines will give maximum of the minimum (i.e., maximin) expected pay-off to A and also

the optimum value xi (see Section 9.16 – Ex-19.6.1).

The two lines passing through the maximum point identify the two critical

strategies of B which, combined with two of A, reduces to 2 × 2 game that can be

used to find the optimum strategies of the two players (for the original game) using the

results of previous sections.

Note : (i) If there are more than two lines passing through the maximin point,

there are ties for the optimum mixed strategies for player B and so any two such lines

with opposite sign slopes will define an alternative optimum for B.

(ii) The m × 2 games are also treated in the similar way where the upper envelope

of the straight lines corresponding to B’s expected pay-offs will give the maximum

expected pay-off to B. The lowest point on this then gives the minimum expected pay-

off (minimax value) and the optimum value of yi. The two lines passing through the

minimax point identify the two critical strategies of A which, combined with two of B,

reduces to 2 × 2 game.

14.16 A Few Examples

Example 14.16.1 : Sove the following game graphically :

Player B

         Player A 3 –3 4

–1 1 –3

Solution :

B1 B2 B3

             A A1 3 –3 4

A2 –1 1 –3

Obviously, this game does not possess a saddle point (in case of pure strategy),
where A is the maximizing player and B is the minimizing player. We suppose that A
plays mixed strategy described by
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      A1      A2

SA = [x1    1 – x1] 0  x1  1, against B

B’s Pure strategy A’s expected pay-off gi

B1 g1 = 3x1 – (1 – x1) = 4x1 – 1

B2 g2 = –3x1 + (1 – x1) = – 4x1 + 1

B3 g3 = 4x1 – 3(1 – x1) = 7x1 – 3

Graphical Representation

The graph indicates that the given game is reduced to a 2 × 2 game :

B

B2 B3

A A1 –3 4

A2 1 –3

Player A’s strategy :

x1 = 22 21a a 3 1 4
11 11

   
 

(  = a11 + a22 – (a12 + a21)

      = –6 –5 = – 11)

x2 = 1 – x1

   = 1 – 74
11 11



Player B’s strategy :

y1 = 22 12a a 3 4 7
11 11

   
 

y2 = 1 – y1 = 4
11

Value of the game = 11 22 12 21a a a a
  = 9 4 5

11 11
  
 .

4

B2

(1, 0)(0, 0)

3

2

1

–1

–2

–3

4

3

2

1

–1

–2

–3B3

B1

x1O

g ig i

Maximin

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Hence, the solution to the given game as follows :

Optimal strategies are SA
*  = 

74
11 11
 
   ,    SB

*  = 
7 40, ,
11 11

 
     and  = 5

11
 .

Example 14.16.2 : Solve graphically the game having the following pay-off
matrix :

B
B1 B2

A1 1 –3

A
A2 3 5

A2 –1 6

A2 4 1

Solution : Here, A is the maximizing player and B is the minimizing player.
Obviously, this game does not possess a saddle point (in case of pure strategy).

We suppose that B plays strategies described by

      B1       B2

SB = [y1    1 – y1], 0  y1  1, against A

A’s Pure strategy B’s expected pay-off li

A1 l1 = y1 – 3 (1 – y1) = 4y1 – 3

A2 l2 = 3y1 + 5 (1 – y1) = –2y1 + 5

A3 l3 = –y1 + 6 (1 – y1) = –7y1 + 6

A4 l4 = 4y1 + 1 – y1 = 3y1 + 1

Graphical Representation

The graph indicates that the given game is reduced to a 2 × 2 game :

B

B2 B3

A A2 3 5

A4 4 1

It has no saddle point.
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Player A’s strategy :

x1 = 22 21a a 31 4
5 5

  
 

(  = a11 + a22 – (a12 + a21)

      = 4 –9 = – 5)

x2 = 1 – x1  = 2
5

Player B’s strategy :

y1 = 22 12a a
  = 

1 5
5

  = 4

5

y2 = 1 – y1  = 1
5

Hence the solution to the given game is as follows :

SA
*  = Optimum strategies for A = 3 20, , 0,

5 5
 
  

SB
*  = Optimum strategies for B = 4 1,

5 5
 
  

and  = value of the game = 12 22 12 21a a a a
   = 

3 20
5


   = 

17
5 .

14.17 Summary

First we have given the idea of pay-off matrix of a two-person zero-sum game.
Then we have proved that the value of a game can be determined following only pure
strategies if and only if the game has a saddle point. After this we have shown how
2 × 2 game having no saddle point can be solved by following mixed strategies.

Then we have stated the rules of dominance and we have seen that in many
cases the pay-off matrix of a game can be reduced to 2 × 2 pay-off matrix by using
the rules of dominance. After proving two theorems using the idea of expectation

6
5
4
3
2
1

–1
–2
–3

6
5
4
3
2
1

–1
–2
–3

A3

A2
A4

A1

(0, 0) (1, 0)O y1

l il i

Minimax
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function we have shown by using one theorem that any game problem can be
transformed to L.P.P. It has been shown that for only two-person zero-sum game,
value exists and optimal strategies can be determined when mixed strategies are
allowed.

Finally, we have given the graphical method of solving a game problem with pay-
off matrix of order 2 × n or n × 2.

14.18 Exercise

1. Apply the maximin and minimax principle to solve the games whose pay-off
matrices are given below :

(i) B

B1 B2 B3

A1 6 3 –3

A A2 –2 1 2

A3 5 4 6

(ii) B

B1 B2 B3 B4

A1 4 2 3 5

A A2 –2 –1 4 –3

A3 5 2 3 3

A4 4 0 0 1

(iii) B

B1 B2 B3

A1 7 4 1

A A2 4 2 0

A3 3 –1 –2

A4 1 5 –3
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2. Prove that for any value of x (> 0) the value of the following game is 21 :

B

B1 B2

A A1 2 4

A2 –1 x

3. Prove that the pay-off matrix of the following game has no saddle point :

B

B1 B2 B3 B4 B5

A1 3 10 5 9 5

A A2 4 5 12 10 6

A3 5 6 4 7 13

A4 11 7 8 5 2

4. Solve the following 2 × 2 games :

(i) B

B1 B2

A A1 10 5

A2 5 10

(ii) B

I II

A I 2 12

II 8 3
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5. Solve the following 4 × 5 game using the rules of dominance :

B
B1 B2 B3 B4 B5

A1 10 5 5 20 4

A A2 11 15 10 17 25

A3 7 12 8 9 8

A4 5 13 9 10 5

6. Reduce the following games to a game having 2 × 2 pay-off matrix :

(i) 7 7 6 3 2

9 8 9 3 5

10 6 7 10 11

(ii) 2 3 1
2

3
2

3 0

1
2

1 1

7. Find the expectation function of the following game and hence show that the
optimal strategy of the maximizing player A is a pure strategy whole the minimizing player
B has infinite number of optimal mixed strategies.

8. Find the expectation function of the following 2 × 2 game and hence find the
optimal strategies and the value of the game :

B

B1 B2

A A1 1 7

A2 6 2
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9. Transform the game problem with the following pay-off matrix to a L.P.P. :
   B

B1 B2 B3

A1 10 2 5

A A2 1 7 4

A3 6 3 9

10. Solve the following game problem by reducing it to a L.P.P. :
    B

B1 B2 B3

A A1 2 –2 3

A2 –3 5 –1

11. Solve graphically the games whose pay-off matrices are given below :
(i)    B

B1 B2 B3

A A1 1 3 11

A2 8 5 2

(ii) B
B1 B2

A A1 2 7

A2 3 5

A3 11 2

12. A game is said to be strictly determinable of    . Show that whatever may
be the value of a, the game with the following pay-off matrix is strictly determinable :

B
B1 B2

A A1 3 7

A2 –3 a
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13. For what values of a, the game with the following pay-off matrix is strictly
determinable?

   B
B1 B2 B3

A1 a 5 2

A A2 –1 a –8

A3 –2 3 a

14. In a game with 2 × 2 pay-off matrix

a b

c d

where a < d < b < c, show that there is no saddle point.

Answers

1. (i) (A3, B2);  = 4

(ii) (A1, B2) or (A3, B2);   = 2

(iii) (A1, B3);  = 3

4. (i) A :  1 1,
2 2 ;  B :  1 1,

2 2  ;   = 15
2

(ii) A :  1 2,
3 3 ; B :  3 2,

5 5 ;  = 6

5.  (A2, B3);   = 10

6.  (i) 
8 3

8 10

 
 
 

 ;   (ii) 

12
2

1 1
2

 
 
 
  
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8. E (X, Y) = 5x + 4y – 10xy + 2;  A :  32 ,
5 5 ; B :  1 1,

2 2 ;  = 4

9. B’s problem

Maximize 1
l  = YY1 + Y2 + Y3

subject to 10Y1 + 2Y2 + 5Y3  1

Y1 + 7Y2 + 4Y3  1

6Y1 + 3Y2 + 9Y3  1

Y1, Y2, Y3  0

where yi = lyi (i = 1, 2, 3).

A’s problem

Minimize 
1
g  = X1 + X2 + X3

subject to 10X1 + X2 + 6X3  1

2X1 + 7X2 + 3X3  1

5X1 + 4X2 + 9X3  1

X1, X2, X3  0

and xi = gXi   (i = 1, 2, 3).

10. A :  7 5,
12 12 ;  B :  2 1, , 0

3 3 ;   = 1
3

11. (i) A :  3 8,
11 11 ; B :  9 20, ,

11 11 ;  = 49
11

(ii) A :  9 5, 0,
14 14 ; B :  5 9,

14 14 ;  = 73
14

13. – 1  a  2
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14.19 Multiple Choice Questions (MCQ)

1. In a fair game the value of the game is

(a) 1 (b) 0 (c) unbounded (d) none of these

2. The value of the game having the following pay-off matrix

B1 B2 B3

A1 10 2 3

A2 7 6 8

A3 0 3 1

is

(a) 6 (b) 10 (c) 8 (d) 2

3. Find the range of values of p and q for which the position (2, 2) will be a

saddle point for the following game :

B

B1 B2 B3

A1 2 4 5

A A2 10 7 q

A3 4 p 6

(a) p  7 and q  7 (b) p = 7, q = 7

(c) p  7 and q  7 (d) p  7 and q  7

4. Players apply mixed strategy in a game if

(a) there is no saddle point in the pay-off matrix

(b) there is a saddle point in the pay-off matrix

(c) there is more than one saddle point in the pay-off matrix

(d) none of these
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5. In a game problem, saddle point in the pay-off matrix occurs when

(a) max (row min) = min (column max)

(b) min (row min) = min (column max)

(c) max (row min) = max (column max)

(d) none of these

6. A game is solved graphically when the pay-off matrix is of the form

(a) m × 1 (b) m × 4 (c) m × 2 only (d) m × 1 or 2 × n

7. In a game problem, the dominance rule for column states that every element in

the dominating column must be __________ the corresponding element in the

dominated column

(a) less than or equal to (b) greater than

(c) less than (d) grater than or equal to

8. If mixed strategies be followed in two-person zero-sum game, then

(a) the value of the game may or may not exist

(b) optimal strategies do not exist

(c) optimal strategis exist

(d) none of these

Answers

1. (b) 2. (a) 3. (a) 4. (a) 5. (a) 6. (d)

7. (a) 8. (c)
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