PREFACE

With its grounding in the “guiding pillars of Access, Equity, Equality, Affordability and Accountability,”
the New Education Policy (NEP 2020) envisions flexible curricular structures and creative combinations
for studies across disciplines. Accordingly, the UGC has revised the CBCS with a new Curriculum and
Credit Framework for Undergraduate Programmes (CCFUP) to further empower the flexible choice based
credit system with a multidisciplinary approach and multiple/ lateral entry-exit options. It is held that this
entire exercise shall leverage the potential of higher education in three-fold ways — learner’s personal
enlightenment; her/his constructive public engagement; productive social contribution. Cumulatively
therefore, all academic endeavours taken up under the NEP 2020 framework are aimed at synergising
individual attainments towards the enhancement of our national goals.

In this epochal moment of a paradigmatic transformation in the higher education scenario, the role of
an Open University is crucial, not just in terms of improving the Gross Enrolment Ratio (GER) but also in
upholding the qualitative parameters. It is time to acknowledge that the implementation of the National
Higher Education Qualifications Framework (NHEQF), National Credit Framework (NCrF) and its
syncing with the National Skills Qualification Framework (NSQF) are best optimised in the arena of
Open and Distance Learning that is truly seamless in its horizons. As one of the largest Open Universities
in Eastern India that has been accredited with ‘A’ grade by NAAC in 2021, has ranked second among
Open Universities in the NIRF in 2024, and attained the much required UGC 12B status, Netaji Subhas
Open University is committed to both quantity and quality in its mission to spread higher education. It
was therefore imperative upon us to embrace NEP 2020, bring in dynamic revisions to our Undergraduate
syllabi, and formulate these Self Learning Materials anew. Our new offering is synchronised with the
CCFUP in integrating domain specific knowledge with multidisciplinary fields, honing of skills that are
relevant to each domain, enhancement of abilities, and of course deep-diving into Indian Knowledge
Systems.

Self Learning Materials (SLM’s) are the mainstay of Student Support Services (SSS) of an Open
University. It is with a futuristic thought that we now offer our learners the choice of print or e-slm’s.
From our mandate of offering quality higher education in the mother tongue, and from the logistic
viewpoint of balancing scholastic needs, we strive to bring out learning materials in Bengali and English.
All our faculty members are constantly engaged in this academic exercise that combines subject specific
academic research with educational pedagogy. We are privileged in that the expertise of academics across
institutions on a national level also comes together to augment our own faculty strength in developing
these learning materials. We look forward to proactive feedback from all stakeholders whose participatory
zeal in the teaching-learning process based on these study materials will enable us to only get better. On
the whole it has been a very challenging task, and | congratulate everyone in the preparation of these
SLM’s.

I wish the venture all success.

Professor Indrajit Lahiri
Vice Chancellor

Netaji Subhas Open University
Four Year Undergraduate Degree Programme
Under National Higher Education Qualifications Framework (NHEQF) &
Curriculum and Credit Framework for Under Graduate Programmes
B. Sc. Mathematics (Hons.)
Programme Code : NMT
Course Type : Skill Enhancement Course (SEC)
Course Title : Cpmputer Programming
Course Code : NSE-MT-03

First Edition : 20......

Printed in accordance with the regulations of the Distance Education
Bureau of the University Grants Commission.

Mampi Howlader
Typewriter
Cpmputer Programming

Netaji Subhas Open University
Four Year Undergraduate Degree Programme
Under National Higher Education Qualifications Framework (NHEQF) &
Curriculum and Credit Framework for Under Graduate Programmes
B. Sc. Mathematics (Hons.)
Programme Code : NMT
Course Type : Skill Enhancement Course (SEC)
Course Title : Computer Programming

Course Code : NSE-MT-03

: Board Of Studies

Members

Dr. Bibhas Guha

Director, School of Sciences,
NSOU

Mr. Ratnes Misra

Associate Professor of Mathematics,
NSOU

Dr. Nemai Chand Dawn

Associate Professor of Mathematics,
NSOU

Dr. Chandan Kumar Mondal
Assistant Professor of Mathematics,
NSOU

Dr. Ushnish Sarkar

Assistant Professor of Mathematics,
NSOU

: Course Writer :
Mr. Mrinal Nath

Assistant Professor of Computer Science

Netaji Subhas Open University

Dr. P. R. Ghosh
Retd. Reader of Mathematics,
Vidyasagar Evening College

Prof. Dilip Das

Professor of Mathematics,
Diamond Harbour Women's
University

Dr. Diptiman Saha
Associate Professor of Mathematics,
St. Xavier’s College

Dr. Prasanta Malik
Assistant Professor of Mathematics,
Burdwan University

Dr. Rupa Pal
Associate Professor of Mathematics,
WBES, Bethune College

: Course Editor :
Dr. Tushar Kanti Saha
Associate Professor,
Department of Mathematics
Surendranath College

: Format Editor :
Dr. Chandan Kumar Mondal
Assistant Professor of Mathematics,
NSOU

Notification

All rights reserved. No part of this Self-Learning Material (SLM) may be reproduced in
any form without permission in writing from Netaji Subhas Open University.

Ananya Mitra
Registrar (Add’l Charge)

Mampi Howlader
Typewriter
Skill Enhancement Course (SEC)

Mampi Howlader
Typewriter
Computer Programming

Netaji Subhas UG : Mathematics

>
=

\pYLaN

. . NMT
=2+ Open University (NMT)

Course Code : NSE-MT-03

Computer Programming

Unit - 1 Q Problem Solving Techniques 7-32
Unit - 2 Q Introducing C 33-46
Unit- 30 Variables, Constants and Input/Output 47 -174
Unit - 4 O Expression and Operators 75 -91
Unit - 50 Decision and Loop Control Statements 92 — 128
Unit- 6 O Arrays 129 - 152

Unit - 72 Application of C Programming : Solution of Non-Linear
Equations 153 - 188

Unit - 8 O Application of C Programming : Solution of System of
Linear Equations by Direct Methods : Gauss Elimination
and Gauss Jordan Elimination 189 - 218

Unit - 90 Application of C Programming : Solution of System of
Linear Equations by Direct Methods : Matrix Inverse
and LU Decomposition 219 - 240

Unit - 10 O Application of C Programming : Solution of System of
Linear Equations by Iterative Methods : Jacobi and

Gauss-Siedel Method 241 - 256
Unit - 11 O Application of C Programming : Interpolation 257277
Unit - 12 O Application of C Programming : Integration 278 —286
Unit 13: 0 Trapizoidal Rule 287-291

Unit 14: 0 Simpson's 1/3 Rule 292-296

Mampi Howlader
Typewriter
Computer Programming

Mampi Howlader
Typewriter
(NMT)

Mampi Howlader
Typewriter
287-291

292-296

Mampi Howlader
Typewriter
286

Unit - 1 Q Problem Solving Techniques

Structure
1.0 Introduction
1.1 Objectives
1.2 Problem Solving Aspects
1.2.1 Problem Definition Phase
1.2.2 Getting Started with Problem
1.2.3 The Use of Specific Examples
1.2.4 Similarities Among Problems
1.2.5 Working Backward from the Solution
1.2.6 Using Computer as a Problem-Solving Tool
1.3 Design of Algorithm
1.3.1 Criteria to be Followed by an Algorithm
1.4 Flowcharts
1.4.1 Basic Symbols used in Flowchart Design
1.5 Fundamental Algorithm
1.5.1 Exchanging the Values of Two Variables
1.5.2 Summation of a Set of Numbers
1.5.3 Generation of Fibonacci Sequence
1.5.4 Reversing the Digits of an Integer
1.6 Factoring Method
1.6.1 Finding Square Root of a Number
1.6.2 The Greatest Common Divisor of Two Integers
1.7 Summary

1.8 References and Further Reading

1.0 Introduction

It’s not that I'm so smart it'’s just that I stay with problems longer:

Albert Einstein.

8 NSOU e CC-MT-06

Developing problem solving skills is like learning to play a musical instrument—
a book or a teacher can point someone in the right direction, but only the hard work
of the person can take him where he wants to go. Like a musician, the person need
to know the underlying concepts but theory is no substitute for practice. Therefore,
if someone wish to become a problem solver he/she has to solve problems.

In this unit we introduce the concepts of problem-solving, especially as they
pertain to computer programming. In one hand, problem solving using computer is
a demanding and intricate process which needs innovative thinking, careful planning,
logical precession, perseverance, attention, on the other hand it can be challenging,
exciting and satisfying experience with considerable room for personal creativity and
expression.

To solve a problem using computer, the programmer needs to create a set of
explicit and unambiguous instructions expressed in a particular programming language.
This set of instructions is known as program. This set of instructions are also known
as algorithm when it is expressed in a form that is independent of any programming
language. The program runs on certain input data, supplied by the user and
manipulates the data according to the instructions and eventually produces an output
which represents the solution to the problem.

1.1 Objectives

After going through this unit the learner should be able to :
> Apply problem solving techniques
> Define an algorithm and its features
> Design flowcharts

1.2 Problem Solving Aspects

Problem solving is a creative process which largely defies systemization and
mechanization. Therefore, there is no universal method or recipe for problem
solving, rather different strategies appear to work for different people. Even if one
is not naturally skilled at problem solving there are a number of steps that can be
taken to raise the level of one’s performance.

1.2.1 Problem Definition Phase

One needs to fully understand the problem beforehand, to make useful progress
in problem solving. This preliminary investigation may be thought of as the problem
definition phase. Therefore, the goal of this phase is to find what must be done rather
than how to do it.

NSOU e CC-MT-06 9

1.2.2 Getting Started with Problem

There are many ways of solving a problem and there may be several solutions.
So, it is difficult to recognize immediately which path could be more productive.
Sometimes it is very difficult to find any idea where to begin solving a problem, even
if the problem has been defined. Such block occurs particularly when the problem
solver overly concerned with the details of the implementation even before completely
understanding or working out a solution. The best advice is not to get concerned with
the details. Those can come later when the intricacies of the problem have been
understood.

1.2.3 The Use of Specific Examples

A useful strategy is to solve a specific example of generic problem before
working out the actual solution of the generic problem (To find a maximum of a set
of numbers, choose a particular set of numbers and work out the mechanism for
finding the maximum in this set). It is usually easier to solve a specific problem
because the relationship between mechanism and the particular problem is more
clearly defined. This approach can often give us the foothold for making a start on
the solution of the general problem.

1.2.4 Similarities Among Problems

Another useful strategy while solving a problem is to bring as much past
experience as possible to bear on current problem. Therefore, it is important to see
if there are any similarities in current problem and other problems solved so far. But
sometimes, it blocks from discovering a desirable or better solution to the problem.
A skill that is important to try to develop in problem-solving is the ability to view
a problem from a variety of angles. One must be able to metaphorically turn a
problem upside down, inside out, sideways, backwards, forwards and so on. Once
one has developed this skill it should be possible to get started on any problem.

1.2.5 Working Backward from the Solution

In some cases, if the solution to the problem is already known, it is useful to
work backward to the starting point. Even a guess at the solution to the problem may
be enough to give us a foothold to start on the problem. We can systematize the
investigations and avoid duplicate efforts by writing down the various steps taken
and explorations made. Another practice that helps to develop the problem solving
skills is, once we have solved a problem, to consciously reflect back on the way we
went about discovering the solution.

10 NSOU e CC-MT-06

1.2.6 Using Computer as a Problem-Solving Tool

A computer is a very powerful general-purpose tool that can solve or help to
solve many types of problems. There are also many ways in which a computer can
enhance the effectiveness of the time and effort that someone is willing to devote to
solve a problem. Thus, it will prove to be well worth the time and effort you spend
to learn how to make effective use of this tool. To solve a problem using computer
involves many steps like understanding of the problem, developing a solution,
writing the program, and then testing it. How properly someone is following these
steps, determines the overall quality and success of the program. The following are
the steps in detail :

1. Specity the problem requirement.

Analyse the problem

Design an Algorithm and a Flowchart

Implement the algorithm in a programming language (Like C language)
Test and verify the completed program

IS i

Run the program on input data and get the output

The main focus of this unit is to discuss the third step i.e. how to design an
algorithm and flowchart. The remaining steps will be discussed in subsequent units
of this module.

1.3 Design of Algorithm

The primary goal in computer problem solving is an algorithm which is capable
of being implemented as a correct and efficient computer program. An algorithm is
a finite set of steps defining the solution of a particular problem. It must be noted
that an efficient algorithm is one which is capable of giving the solution to the
problem by using minimum resources of the system such as memory and processor’s
time. Algorithm is language independent, well-structured and detailed. It will enable
the programmer to translate into a computer program using any high-level language.
For each problem or class of problems, there may be different algorithms. For each
algorithm, there may be many different implementations or programs (Figure 1.1).

1.3.1 Criteria to be Followed by an Algorithm
The following is the criteria to be followed by an algorithm :

e Input : An algorithm has zero or more inputs which are to be supplied.

NSOU e CC-MT-06 11

e Output : An algorithm has one or more outputs, which have a specified
relation to the inputs.

e Definiteness : Each step must be precisely defined; the actions to be carried
out must be rigorously and unambiguously specified for each case.

e Finiteness : If we trace the steps of an algorithm, then for all cases, the
algorithm must terminate after a finite number of steps.

e Effectiveness : Each step must be sufficiently basic that a person using only
paper and pencil can in principle carry it out. In addition, not only each step
is definite, it must also be feasible.

1.4 Flowcharts

Flowcharts are used in programming to diagram the path in which information
is processed through a computer to obtain the desired results. Flowchart is a
graphical representation of an algorithm. It makes use of symbols which are
connected among them to indicate the flow of information and processing. It will
show the general outline of how to solve a problem or perform a task. It is prepared
for better understanding of the algorithm. By looking at a Flowchart one can
understand the operations or sequence of operations performed in an algorithm.
Flowchart is often considered as a blueprint of a design used for solving a specific

problem.
Algorithm 1] —
g S
. =
'G_E) ,/'[Algorithm 2] é" g -
g . ~ 1, 2| &
& [Algorithm 3] & g” o
. E g
. =
Algorithm n) —p | D
&

Figure 1.1

12 NSOU e CC-MT-06

1.4.1 Basic Symbols used in Flowchart Design

Symbol
Name

Oval

Symbol Function

Used to represent start and end of
flowchart

Parallelogram E Used for input and output operation

Processing : Used for arithmetic operations
and data-manipulations

Rectangle

Diamond Decision making : Used to represent the

operation with multiple alternatives.

?_> Used to indicate the flow of logic by
i connecting symbols

Circle O Page Connector

Predefined Used to represent a group of statements
Process performing one processing task.

Arrows —

— Comments, Explanations, Definitions.

Table 1.1

1.5 Fundamental Algorithm

Different types of algorithm are used in practice. Few of them are essential part
of many more elaborate computational procedures. Let us discuss these algorithms
in the following section.

1.5.1 Exchanging the Values of Two Variables

Problem :

Given two variables a and b, exchange the values assigned to them.

NSOU e CC-MT-06

Algorithm Development :

Consider the case when a = 56 and » = 85. Our task is to replace the contents

of a with 85 and the contents of » with 56.

Starting Configuration

Target Configuration

b

56

85

]

—,

a b

85 56

Apparently one can assume that two assignment statements a = b and b = a can
be used to achieve the target configuration (Figure 1.2). But to analyse the problem

Figure 1.2

one need to understand how the assignment statement actually work.

Initial State

56

85 85 will be copied into a

Intermediate State

Final State

a b
85 85
b=a

85

85

85 will be copied into b

Figure 1.3

14 NSOU e CC-MT-06

Initial State Intermediate State 1
a b t t=a : a b t
56 85 56 will be copied into t 56 85 56

a=b | &5 will be copied

into a
Final State Intermediate State 2
t
a b bt a b ¢
&5 56 56
85 85 56

56 will be copied into b

Figure 1.4

Figure 1.3 shows execution of assignment statements ¢ = b and b = a
sequentially. After executing the statement @ = b on the initial state, the new value
of b (= 85) get copied into a and as a result new value of a becomes 85. The old
value of a (= 56) is therefore lost from memory as memory cell can’t have multiple
values of a variable at any particular time instance. This suggests that the older value
of variable a needs to be copied to another variable, say 7 before executing a = b.
Therefore, to solve the above problem following three assignment statements needs
to be executed sequentially. Figure 1.4 shows how the variable are exchanged by
this method.

The algorithm and flowchart of this method is given in Figure 1.5.

NSOU e CC-MT-06 15

Check Your Progress 1.1
Design an algorithm that makes following exchanges :

a—=>b—>c

Algorithm Description and Flowchart :

Algorithm Flowchart

L Sur s)

2. Read the numbers a and b

Read g, b
3. t¢<a
y
4. a<b
t=a
5. bet a=b
b=t

.

6. Print the numbers a and b

7. Stop i Print g, b ;

N

Stop

Figure 1.5

Check Your Progress 1.2
Design an algorithm and flowchart for the following problem :

Given two variables a and b, exchange their values without using a third
temporary variable.

16 NSOU e CC-MT-06

1.5.2 Summation of a Set of Numbers
Problem :

Given a set of » numbers, design an algorithm that adds all the numbers and
give the sum as output. Assume that n > 0.

Algorithm Development :

To develop this algorithm at first we need to discuss how addition operation
takes place inside the computer processor. Arithmetic processing unit (ALU) of a
computer has a specific circuit (Adder) which can take two numbers and return the
result after adding them (Figure 1.6). The result can be stored in a memory cell.

Therefore, if s be memory cell which can store the result of adding two numbers
a, and a,, then this operation can be written as s = a; + a,.

a —> Adder
- Circuit > 4 ta

Figure 1.6

Another important fact is that the assignment (=) operator is right associative
(Associativity will be discussed in detail in section 4.3), which means the right hand
side will be evaluated first and then the result will be assigned to memory cell in left
hand side of the assignment operator. This way, s = a; + a, can add only two
numbers and give the result.

A fundamental goal in designing algorithms and implementing programs is to
make the programs general enough so that they will successfully handle a wide
variety of input conditions. That is, the program should add any » numbers where
n can take on a wide range of values. Even when, n is large, computer can still
handle the operation s = a;, + a, + a3 +...a, by using multiple adders
(Figure 1.7a). But this approach needs » memory cells for storing a,, a,, a5 . . ., a,
to be defined before program execution. If the value of » changes then new variables
may need to be defined. But any robust program should be capable of handling

different inputs without redefining its variables each time before execution.

One way to do this, that takes note of the fact that the computer adds two
numbers at a time is to start by adding first two numbers a, and a,. That is,

s=a; t+a, (1)

NSOU e CC-MT-06 17

then proceed by adding a; to s computed in step (2) and assign the result to s again
(Figure 1.7b).

al\+ /a2 /a3 a}’l Old Value
o)
-~ s=s+az 2)

"

] New value
s

(a) (b)
Figure 1.7

In similar manner :

s o= s + a e 3)
s =5 + a| —————= 4)
: : o 0)

—————— ()
s = s + a, -———(m-1)

From step (2) onwards the steps are repeated with only changes in values of s
and a. Therefore for general i step the operation is

s=s+ta;, (7)

Now, according to the given problem the value of n > 0. Therefore, the
algorithm should correctly give the result for boundary/special values like n = 0 or
n = 1. To accommodate » = 1 the step (1) needs to be corrected as

s=s+a (1)

Now this new step (1°) is also fit into the general step (i) if 7 + 1 is replaced by
i. Therefore, the corrected general i” step will become

s=s+a (@)

Now for n = 0, the variable s needs to be initialized to zero before entering into
step(1). In summary, the algorithm becomes,

s=0

s=s+a, fori=12 ... ,n
1

MATH (CC-MT-06)—2

18 NSOU e CC-MT-06

The complete algorithm and flowchart has been given in Figure 1.8.
Check Your Progress 1.3

Design an algorithm and flowchart to compute the sum of squares of # numbers.
That is,

=3 (@)
i=1

Algorithm Description and Flowchart :

Algorithm Flowchart

1. Start @
2. Read the number »
Read »

3. [Initialize] s<«0,i <1

. s=0
4. Repeat step 5 through 7 until i—1
i<n ‘
5. Read the next number a ‘ 0 No

6. s<s+a

Yes
7. i<—i+1 ‘
8. Print s s=s+a

i=i+1

9. Stop |

Figure 1.8

Check Your Progress 1.4

Design an algorithm and flowchart to compute harmonic mean H of » data
values where

NSOU e CC-MT-06 19

Check Your Progress 1.5

Design an algorithm and flowchart to generate first » terms of the sequence
1,2,4,8, 16,32, ... using multiplication operator.

Check Your Progress 1.6

Design an algorithm and flowchart to compute the sum of the first # terms
(n=1) of the series, s=1-3+5-7+9— ..

Check Your Progress 1.7

For a given number n (n = 0), the factorial of n (written as n!) is given by the
formulan! =1x2 x3 x4 x_ n Design an algorithm and flowchart to compute the
factorial of a given number n (n = 0).

Check Your Progress 1.8

Design an algorithm and flowchart to determine whether or not a number # is
a factorial number (must be equal to the factorial of any other number).

Check Your Progress 1.9
Design an algorithm to simulate multiplication by addition. The program should

accept two integers (they may be zero, negative or positive).

1.5.3 Generation of Fibonacci Sequence
Problem :

Generate and print first # terms of Fibonacci sequence where n = 1. The first
few terms are
0,1,1,2,3,58,13,21, ...

Each term beyond the first two is derived from the sum of the nearest two
predecessors.

Algorithm Development :

From the definition,
new term = preceding term + term before preceding term.
This definition will be used to generate consecutive terms (apart from the first
two terms) iteratively. Let us define,
a : term before preceding term.
b : preceding term.

C . new term.

20 NSOU e CC-MT-06

Then to start with,

a0 First Fibonacci number
b« 1 Second Fibonacci number
¢ < a+b Third Fibonacci number (from definition)

To generate the fourth, same definition will be used. That is, the fourth
Fibonacci number will be the sum of the third and second Fibonacci numbers. With
regard to the definition, the second Fibonacci number has the roll of term before
preceding term and the third Fibonacci number has the roll of preceding term. This
is shown for » = 8 in Table 1.2. Therefore, before computing the fourth term
following steps need to executed.

a< o0 [1] term before preceding term.
b1 [2] preceding term.
c—a+b [3] new ferm.
a<«b [4] term before preceding term becomes preceding term.
b« c [5] preceding term becomes new term.
Value of n | New Term (c) Preceding Term before preceding
=a+b Term(b) term(a)
3 1l — L — | 0
4 2]l ~——1 1
5 33— | *2—] 1
6 S5—oo_] *3_—_1 *2
7 8 5| 3
8 13 8 5
Table 1.2

After making step [5] the definition for next term can be used. To get the
Fibonacci sequence for any arbitrary value of » the step [3] to step [5] needs to be
executed iteratively. The algorithm and flowchart of Fibonacci numbers are given in
Figure 1.9.

Remarks :

Italian Mathematician Leonardo of Pisa, commonly known as Leonardo Fibonacci,
in the early 13™ century, first studied the sequence extensively although this
sequence turned up in Indian Mathematics (around 200 BC) in connection with
Sanskrit versification. Among those who had commented on the sequence was the
scholar Acharya Hemachandra, a poet and polymath who wrote on philosophy,
history, grammar, and prosody. For this reason, the Fibonacci numbers are also
known as Hemachandra-Fibonacci numbers (See Indubala 1. Satija, Butterfly in the
Quantum World, Morgan & Claypool Publishers, p 4-2).

NSOU e CC-MT-06

Algorithm Description and Flowchart :

21

Algorithm

Flowchart

1. Start
2. Read the number »n
3. [Initialize]

a<—0,b1li<2
4. Printa

5. If (n >=2) print b,
otherwise go to step 12.

6. Repeat step 7 through 11
until i <n

7. cea+b

8. Print ¢

9. a< b
10. h«c
11. [«i+1

12. Stop

Read n

~ o Q
Il I Il
Nl D

c=a+b

Figure 1.9

22 NSOU e CC-MT-06

Check Your Progress 1.10

The first few numbers of the Lucas sequence which is a variation on the
Fibonacci sequence are :

1,3, 4,7 11, 18,29, . ..
Design an algorithm and flowchart to generate Lucas sequence.
Check Your Progress 1.11

Givena =0, b =1 and ¢ = 1 are the first three numbers of some sequence. All
other numbers of the sequence are generated from the sum of their three most recent
predecessors. Design an algorithm and flowchart for the sequence.

Check Your Progress 1.12

Design an algorithm and flowchart to generate the sequence where each member
is the sum of adjacent factorials, i.e.

Ol 11, (O1+11), (1!1+21), (21431, (3!1+4), . ..
Note that by definition 0! = 1.
1.5.4 Reversing the Digits of an Integer
Problem :

Design an algorithm that accepts a positive integer and reverses the order of its
digits.
Algorithm Development :

To analyse the problem let us consider a particular positive integer 34521. The
expected output of this problem is 12543, Intuitively, the approach looks very easy.
In the first phase, the integer should be read from left to right till the end and all the
digits are collected one after another. In the next phase, the collected digits need to
be arranged in reverse order. While collecting the individual digits in the first phase,
the number needs to be scanned from left end to right end. It is of course very
difficult to identify the right end of the number other than seen it visually. One way
to do this, is to chop off the least significant digit (rightmost digit) in the number by
using integer division and modular arithmetic. i.e.

34521 div 10 = 3452
34521 mod 10 =1

Where x div y returns the greatest integer less than or equal to i([iD and x

NSOU e CC-MT-06 23

mod y returns the remainder after dividing integer x by integer y. Therefore,
following two steps will be applied.

r=nmod 10 [1] =>r=1
n=ndiv 10 [2] = n=13452

The above two steps will be repetitively executed to obtain all individual digit
from left to right.

The next step is to carry out the reversal of the digits of the number. To do that,
let us take a new variable R which stores the number in reversed order. The initial
value of R is set to be zero. The value of R in the next iteration will be generated
using the formula R = R x 10 + r where 7 is the reminder of current iteration which
is initially set to zero. This formula will be executed repeatedly. After first iteration
step [1] and [2] produces n = 3452 and 7 = 1. Therefore the value of R=0x 10+ 1= 1.
Similarly next iteration produces # = 345 and » = 2, which makes R=1 x 10 +2 = 12.
It can be noted that after the completion of second iteration the last two digits of n
i.e. 21 is reversed and stored in R as 12.

The final thing is to decide the termination condition of the iterative process.
The termination condition must in some way be related to the number of digits in
the input integer. In fact, as soon as all the digits have been extracted the termination
should apply. With each iteration the input integer » is reduced by one digit.
Therefore, the iteration stops when n becomes zero. See the steps in Table 1.3 for
n =34521. The algorithm and the flowchart is given in Figure 1.10.

Iteration No(?) | Value of n = % r=n mod 10 | Number Reversed R=R x 10 +r
0 34521 0 0

1 3452 1 O0x10+1=1

2 345 2 1x10+2=12

3 34 5 12x10+5=125

4 4 125 x10+4=1254

5 0 3 1254 x 10+ 3 = 12543

Table 1.3
Check Your Progress 1.13

Design an algorithm and flowchart that counts number of digits in an integer.

24 NSOU e CC-MT-06

Check Your Progress 1.14

Design an algorithm and flowchart that sums the digits in an integer.

Algorithm Description and Flowchart :

Algorithm Flowchart

1. Start

2. Read the number »

i

3. [Initialize] » < 0,R <« 0

r=0
4. Repeat step 5 through 7 until R=0
n=0
5. r=nmod 10
6. n=n div 10
r=n mod 10
7. R=Rx10+r n=n div 10
R=Rx10+r
1 .—'
8. Print R
9. Stop

Figure 1.10
Check Your Progress 1.15

Design an algorithm and flowchart that reads in a set of » single digits and
convert them into a single decimal integer. For example, the algorithm should
convert the set of 5 digits {2, 7,4, 9, 3} to the integer 27493.

1.6 Factoring Method

Factorization of a number is a very common technique used in different
algorithms. In the next section few algorithms will be discussed where factorization
is involved.

NSOU e CC-MT-06 25

1.6.1 Finding Square Root of a Number
Problem :

Give a positive number », device an algorithm to compute its square root.
Algorithm Development :

Let us consider a case when n= 10,000 and also assume that square root of »
is x. therefore, x must satisfy the equation

x*=n (1.1)

Initially the value of x assumed to be any arbitrary value less than n. Then
following approach will solve the root finding problem.

Approach 1 :
At the beginning, based on the chosen initial value of x three scenario may arise
Scenario 1 : If the value of x? = n then x is the square root of n.

Scenario 2 : If the value of x? is greater than n then decrease the value of x by
1 until the value of x2 becomes less than n. Once the value of x? is less than n,
increase the value of x by 0.1 until the value of x* becomes greater than n. Once the
value of x? is greater than n, decrease the value of x by 0.01 until the value of x?
becomes less than n. This process will continue till the given accuracy is reached.

Scenario 3 : If the value of x? is less than » then increase the value of x by 1
until the value of x?> becomes greater than n. This process then in similar to
scenario 2 and continues till the given accuracy is reached. How this approach
converges to the desired solution is diagrammatically represented in Figure 1.11.
Now the important point to be noted that this approach heavily depends on the initial
value of x. If » = 10,000 and the initial guess of x is chosen as 500 then the approach
takes 400 iterations before converging to the actual root 100.

3
\\ Desired Square root

»
»

Number of iterations

+ A

1001 PAIISOP WO} UOTIBIA(]

Figure 1.11

26 NSOU e CC-MT-06

Approach 2 (Babylonian Method) :

Another better approach is known as Babylonian method which was developed
by Babylonians in about 1800 B.C. This method was explicitly stated by Herons of
Alexandria after many centuries.

To understand the Babylonian Method let us take the same example where n =
10000 and the initial guess is x = 500. Then, x* = 2,50,000 greater than 10,000. It
is clear from the equation (1.1) that 500 should divide 10,000 to give a quotient of
500 1f 500 is truly the square root of 10,000. Instead 500 divides 10,000 to give 20.
If 20 had been chosen as initial guess of x then, x> = 400 less than 10,000.

Therefore, it suggests that if the chosen square root is too large then another
candidate for the square root derived from starting guess, is too small. This shows
that actual square root will lie in between these two values. Table 1.4 establish this
fact for n = 10,000 where the actual square root of » is in between 500 and 20.

Square Square Root
2,50,000 500
10,000 ??
400 20
Table 1.4

Therefore, to have a better square root of n, the average of above two values will
be chosen. As a result, the new estimate of square root is (500 + 20)/2 =260. The
square of this estimate also may again be either greater than, equal to, or less than
10,000. Using this value as next approximated value of square root of n, the method
will continue until the desired root is obtained. Table 1.5 shows all the intermediate
estimates for » = 10,000.

Square Square Root
2,50,000 500

67,600 260
22,269.59 149.23
11689.93 108.12

10,057 100.29

NSOU e CC-MT-06 27

Square Square Root
10,000 100
9942 .25 99.71
8554.36 92.45
4490.43 67.01
1469.29 38.46
400 20
Table 1.5

The advantage of Babylonian method is that it converges faster than the method
mentioned earlier. For n = 10,000 and initial guess of x = 500, the number of iteration
is 5, much less than the previous method where number of iteration is 400. In
summary, Babylonian method has following key steps.

Step 1 : Consider the value of n, initial guess of x and a (accuracy)

Step 2 : If initial guess is not accurate then calculate other estimate = (/x) and
determine better estimate by the formula (x + n/x))/2. Repeat step 2
until the desired accuracy.

Figure 1.12 provides the algorithm and flowchart of Babylonian method.

Algorithm Description and Flowchart :

Algorithm Flowchart

1. Start
2. Read the number 7 , Initial guess of
x and accuracy a Read n, x and a

1.2
3. Repeat step 4 until ‘x n| >a No
4. x=(x+2)/2
b

. lYes
5. Print R ¥
x=(x+(n/x)/2

Figure 1.12

Print x

28 NSOU e CC-MT-06

Speed of convergence of Babylonian method :

Let us consider x is the approximate root of », found after »” iteration. Also
assume that the actual root of # is s. Then if the relative error after n™ iteration is
e , then

S—an =x,=s(l-e,) (1.2)

en:

The next approximate root x,,;= (xn +xij/2. Substituting the value of x from

n

2 2
. B n _si(l-e)“+n
equation 1.2, ¥,41 = [S(l —e,)+ S— en)}/z == T ey

_s2(1—e,)?+52

= X,q= Tasdoc) [replacing n by 5]
n
s2(1-2e, +e,?) + 52 s2—2e,+e,%)
= T T M=) = T T 0 e)
se,? se,? .
= X, = S+2(1—e) = X =5+ [since e small, 1 — e=1]
n
2 _ 2
= xn+1:s+sezn = x’”i Y

= =5

The quadratic term shows that relative error decreases rapidly and method will
converge to the desired root.
Check Your Progress 1.16

Design an algorithm and flowchart for square root finding algorithm using the
approach 1 mentioned in section 1.6.1.

Check Your Progress 1.17

The geometric mean, used to measure central tendency, is calculated by the
following formula :

Geometric Mean = 7/xx,x;...x,

NSOU e CC-MT-06 29

Design an algorithm and flowchart to determine the geometric mean of n
numbers.

Check Your Progress 1.18

Design an algorithm and flowchart that finds the integer whose square is closest
to but greater than the integer number as input data.

1.6.2 The Greatest Common Divisor of Two Integers
Problem :

Given two positive non-zero integers # and m, devise an algorithm to compute
their greatest common divisor (GCD).

Algorithm Development :

Let us assume two number n = 84 and m = 186. Also assume that GCD of »
and m is x which is to be determined. The GCD x is the largest integer which can
divide both n and m. Alternatively it can be said that there is no integer larger than
n and m that can divide simultaneously both the integers. Therefore, the value of x
must be lesser or equal to the smaller of #n and m. To find out the GCD multiple
approach can be taken.

Approach 1 :

First take the value of two integers and store the smaller number in # and the
bigger number in m. If the number » divides m, then » is the desired GCD. If not,
then repeatedly decrease the value of # by 1 and check whether the updated » divides
both original #» and m or not. After finite no of iterations eventually updated » will
divide original # and m both and return the value of updated »n as the GCD.

It is very easy to observe that this process is not very efficient. If the value of
the smaller number 7 is very large then the iteration may run up to » times. As an
example if » = 84 and m = 186 then this algorithm runs for 78 iterations and return
6 as the GCD of 84 and 186.

Approach 2 :

Approach 1, discussed so far can be modified to produce better result if value
of n is decreased by a larger amount instead of 1 in every iteration. But even though
the approach may need huge number of iteration in certain problems. A better
approach published by Greek Philosopher Euclid more than 2000 years ago known
as Euclid’s algorithm to find GCD of two integers. This algorithm was probably
invented by a predecessor of Euclid called Eudorus. The ancient Chinese also
discovered the algorithm.

To elaborate the Euclid’s algorithm let’s start with the same example where m

30 NSOU e CC-MT-06

= 84 and n = 186 and the greatest common divisor x needs to be determined. Now
x is common divisor of m and n. Let us also calculate the remainder » when n divides
m. If the value of r is zero then x is assigned the value of » which is the GCD of
m, n. If not, then it can be proved that x will divide the remainder » as well,
algebraically in the following manner :

r = m — kn where k is a positive integer greater than zero.

x divides m and n» = m = px and n = gx where p, g (p = q) are positive integers.

=1 =px — kgx = x(p — kq).

Since x is a factor in 7, so x also divides r.

Therefore, x divides m, n = x divides n, r i.e. GCD of (m, n) = GCD of (n, r).

The problem of finding GCD of (m, n) now becomes equivalent to the problem
of finding GCD of (n, r) which of course is easier than the original problem. Now
by reducing the problem continuously using the above formula, finally the desired
GCD can be found when »n will divide m. Therefore, the key step to reduce the GCD
problem is following.

The value of m in i" iteration = the value of n in (i — 1)” iteration (1)
The value of » in i” iteration = the value of r in (i — 1)” iteration (2)

The algorithm will generate following sequence of sub-problem for the example
chosen at the beginning.

GCD (186,84) = GCD (84,186 mod 84) = GCD (84, 18) = GCD (18, 84 mod
18) = GCD (18, 12) = GCD (12, 18 mod 12) = GCD (12, 6) (Table 1.6)

No. of iterations First (larger) Second Integer (n) Remainder
Integer (m) r=m mod n

0 186 %4 18

1 84 «——1 18 «—T __ 12

2 18 «—1 ___ 12 6

3 12 «— (6\ «——T 0

ﬁ GCD
Table 1.6

At the end, the sub problem GCD (6, 12) is easiest to solve since 6 divides 12,
so the GCD of (84, 186) = 6. The important fact to be noted that Euclid’s algorithm
takes only 4 iterations to give the result which is very small compared to the 78
iterations taken by the approach 1. Figure 1.13 provides the algorithm and flowchart
of Euclid’s GCD algorithm.

One of the other advantages of Euclid’s algorithm is, it doesn’t require the
explicit ordering of the two values m, n. In the last example, the first integer m

NSOU e CC-MT-06 31

(initial value is 186) is assumed to be the larger integer in all the sub problems. In
spite of that, if the value of m and » are such that m = 84, n = 186 then after the first
iteration m and »n will interchange their values to make the assumption of m being
larger valid from next iteration onwards. GCD (84, 186) = GCD (186, 84 mod 186)
= GCD (186, 84).

Check Your Progress 1.19

Design an algorithm and flowchart to find the GCD using the approach 1
mentioned in section 1.6.2.

Check Your Progress 1.20

Design a GCD algorithm which does not use either division or mod function.
Check Your Progress 1.21

Design an algorithm and flowchart that will find the GCD of n positive integers.

Algorithm Description and Flowchart :

Algorithm Flowchart

1. Start

2. Read the number n, m
Read n, m

3. r=m mod n 1

4. Repeat step S through 7 until r=m mod n
r>0

5. m=n

6. n=r

7. r=m mod n

8. Print n

9. Stop

Figure 1.13

32 NSOU e CC-MT-06

Check Your Progress 1.22

Design an algorithm to compute smallest common divisor, other than one, of
two positive non-zero integers.

Check Your Progress 1.23

Design an algorithm to compute lowest common multiple (LCM) of two non-
zero positive integers 7 and p. The LCM is defined as the lowest integer m such that
n and p divide exactly into m.

1.7 Summary

There are many different aspects for problem solving. It is a common practice
to analyze these aspects before solving new problems. These aspects will help and
guide to find the solution by systematic way. Steps should be followed to solve the
problem that includes writing the algorithm and drawing the flowchart for the
solution to the stated problem. The important point that needs to be remembered
while developing the algorithm is the efficiency. There are certain criteria of any
good algorithm. When these criteria are followed the algorithm becomes efficient
and useful.

1.8 References and Further Reading

1. How to solve it by Computer, 5th Edition, R G Dromey, PHI, 1992.

2. Introduction to Computer Algorithms, Second Edition, Thomas H. Cormen,
MIT press, 2001.

3. Fundamental Algorithms, Third Edition, Donald E Knuth, Addison-Wesley,
1997.

4. How to solve it, Polya G, Princeton University Press, 1971.

Unit - 2 0 Introducing C

Structure

2.0 Introduction
2.1 Objectives
2.2 What is a Programming Language and What is a Program?
2.3 C Language
2.3.1 Some Features of C Language
2.3.2 Writing a Simple C Program
2.3.3 Compiling a C program
2.3.4 Running a C Program
2.3.5 Integrated Development Environment
2.3.6 Installation steps for Code::Blocks IDE
2.4 Summary
2.5 References and Further Reading

2.0 Introduction

If someone claims to have the perfect programming language, he is either a fool
or a salesman or both.
—Bjarne Stroustrup.

In the earlier unit, the problem-solving aspects along with few very famous
algorithms and their flowcharts were discussed. Now the next step is to implement
those algorithms so that the computer can execute them. In this unit the topic that
is going to be covered is C language — a standardized programming language
known for its power and portability as an implementation vehicle for these problem
solving techniques using computer.

A language is a mode of communication between two people. It is necessary for
those two people to understand the language in order to communicate. But even if
the two people do not understand the same language, a translator can help to convert
one language to the other, understood by the second person. Similar to a translator
a computer language is the mode of communication between a user and a computer.
One form of the computer language is understood by the user, while in the other form
it is understood by the computer. A translator (or compiler) is needed to convert from
user’s form to computer’s form. Like other languages, a computer language also
follows a particular grammar known as the syntax.

33

MATH (CC-MT-06)—3

34 NSOU e CC-MT-06

2.1 Objectives

After going through this unit the learner should be able to :

Define what is a program?
Understand what is C programming language?

Understand step-by-step process of compilation and execution of C
program.

Write small C program.

Understand what is an integrated development environment (IDE).

YYY YVYY

Install Code::Block IDE in their personal computer.

2.2 What is a Programming Language and What is a Program?

The detailed set of steps for solving a problem, known as Algorithm and their
pictorial representation, known as Flowchart have been discussed in the previous
unit. Now the next step is to express the algorithm in programming language. A
programming language is a vocabulary and set of grammatical rules for instructing
a computer or computing device to perform specific tasks.

A procedure expressed in a programming language is known as a computer
program. A computer program tells the computer how to do what programmers want.
Just as a chef needs a recipe to make a dish, a program needs instructions to produce
results. A recipe is nothing more than a set of detailed instructions that, if properly
written, describes that proper sequence and the contents of the steps needed to
prepare a certain dish. That’s exactly what a computer program is to computer.

Programming languages can be divided into two categories :
1. Low Level Language or Machine Language

A machine language consists of the numeric codes for the operations that a
particular computer can execute directly. The codes are strings of Os and 1s, or binary
digits (“bits”). Machine language instructions typically use some bits to represent
operations, such as addition, and some to represent operands, or perhaps the location
of the next instruction. Machine language is difficult to read and write, since it does
not resemble conventional mathematical notation or human language, and its codes
vary from computer to computer and therefore the language is machine dependent.
Another type of Low-Level Language is the Assembly Language. It uses short

NSOU e CC-MT-06 35

mnemonic codes for instructions and allows the programmer to introduce names for
blocks of memory that hold data. Every machine provides a different set of
mnemonics to be used for that machine only depending upon the processor that the
machine is using.

2. High Level Language

These languages are particularly oriented towards describing the procedures for
solving the problem in a concise, precise and unambiguous manner. Every high level
language follows a precise set of rules. They are developed to allow application
programs to be run on a variety of computers. These languages are machine-
independent. Languages falling in this category are FORTRAN, BASIC, PASCAL,
etc. They are easy to learn and programs may be written in these languages with
much less effort. However, the computer cannot understand them and they need to
be translated into machine language with the help of other programs known as
Compilers or Translators (Interpretors).

2.3 C Language

C is a general-purpose computer programming language initially developed by
Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs. Most of its constructs
map efficiently to typical machine instructions, and therefore it has been found very
useful in applications that had formerly been coded in assembly language, most
notably system software like the UNIX operating system. By 1980s, however, C has
expanded beyond the narrow confines of UNIX world, undergone lot of standardisation
process and formally approved by International Organization for Standardisation.

This version of C language is usually referred to as C89 or C90 which is used in this
book.

2.3.1 Some Features of C Language

C 1s a general purpose, structured programming language. Structured language
has following distinguishing features.

1. The data and code are physically separated.

2. The entire program is divided into modules using top-down approach which
helps in debugging, testing and maintenance of the code.

3. It supports several control structures like while, do-while, for and several data
structures like structure, array, file etc.

36 NSOU e CC-MT-06

Among the two types of programming languages discussed earlier, C lies in
between these two categories. Therefore, C is often called a middle level language.
It combines the elements of high level languages with the functionality of assembly
language. It provides relatively good programming efficiency (as compared to
machine oriented language) and relatively good machine efficiency as compared to
high level languages). As a middle level language, C allows the manipulation of bits,
bytes and addresses — the basic elements with which the computer executes the
inbuilt and memory management functions. C language has lot of other important
features. Though most of these are strength of the language, some features still show
certain weakness also.

1. Efficiency :

C was intended for application written in assembly language (low level
programming language for microprocessors and other programmable devices),
therefore special care had been taken to design the language from the beginning so
that it could run quickly in limited amount of memory.

2. Portability :

C is highly portable, this means that programs once written can be run on
another machine with little or no modification.

3. Power :

C has large collections of data types and operators which make it a powerful
language. These collections can be used to write a complex program with just few
lines of code.

4. Flexibility :

Though C was originally designed for system programming, C is now capable
of handling all kinds of application like embedded system, commercial software
application etc.

5. Standard Library :

C’s great strength lays on the standard library which contains hundreds of
functions for input/output, string handling, storage allocation and other useful
operations.

6. Integration with UNIX :
C is very powerful in combination with UNIX.

NSOU e CC-MT-06 37

7. C program can be error-prone.

C’s flexibility sometimes makes it error-prone. Programming mistakes sometimes
remain undetected in C, which is normally easy to detect in some other language.

8. C Programs can be difficult to modify :

Large programs written in C can be difficult to modify if they have not been
designed with maintenance plan in mind. Most of the modern programming languages
like C++, Java, Python have certain features like classes, packages that can divide
large program into more manageable pieces. Figure 2.1 shows all these features in
a diagram.

Portable

)

Difficult to modify]

[Integrated with UNIX]

[Standard library with UNIX]

Figure 2.1

2.3.2 Writing a Simple C Program
The C program in Table 2.1 displays a message “Welcome to C”.

Line No Code
1 /*Program to print a message™/
#include<stdio.h> /* header file*/
int main() /* main function*/
{
printf(*“Welcome to C”); /* output statement™/
return 0;

}

RN RV, RN NS \S)

Table 2.1

38 NSOU e CC-MT-06

The lines of code written in Table 2.1 are briefly explained in Table 2.2. The
more detailed explanation will be provided in subsequent units with relevant
examples.

Line Code Brief Description
No
2 | #include This is known as preprocessor directive. This directive states
<stdio.h> that the information in <stdio.h> is to be included into the

program at the beginning. <stdio.h> contains information
about C’s standard I/O (Input Output) library. C performs
input (read) and output (write) operations using functions in
the standard library instead of using any built-in “read” and
“write” command like few other languages. In this case, the
preprocessor directive is used to use the printf() function in
line 4.

3 | int main() This declares the start of the function main(). This function
is the entry point of the program. Functions are the building
blocks by which programs are constructed. C program is
little more than a collection of functions. Functions fall into
two categories: those written by the programmers, known as
User Defined Functions and those provided as a part of the
C language, known as Library Functions. The term “function”
comes from mathematics, where a function is a rule for
computing a value when given one or more arguments :

fx)y=x*+5

gy =x*+y

C uses “function” more loosely. In C, a function is a series
of statements that have been grouped together and given a
name. Some functions compute a value and some don’t. A
function that compute a value uses a return statement to
specify what value it returns. Int before main() function
indicates that main will return an integer. Although C program
may have many functions, only the main() function is
mandatory. It gets called automatically when the program is
executed. The name main is critical; it cannot be begin or
start or even MAIN. Since functions are outside the scope of
this course, only the main() function will be used in subsequent
chapters.

NSOU e CC-MT-06

39

Code

Brief Description

{

This opening curly bracket shows the start of main function.

printf
(“Welcome
to C”);

This is first statement in the main function. The statement is
a command to be executed when the program runs. C
requires each statement end with a semicolon. printf () is a
function from the standard I/O library that can produce nice
formatted output. printf () will be discussed in section 3.7 in
more detail.

return 0;

This indicates that the main() function will return O to the
operating system when the program terminates. The value
returned by main() is a status code that can be tested when
the program terminates. main() should return O if the program
terminates normally; to indicate abnormal termination main()
should return a non-zero value. It is a good practice to make
sure that every C program should return a status code, even
if there is no plan to use it, since someone running the
program later may decide to test it. The refurn O statement
would have been omitted from line no 6 if void main() was
used instead of int main() at line no 3. Here void is used to
specify that nothing needs to be returned from the main()
function.

This closing curly bracket shows the end of main function.
The brackets in line no 4 and line no 7, groups statements
together as main () function.

Gen
eric

/*some text*/

These indicates Comments which may appear anywhere
within a program, as long as they are placed within the
delimiters /* and */. Such comments are helpful in identifying
the program’s principal features or in explaining the
underlying logic of various program features. These comments
will be ignored by the compiler later, therefore the comment
is not part of C language grammar, it is used only for
documentation purpose.

Table 2.2

40 NSOU e CC-MT-06

2.3.3 Compiling a C program

After writing the program next step is to save the program in a file with
extension .c. This program is in high level language and this language is not
understood by the computer. So, the next step is to convert the high-level language
program (source code) to machine language (object code). This task is performed by
a software or program known as a compiler. In fact, there are four programs involved
in the compilation process: pre-processor, compiler, assembler, linker. Table 2.3
shows the brief functionality of all these entities.

Program Namg Functionality

Preprocessor First, the C preprocessor expands all those include statements
(and anything else that starts with a # and passes the result to the
actual compiler. The preprocessor is not so interesting because it
just replaces some short cuts used in the code with more code.
The output of preprocessor is just C code; The preprocessor does
not require any knowledge about the target architecture.

Compiler The compiler effectively translates preprocessed C code into
assembly code, performing various optimizations. Since a compiler
generates assembly code specific to a particular architecture, the
assembly output of compiler from an Intel Pentium machine
can’t be used on any other type of instructional machine (such as
Digital Alpha machines).

Assembler The assembly code generated by the compilation step is then
passed to the assembler which translates it into machine code;
the resulting file is called an object file. An object file is a binary
representation of the program. The assembler gives a memory
location to each variable and instruction. It also makes a list of
all the unresolved references that presumably will be defined in
other object file or libraries, e.g. printf file.

Linker This is the final stage of compilation. It takes one or more object
files or libraries as input and combines them to produce a single
(usually executable) file. In doing so, it resolves references to
external symbols, assigns final addresses to procedures/functions
and variables, and revises code and data to reflect new addresses
(a process called relocation).

Table 2.3

NSOU e CC-MT-06 41

2.3.4 Running a C Program

After compilation when run command is fired, a whole bunch of things must
happen before the program is actually run. The loader reads the file and creates an
address space for the process. The loader executes a jump instruction to the first
instruction in the program. This generally brought the instruction into the main
memory and the actual program execution starts (Refer Figure 2.2).

2.3.5 Integrated Development Environment

All the steps those have been discussed so far, can be executed as separate
command line in a special window provided by the operating system. The alternative
is to use an integrated development environment (IDE), a software package that
allows to edit, compile, link, execute and many things together without leaving the
environment. For example, when the compiler detects an error in a program, it can
arrange for the editor to highlight the line that contain error. Though there is a variety
of IDEs for C compilers, this course will use Code::Blocks (www.codeblocks.org) in
all subsequent units. This is primarily because Code::Blocks offers C compilers for
most of the operating systems like Windows, Macs, Linux etc.

[Source Code File welcome.c]
C Preprocessor ‘
[Preprocessed Code]
Compiler ‘
[Assembly Code welcome.s]
B (" | Relocation Object Code
Assembler ‘ Information
[Object Code welcome.o }
Linker ‘ P < Other Object
Files/Modules
[Executable Code welcome.exe]
=
£ ‘ N
g Library Files
= Stored in secondary memory as an
—< % executable image
§ | P Runtime Objects/
= Loader v Libraries
: .
7 Primary Memory (RAM)]
N—

Figure 2.2

42 NSOU e CC-MT-06

2.3.6 Installation steps for Code::Blocks IDE
Step 1:

Go to Code::Blocks homepage by typing www.codeblocks.org in the internet
browsers. To download C/C++ IDE, click download choice under the main section
of the left column. Figure 2.3 shows download option in the Code::Block homepage.

Code:Blocks

Home Features Downloads Forums Wiki
Main The open source, cross platform, free C, C++ and Fortran IDE.
+ Home C., C#+ and Fortran [DE built to mezt the most demanding needs of its users. It is designad

d fully caMlguraHe

o Featuras

Finally, an IDE with all thz features you need, having a consistent look, fzel and operation across platforms Tﬂ 2
o Usermanual Built around a plugin framework, Code:Blocks can be e d with plugins. Any kind of functionality can be
« Licansing added by Installing/coding a plugin. For Instance, complling and deb uga ng functionality s already provided by : .
« Donaticns plugins! ; o o't
; 3
<
| Quick links Spedial credits go to darmar for his oreat work on the FortranProject plugin, buncled since ralzase 13.12 :

We hope you enjoy using Code::Blocks!) == . "
« FAQ

Figure 2.3
Step 2 :

There will be three options under the download link: Binaries, Source, SVN.
Click on the first option Binaries. The next page represents variety of option,
depending on the operating system. For example, if the operating system is windows
then Figure 2.4 shows all the C compilers. Out of all the different C compilers the
codeblocks-17.12 mingw-setup.exe will be selected which is highlighted in the
Figure 2.4. To download the compiler, click on the corresponding link in download
Jfrom column.

Main Plaase seled a satup package dspending on your platform
+ Windows XP/ Vista/ 7/8.x /10
+ Homs « Linux 32 and 64-bit
« Features « Mac OS X
+ Scrsenshots
= Downloads NOTE: For older

Click Here to

© Binaries

= Changslog NOTE: 1
reposice download
NOTE: Ws have a Changelog for 17.12. that
f }/f / Windows XP / Vista /7 /8.x/ 10:
Quick links
. Faa File Date Download from
. Wiki codeblocks-17.12-setup sxe 30 Dec 2017 FossHUB or Sourceforge.net
- Forums
+ Forums (mohile) codeblocks-17.12 ienadmin.exs 30 Dec 2017 FossHUB or Sourceforge.net
- Nigntlies
+ Ticket System 30 Dec 2017 FossHUB or Sourceforge.n
« Browse SVN S
« Browse SVN log 30 De FossHUB or Souffeforge.net
Mg noselup.Zip 30 Dec 2017 FossHUB or Sourceforge.net
T

Figure 2.4

NSOU e CC-MT-06

Step 3 :

After the download option is chosen, it takes several minutes to complete the
download. Run the downloaded file codeblocks-17.12 mingw-setup.exe accepting all
defaults. It again takes few minutes and get installed in the folder chosen by user.

Step 4 :

Click on the Code::Block IDE installed in the machine. The screen opens up
which is shown in Figure 2.5. Go to the file option in the top left corner highlighted

in the Figure 2.5. Then go to File — New — File (Figure 2.6).

PR Stetacrs Sadzibincke 17, 2
P B E e

cE o | roa s gl 6

File Feit Virw Search Projeer Ruild Dehig Famran waSmith Tanls
I i @

.

Tarlsi Plugins Ynghlarks Setings Help

[e WE SR %D gl A k)

o o Lok am s x

Sad wrne ¥

‘ " Code:Blocks

‘ Thes Open sonroe, cress-plallon 1 1IDE

HRIRARA 17 LS T3 112790 LA -1 I8 31 [ANE 5 1 W NANWSLINISns - & r

Uy Tip [Ui Cay

B Crsvauswpowil \hk Coownn aan eziling p ujew,

© WISt tha Cnde Rlockt dnnims

g

Fapnrt A hit £o (AR 5 A Tash re

Figure 2.5

¥ Start here - Code:Blocks 17.12
Eile Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
| Empty file Cer-shift-N | (3B GBE G2 %0 g8 G %)
@ Open.. ctrl-0 o |

Open with hex editor Project.. L ch dm - |}

Open default workspace Build target... ¥

Recent projects ’ 5

Recent files 4 e

Code::Block
z 5 .

. ode::Blocks

Nassi Shneiderman diagram - ‘ The open source, cross-platform IDE
Release 1712 rev 11256 (2017-12-28 10:44:41) qce 5 1 0 Windows/unicode - 32 bit

Save workspace as..

Save everythin Alt-Shift-5)
a L) EFR | Cresteanew project \\ Open an existing project Tip of the Day
PS ~ v

) Visttthe Code:Blocks forums Reporta bug or request @ new festure

Close workspace &//
.
@ Recent projects

Export 3

No recent projects

Figure 2.6

44 NSOU e CC-MT-06

Clicking on the File option a list of source options appears. Select the option
C/C++ source (Figure 2.7) and then click on go. The C/C++ source wizard opens
up. Click on Next. Select the language as C and click on Next. Enter the file name
with full path in C/C++ source wizard (Figure 2.8). Then click on finish. The IDE
creates welcome.c program in the path chosen in the wizard. Paste the program
written in Table 2.1. in welcome.c file and go to File — Save option. Figure 2.9
shows the program welcome.c in the editor.

=]
File Edit View Search Project Build Debug Fortran wsSmith Tools Tools+ Plugins DoxyBlocks Settings Help
Y- T IR IR [aaior e B > %262 b0 426 | &
; de
A R SN NI N i R R \ | \
Starthere X 4
New from template X |
Projects Category: | <All categoriess
Build targets =
. 0 ~N g
Files c“ !: I cﬂ F Cancel
Custom h
User templates C/C++ header [SISEETENES D source Empty file Fortran source
Java source
View as
(@) Large icons
O List

TIP: Try right-clicking an item

Figure 2.7

R0 (@)

Start here <

x |

C/C++ source

Please enter the file's location and name and

C/C++ FILE

1s &others

whether to add it to the active project.

Filename with full path:
|D:\C Program'welcome.d|

[[J]add file to active project
In build target(s):

< Back Cancel

N
_Finish_J
—~——"

| Code::Blocks

The open source, cross-platform IDE

I7-12-28 10:44:41) gce 5.1.0 Windows/unicode - 32 bit

QQD ;’ Tip of t

ocks forums Report a bug or request a new feature

en an existin roject

Figure 2.8

NSOU e CC-MT-06 45

Step S :

Once the program is complete then it needs to be compiled and then run. The IDE
gives two options Build and Run at the top ribbon (Highlighted in the Figure 2.9.
Clicking the Build option, initiates all the steps of (Pre-processing, compiling, assembling,
linking) compilation as per the sequence outlined in Figure 2.2.

Build and Run

ools+ Plugins DoxyBlocks Settings Help

P8 “welcome.c - Code::Blocks 17.12
File Edit View Search Project Build Debug FortrangfwxSmith

SN~ == IR B Ry

B b b2 g2 4S &2 G %)

i = prove | =) (9]] ¢ i vie > L& -

Start here » | *welcome.c X

int main()
=i)
=k
printf("Welcome to C");

return 0;

'

O Un b W -

Figure 2.9

The build process produces the build log, build messages and lot of other
important information about the program. Figure 2.10 highlights the contents of the
build messages which says that the welcome.c program is compiled successfully
with zero errors and zero warnings.

Start here > welcome.c <
1
2
3 int main()
— 5
4 S
5 printf("Welcome to C");
6 | return O;
7 13
| 3
8 L
<
>gs B others
) Codspleaem=T""{ cearch results % JiCese x| €3Buldlog | ¥ Builld messages |) CppChecuVersT——su J| Cscope
T Line tessage
=== Build file: "no target”™ in "no project” (compiler: unknown) ===
=== Build finished: 0 errori(s), 0 warningi(s) (0 minute(s), 2 secondis)) =

Figure 2.10

46 NSOU e CC-MT-06

Step 6 :

At last, click on the Run option to start the execution of the program. After the
successful execution of the program the desired output is displayed in the screen
(Figure 2.11)

Welcome to C

Process returned 0 (0 x 0) execution time : 0.283 s
Press any key to continue.
Figure 2.11

The version of Code::Blocks used in this book is 17.12, but the number will be
probably even larger by the time when learners will use this. The learners need to
make sure that they should select the most up-to-date version to exploit all other
facilities provided by Code::Block.

2.4 Summary

Several key aspects of program and programing languages are discussed in this
unit. Learners can now differentiate between high level and low level languages.
They can now define what is C, features of C. Learners have seen how C is different
from other High Level languages. Learners can now explain the detailed steps of a
compiler and how they are connected to each other. They can now install the IDE
to develop their own programs. With these basics, learners are now ready to learn the
C language in detail in the following units.

2.5 References and Further Reading

1. The C Programming Language, Kernighan & Ritchie, PHI Publication, 2011.

2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,
2003.

3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata McGraw
Hill, 2002.

4. C Programming Absolute Beginner’s Guide, Third Edition, Pearson Education,
Inc, 2014

5. Online reference 1- https://www.tenouk.com/Module W.html

6. Online reference 2- https://courses.cs.washington.edu/courses/cse378/97au/
help/compilation.html

Unit - 3 O Variables, Constants and Input/Output

Structure

3.0 Introduction

3.1 Objectives

3.2 C Character Set

3.3 Identifiers and Keywords

3.4 Data Types and Storage
3.4.1 Integer Types
3.4.2 Floating Types
3.4.3 Character Types

3.5 Variables
3.5.1 Variable Type
3.5.2 Variable Declarations
3.5.3 Variable Initialization

3.6 Constants
3.6.1 Integer Constant
3.6.2 Floating Constants
3.6.3 Character Constants
3.6.4 String Constants
3.6.5 Escape Sequence

3.7 Data Input Output Function
3.7.1 The printf Function
3.7.2 The scanf Function

3.8 Summary

3.9 References and Further Reading

3.0 Introduction

This unit is concerned with the most fundamental elements which are used to
construct the C statements. A statement in C is a command to be executed when the
program runs. A statement is usually comprised of different elements from C
character set, identifiers and keywords, data types, variables, constants etc. These

47

48 NSOU e CC-MT-06

basic elements are introduced in this unit and the later unit will cover these topics
in much greater detail. The last section of this unit describes two very powerful
functions printf and scanf which are used in C most frequently.

3.1 Objectives

After going through this unit the learner should be able to :
> Understand what is C character set, identifier, keyword, variable and
constant.

Understand the mechanism of storing floating point data in IEEE
format.

Understand printf and scanf function for input output operation.

yvy v

Write program which takes data from user/programmer and display it
according to various format.

3.2 C Character Set

C mainly uses the A to Z (uppercase letters), a to z (lowercase letters), 0 to 9
(digits), and certain special characters as building blocks to form basic program
elements like constants, variables, operators, expressions, etc. C uses ASCII (American
Standard Code for Information Interchange) character set, a 7-bit code capable of
representing 128 characters. All these characters are listed in Table 3.1.

ASCII |Character| ASCII | Character| ASCII |Character| ASCII | Character
Value Value Value Value
0 NUL 32 (blank) 64 @ 96
1 SOH 33 ! 65 A 97 a
2 STX 34 «“ 66 B 98 b
3 ETX 35 # 67 C 99 C
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ‘ 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 | 105 i

NSOU e CC-MT-06 49
ASCII |Character| ASCII | Character| ASCII |Character| ASCII | Character
Value Value Value Value
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 1
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 0 111 0
16 DLE 48 0 80 P 112 P
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 VvV 118 %
23 ETB 55 7 87 AW 119 W
24 CAN 56 8 88 X 120 X
25 EM 57 9 89 Y 121 y
26 SUB 58 90 4 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 A 126 -
31 UsS 63 ? 95 _ 127 DEL
Table 3.1

The first 32 characters and the last character are control characters. Usually,
they are not displayed. However, some versions of C (some computers) support

special graphics characters for these ASCII values.

C uses different combinations of these characters, such as \b, \n and \t, to
represent special conditions like backspace, newline and horizontal tab, respectively.
These character combinations are known as escape sequences. The escape sequences
will be discussed more in Sec. 3.6.5.

MATH (CC-MT-06)—4

50 NSOU e CC-MT-06

3.3 Identifiers and Keywords

While writing programs in C, names are given to various program elements,
such as variables, functions and arrays. These names are called identifiers. An
identifier may contain letters, digits and underscores, but must begin with a letter or
underscore. C is case sensitive, therefore it distinguishes between upper-case and
lower-case letters in identifiers. Table 3.2 shows some valid and invalid identifiers
in C.

There are certain reserved words, called keywords, that have standard, predefined
meanings in C. These keywords have special significance to C compilers and
therefore can’t be used as identifiers. The standard keywords are listed in Table 3.3.

Identifiers Valid/Invalid Comments
A Valid
“a” Invalid lllegal character ()
x12 Valid
5th Invalid The first character cannot be a digit.
Y12 Valid
get next Valid
get-next Invalid Illegal character (-)
status_flg Valid
Status flg Invalid Illegal character (blank space)
_temp Valid
temp Valid
Table 3.2
auto default float long static void
break do for register struct while
case double goto return switch
char else if short typedef
const enum inline signed union
continue extern int sizeof unsigned

Table 3.3

NSOU e CC-MT-06 51

Check Your Progress 3.1
Which of the following are not legal identifier in C?
100 bottoles 100 bottles one hundred bottles Bottles 100
Check Your Progress 3.2
Which of the following are keywords in C?
for If main printf while
3.4 Data Types and Storage

C has several basic (built-in) data types. Each of them is represented differently
within the computer’s memory. As a result, the range of values of these data types
are also different. The important point that needs to be noted is that the memory
requirement of each of these data types may vary from one compiler to another.
Typically, C has following three basic data types :

> Integer Types
> Floating Types
> Character Types

3.4.1 Integer Types

The values of integer types are whole numbers. They are of two types : signed
and unsigned. For the signed integer, the leftmost bit (sign bit) is O if the integer is
positive or zero, 1 if it is negative. As the numbers in computer memory are in binary
format, it can only use O or 1 for every digit. Therefore, the largest integer in a 16-
bit machine is of the form O111111111111111 (left most bit is 0 and remaining 15 bits
are all 1’s) which has the value + (215 — 1) = 32, 767. Similarly the largest integer
in a 32-bit machine is of the form 01111111111111111111111111111111 (left most bit
is 0 and remaining 31 bits are all 1s) which has the value 2,147,483,647 (23! - 1).
For unsigned integer there is no sign bit and all the 16 bits are considered to be a
part of its magnitude. Therefore, the largest unsigned integer in a 16-bit machine has
the value 65,535 (216 - 1).

Based on the size, C has different integer types. The int type is usually 32 bits,
but may be 16 bit on older CPUs. C provides long int type for integer too large to

52 NSOU e CC-MT-06

be stored in int form. C also has short int type to store an integer in less space than
normal. We can even combine different specifiers like following :

> short int

> unsigned short int
> int

> unsigned int

> long int

> unsigned long int

Other combinations are synonyms for one of these six types. The range of
values represented by the above six types varies from one machine to other based on
their word-length. A word is the natural unit of data and consists of number of bits
processed by a computer's CPU in one go. Apart from early days’ processors which
typically use 16-bit word, most of the modern processors use either 32 bits or 64-
bit word while processing the data. We use the term byte to specify the size of data
type. The byte is a unit of digital information that commonly consists of eight bits.
Table 3.4, 3.5 and 3.6 shows the usual range of values for integer types on different
machine which use word length as 16-bit, 32-bit and 64-bit respectively. From
Table 3.4 it can be easily seen that short int and int have identical range in 16-bit
machine. Similarly, int and long int have identical range in 32-bit machine
(Table 3.5). The point needs to be noted is that the ranges shown in Table 3.4, 3.5,
3.6 aren’t mandated by the C standard and may vary from one compiler to other.

Data types No of Range of values

bytes
short int 2 2B t0+ 2B - 1) -32,768 to + 32,767
unsigned short int 2 0to (216 - 1) 0 to 65,535
Int 2 2B t0+ 2B - 1) — 32,768 to + 32,767
unsigned int 2 0to (216 - 1) 0 to 65,535
long int 4 - 23 to+ (231 - 1) | —2,147,483,648 to

+2.147.483,647

unsigned long int 4 0to (22 -1) 0 to 4,294,967,295

Table 3.4 (Integer types on a 16-bit machine)

NSOU e CC-MT-06

53

Data types No of Range of values
bytes

short int 2 2B t0+ 2B - 1) -32,768 to + 32,767

unsigned short int 2 0to (216 - 1) 0 to 65,535

Int 4 23 to + (231 — 1) | —2,147,483,648 to
+2,147,483,647

unsigned int 4 0to (232 — 1) 0 to 4,294,967,295

long int 4 - 23 to+ (231 - 1) | —2,147,483,648 to
+2,147,483,647

unsigned long int 4 0to (22 -1) 0 to 4,294,967,295

Table 3.5 (Integer types on a 32-bit machine)

Data types| No of Range of values
bytes
short int 2 2 to + (215 - 1) | 32,768 to + 32,767
unsigned 2 0to (216 - 1) 0 to 65,535
short int
Int 4 231 to + (231 — 1) | —2,147,483,648 to +2,147,483,647
unsigned 4 Oto (22 -1) 0 to 4,294,967,295
int
long int 8 — 28 to + (29 - 1) | —9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807
unsigned 8 0to (2% - 1) 0 to 18,446,744,073,709,551,615
long int

Table 3.6 (Integer types on a 64-bit machine)

3.4.2 Floating Types

Integer data type is not sufficient for all real world applications. Sometimes it
is also needed to store real numbers which have digits along with a decimal point.
These numbers are stored in floating point format (decimal point “floats”). C
provides three floating types, corresponding to different floating point formats :

54 NSOU e CC-MT-06

> float Single precession floating point
> double Double precession floating point
> long double Double Extended precession floating point

The C standard doesn’t state the precession provided by float, double and long
double since different computers may store floating point numbers in different ways.
Most modern computers follow the specifications in IEEE Standard 754, developed
by Institute of Electrical and Electronics Engineers. It provides single precession
(32 bit) format known as float and double precession (64 bits) known as double.
Each of these formats has three parts: sign, exponent, fraction or significant
precession. The no of bits reserved for exponent determines how large (or small)
numbers can be, while no of bits in the fraction determines the precession.
Figure 3.1 and Figure 3.2 shows the structure of single precession (32 bit) float and
double precession (64 bit) double format respectively.

Sign Exponent (8 bit) Fraction (23 bit)

P ES B
NI NN EEEEEEEEEEEEEEEEE
31 30 23 22 1 0

Figure 3.1 (Single precession 32 bit floating point)

Sign Exponent (11 bit) Fraction (52 bit)
| | |
Y AL o A~ —
s ™~
L] [e [| [| [[]
63 62 52 51 50 1 0

Figure 3.2 (Double precession 64 bit floating point)

Table 3.7 shows the characteristics of the floating point number when
implemented according to the IEEE standard. The long double type isn’t shown in
the table, since its length varies from one machine to another, with 80 bits and 128
bits being the most common size.

Type |No of bits| Smallest positive value | Largest value Precession
Float 32 1.17549 x 1038 3.40282 x 1038 6 digits
double 64 2.22507 x 10308 1.79769 x 10308 15 digits

Table 3.7

NSOU e CC-MT-06 55

In IEEE standard the precession for float data type is 6 digits (Table 3.7). This
implies that when a decimal number with at most 6 significant digits is converted to
IEEE 754 single-precision representation, and then converted back to a decimal
number with the same number of digits, the final result should match the original
number.

3.4.3 Character Types

The third type of basic data type is char, the character type. The values of type
char can vary from one machine to another, since different machines have different
underlying character set. The important point to be noted that C treats characters as
small integers. For example, in ASCII, the character ‘a’ has the value 97, ‘A’ has the
value 65, ‘0’ has the value 48, and ° ’ has the value 32. When characters appear in
computation, C simply uses the integer value. Figure 3.3 represents the tree diagram
of the basic data types used in C.

Basic Data Types

Integer Types Float Types Character Types
— short int l
—unsigned short int — float Char
— int — double
— unsigned int — long double
— long int
—» unsigned long int

Figure 3.3 (Basic data types in C)
Check Your Progress 3.3

Which of the following are not legal type in C?
a. short unsigned int
b. short float
c. long double
d. unsigned long

56 NSOU e CC-MT-06

3.5 Variables

A C program may perform a series of calculations to produce the desired output
and thus need a way to store data temporarily during program execution. These
storage locations are commonly referred as variables.

3.5.1 Variable Type

Every variable in C must have a type which specifies the type of the value the
variable is capable to hold. There are variety of variable types in C. For example, int,
float, char etc. Based on the type of the variable the Compiler determines how the
variable is stored and what operation can be performed on it.

3.5.2 Variable Declarations

Variable must be declared before it can be used to store any value. To declare
a variable two attributes are mandatory : variable type and variable name. For
example, we might declare variables price and total items as follows :
float price;
int total items,
The first declaration states that price can store floating point number and second
declaration states that total items can store integer value. If several variables are of
the same type, their declaration can be combined.

float price, amount, discount,
int total items, Year of purchase,
Note that each complete declaration ends with a semicolon. The first program
in Table 2.1 (section 2.3.2) didn’t include variable declarations. When main function
contains declarations, these must precede statements:

int main()

{
declarations;
statements,

}

A variable can be given a value by means of assignment (=). For example, the

statements

price = 10.5;

total items = 5,

amount = 2.35,
assign values to price, total items and amount. The number 10.5, 5 and 2.35 are said
to be constants. Variable must be declared before assigning any value otherwise the
compiler will raise an error.

NSOU e CC-MT-06

57

See the output message in Table 3.8.

Line # Code Output message after building Comments
1 #include<stdio.h> Variable declared
2 int main() before assigning
3 { Message value successfully
4 int total_items; === Build file: “no target” in “no projec?” cornpile d.
5 float price; === Build finished : 0 errors (s), 0 warning (s)
6 price=10.5;
7 total_items=>5;
8 return 0;
9 |}
1 #include<stdio.h> price has been
2 int main() declared after
3 { Message assigning
4 int total_items; === Build file: "no target” in “no project’ value in it which
{ price=10.3; In function .‘main' : . | produces
: — errors: ‘price’ undeclared (first use in this s
6 total_items=>5; note : each undeclared identifier is reported compilation error
; float Pl(‘)ice; == Build failed : 1 errors (s), 0 warning (s) (| i lineno 5.
return 0;
9 §

3.5.3 Variable Initialization

Table 3.8

In most of the cases, C variables are not set to a default value. These variables
are said to be uninitialized. One way to initialize a variable is to use assignment
statement. Another easier way is to put the value of the variable in its declaration.
Table 3.9 shows both these ways.

Initialization by assignment

Initialization in declaration

#include<stdio.h>

int main()

{ int total items;
float price;
total items =5
price = 10.5;
return 0;

#include<stdio.h>
int main()

return 0;

{ int total items=15;
float price =10.5;

Table 3.9

58 NSOU e CC-MT-06

3.6 Constants

A constant is an identifier whose value cannot be changed throughout the
execution of a program whereas the variable value keeps on changing. In C, there
are four basic types of constants. They are :

> Integer Constant

> Floating Point Constant
>> Character Constant

> String Constant

3.6.1 Integer Constant

C allows integer constants to be written in decimal (base 10), Octal (base 8) or
hexadecimal (base 16). The first digit of a decimal constant is always non-zero.

Octal and Hexadecimal Numbers

An octal number is written using only the digits O through 7. Each position of
an octal number represents a power of 8 (just as each position in a decimal number
represents a power of 10). Thus the octal number 357 represents the decimal number
3 %8 +35x8l+7x8Y =239 The first digit must be zero for an octal no.

A hexadecimal number is written using the digits O through 9 and the letters A
through F, which stands for 10 through 15, respectively. Each position of a hex
number represents a power of 16. Thus the hex number 2D5 represents the decimal
number 2 x 162 + 13 x 16! + 5 x 160 = 725. The hex constants always begin with 0x.

Rules to form Integer Constants

>> No comma or blank space is allowed in a constant.

> It can be preceded by — (minus) sign if desired.

>> The value should lie within a minimum and maximum permissible range
decided by the word size of the computer.

Table 3.10 shows the examples of few valid and invalid integer constants.

The point to be noted that octal and hexadecimal are an alternative way of
writing numbers. Integers are always stored as binary irrespective of the notation to
express them. It can be easily switched from one notation to another at any time, and
even they can be mixed. For example, in the expression 11 + 026 + Ox1FF, 11 is a
decimal, 026 is an octal and Ox1FF is a hexadecimal number. The expression
produce following output :

NSOU e CC-MT-06 59

1 <100 +1x100+2x81+6x80+1x162+15x 16! + 15 x 160 =544

The type of a decimal integer constant is normally int. However, if the value is
too large to store as an int, the constant has type long int. To force the compiler to
treat a constant as long integer, the letter L (or 1) needs to be appended at the end
of the constant. For example,

25L, 056L, Ox7FFFL

To indicate the constant as unsigned, the letter U (or u) needs to be added at the
end of the constant. For example,

25U, 056U, Ox7FFFU

L and U also can be combined to indicate the constant is both unsigned and long
int. For example, Ox7FFFLU.

Base Constant | Valid/Invalid Reason
54 Valid
12,45 Invalid Comma(,) not allowed
Decimal 1011 Invalid Blank space not allowed
10-10 Invalid Illegal character (-)
0534 Invalid The first digit should not be a zero.
0743 Valid
Octal 743 Invalid The first digit must be a zero.
0238 Invalid Illegal character 8
012.4 Invalid Illegal character (.)
Ox7FFF Valid
Hexadecimal | OBEF Invalid x is not included after O.
0x5.CD Invalid Illegal character (.)
0xGBC Invalid Illegal character G
Table 3.10

3.6.2 Floating Constants

A floating constant must contain a decimal point and/or an exponent. The
exponent indicates the power of 10 by which the number is to be scaled. If an
exponent is present, it must be preceded by the letter E (or). An optional + or —

60 NSOU e CC-MT-06

sign may appear after the letter E (or e). Rule to form a floating point constant is
same as integer. Table 3.11 shows the examples of few valid and invalid floating
point constants.

Constant | Representation Valid/Invalid Reason
35.0 Valid
35.0e0 Valid
35.0 0 Invalid No blank space
35.0 35E0 Valid
3.5¢el Valid
3.5el Invalid Comma(,) not allowed
35e2 Valid
35¢2.0 Invalid Exponent can’t be fraction
350e-1 Valid
Table 3.11

The floating point constants are stored as double precession numbers by default.
On occasion, it may be necessary to force the compiler to store a floating constant
in float or long double format. To indicate that only single precession is desired,
letter F (or f) needs to be appended at the end of the constant. For example, 35.0F.
Similarly, for long double the letter L (or 1) is used. For example, 35.0L.

3.6.3 Character Constants

<

This constant is a single character enclosed in apostrophes
some of the character constants are shown below :

(N ‘X’ (37’ ($7

2

> . For example,

0’ 1s a null character having value zero.
3.6.4 String Constants

It consists of sequence of characters enclosed within double quotes. For example,
“red” , “Blue Sea” , “41213*(I+3)”

2

3.6.5 Escape Sequence

A character constant is usually one character enclosed in single quotes. However,
certain special characters — including new line character, can’t be written in this way,

NSOU e CC-MT-06 61

because they are invisible (non-printing) or because they can’t be entered by the
keyboard. For this kind of characters C provides a special notation, the escape
sequence. Table 3.12 gives the complete set of these character escape sequences.

Name Escape Sequence Name Escape Sequence
Alert (bell) \a Backslash \
Backspace \b Question mark \?

Form Feed \f Single quote \'

New line \n Double quote \"
Carriage Return \r Horizontal tab \t
Vertical tab \v

Table 3.12

Check Your Progress 3.4
Give the decimal value of the following integer constants.

077 0x77 0xABC

Check Your Progress 3.5
Classify the examples into Integer, floating point, Character and String constants.

‘A', 0147, OxEFH, 077.7, “A”, 264, “EFH>, “\’ abc

2 2

Check Your Progress 3.6

Which of the following are not legal constants in C? Classify each legal constant
as either integer or floating point.

010E2 32.1E+5 0790 100_000 3.978e-2

3.7 Data Input Output Function

C is a function based language that uses two types of functions: Library
functions and User defined functions. Library functions are inbuilt functions in C
programming and the definition of the functions are present in their respective pre-
processor directives (Section 2.3.2). User defined function is created by the user
which is out of scope of this course. There are two library functions those are used
very frequently for getting input data from the user and producing the output using

62 NSOU e CC-MT-06

input data. These functions are

> printf
> scanf

3.7.1 The printf Function

The printf function is designed to display the contents of the string, known as
format string. The values are inserted at specified points of the format string. In
general terms, the printf function is written as

printf(format string, arg,, arg,, arg; . . ., arg,)

The values displayed can be constant, variable or any other expressions). The
format string may contain ordinary as well as conversion specifications, which begin
with % character. A conversion specification is a place holder representing a value
to be filled during printing. The information that follows the % character specifies
how the value is converted from its internal form (binary) to printed form. For
example, the conversion specification %d means printf is to convert the binary into
a string of decimal digits. The ordinary characters in format string are printed exactly
as they appear in the string. The value to be printed is either constant, variable or
expression mentioned in the list arg,, arg,, arg;, . . ., arg,. For example, see the
program and its output in Table 3.13.

The program code in Table 3.13 has two integers and two float variables, both
are initialized to their respective values at the time of declaration. The format string
in the printf statement (line no 6), contains four conversion specifications (two %d
and two %f), four escape sequences (\t) and other ordinary characters. The argument
list contains four variables (two integers and two floats).

Line No Code
1 #include<stdio.h>
2 int main()
3 {
4 int 1=10,j=20;
5 float a=18.2fb=205.0f;
6 printf("i=%d\tj=%d\ta=%f\tand\tb=%f " 1,j,a,b);
7 }
Output
=10 j=20 a=18.200000 and b=205.000000

Table 3.13

NSOU e CC-MT-06 63

Figure 3.4 describes how the printf generates the output. In the output, the
conversion specifications are replaced by the values according to the order in the
argument list. \t is replaced by tab space (eight spaces together) and ordinary
characters remain as it is (dotted arrow in Figure 3.4) in the output.

|—|%d|\t|J|—|%d\\t| |—|%f|\t|dnd|\t|b\—| ’k—_primfsmng
"ﬁr»véi'v:évv*vv'*
[i[=]10] [j =120 Ja[=]182] [and| |b]=]205.0 f—output
value of i I value of T value of a | 1 value of b
Tab Space
Figure 3.4

Common mistakes made by programmer while using printf function :
Case 1:

C compiler are not required to check number of format specifications and the
number of output items. Therefore, it is the responsibility of the programmer to
check this numbers while writing the code. For example, suppose we add following
printf statement which contain more conversion specifications than output items in
the code in Table 3.13 :

printf("i=%d\tjf=%d", i);

printf will print the value of the variable i1 correctly, then print a second (meaningless)
integer value instead of throwing an error. (Table 3.14)
Case 2 :

If a printf function contain less conversion specifications than the output items,
then the extra value will not be printed. (Table 3.14).

Case 3 :

Compilers aren’t required to check whether the type of the conversion
specification is appropriate for the type of item being printed. If mismatch happens
then the printf function, simply produce meaningless output.

64 NSOU e CC-MT-06

Case Code Output Comments
1 | printf("i=%d\tj=%d", i); | i=10
j=6356864 j has garbage value.
2 | printf("i=%d", i,)); i=10 j value not printed.
printf("i=%d",a); i=1073741824 | Value of a is float and stored in

the memory in IEEE format.
Display the result in integer
format will produce meaningless
value.

Table 3.14
Conversion Specification

Conversion specification is very important to produce the output as desired. The
general form of conversion specification is :

%m.pX or %-m.pX Where m and p are integer constants and X is a letter.

Here m, known as minimum field width, specifies minimum number of character
to print and p, known as precession has different meaning for different choice of
letter X. For example, if the conversion specification is %10.4f, then m = 10 and
p=4 and X=f Both m and p are optional. If p is omitted, the period(.) that
separates m and p is also omitted. Table 3.15 shows commonly used letter for X
known as conversion character and the corresponding meaning of precession p.

Conversion Meaning
Letter(X)
d Data item is displayed as an integer in decimal form. p indicates the

minimum number of digits to display (extra zeros are added at the
beginning of the number). If p is omitted, then the value is assumed
to be 1.

e Data item is displayed as a floating-point value with an exponent. p
indicates how many digits should appear after decimal point. If p is
0, the decimal point is not displayed.

f Data item is displayed as a floating-point value without an exponent
(fixed decimal format). p has the same meaning as for the letter e.

g Data item is displayed as a floating-point value using either e-type
or f-type conversion, depending on value. p indicates the maximum
number of significant digit (not the digits after decimal point),
Trailing zeros and trailing decimal point will not be displayed.

Table 3.15

NSOU e CC-MT-06

Example 3.1

65

Determine the output of the C program written in Table 3.16 with proper reason.

{

int i=
float a=18.23f;
printf("|%d|%6d|%-6d|%6.3d\n" i,1,i,1);
printf("'|%8.3]%8.3¢|\n",a,a);
return 0;

#include<stdio.h>
int main()

10;

Table 3.16

The output is given below and the justification is in Table 3.17
110/ 10/10 | 010|
| 18.230|1.823¢+001|

Conversion |Value of m,f Qutput Justification
Specification| p and X
|%d| m=1, |10] Simply print 10
p=1,
X=d
|%6d| m=+06, | 10| m=+6 means the minimum field width of
p=1, the output is 6 character and the output is
X=d right justified. Since the actual value is
of two digits, output is preceded by four
blanks.
|%-6d| m = -0, |10 | m=-6 means the minimum field width of
p=1, the output is 6 character and the output is
X=d left justified. Since the actual value is of
two digits, output is followed by four
blanks.
|%6.3d| m=06, | 010] | m=+6 means the minimum field width of
p=3, the output is 6 character and the output is
X=d right justified. Again p=3 means the
output must display at least three digits.

MATH (CC-MT-06)—5

66 NSOU e CC-MT-06

Conversion |Value of m,f Qutput Justification
Specification| p and X

Since actual value is of two digits, output
will be preceded by three blanks and one
Zero.

, | 18.230| | m=+8 means the minimum field width of
the output is 8 character and the output is
right justified. Again p=3 means the
output must display at least three digits
after decimal point. Since actual value
has two digits after decimal point, one
zero must be appended. Now the output
becomes 18.230 which has the length
6(including decimal point). Two more
blanks need to be added at the beginning
to make the minimum length 8.

, |1.823e+001|[m=+8 means the minimum field width of
the output is 8 character and the output is
right justified and in exponent form. Again
p=3 means the output must display at
least three digits after decimal point. Here
zero 1s not needed because the output is
10-character long.

%8.31]

Il
)

-

o B
o||o

e
[
laur)

Il
0

|%8.3¢]

N“‘ﬁa
e

Table 3.17
Check Your Progress 3.7
Consider two variables initialized in following way in a C program :

int 1 = 12345;
float x = 345.678,;

What will be the output of the following statements?

1. printf ("%3d %5d %8d\n\n", 1, i, 1),
2. printf("%3f %10f %13f\n\n\n, x, X, X);
3. printf("%3e %13e %16e", X, X, X),

Check Your Progress 3.8

Consider a variable initialized in following way in a C program :

NSOU e CC-MT-06 67

float x = 123.45;
What will be the output of the following statements?

1. printf("%7f %7.3f %7 1f\n\n", x, X, X);
2. printf ("%12e %12.5¢ %12.3@", X, X, X);

Justify with proper reason.
Check Your Progress 3.9
What output do the following calls of printf produce?

1. printf("%6d,%4d", 86,1040);
2. printf("%12.5¢", 30.253);
3. printf("%.4f", 83.162);

Check Your Progress 3.10
Write printf function to display a float variable x in following formats.

1. Exponential notation; left-justified in a field of size 8; one digit after
decimal point.

2. Exponential notation; right-justified in a field of size 10; six digits after
decimal point.

3. Fixed decimal notation; left-justified in a field of size 8; three digits after
decimal point.

4. Fixed decimal notation; right-justified in a field of size 6; no digit after
decimal point.

3.7.2 The scanf Function

scanf is another useful library function which reads input according to a
particular format. Like the printf, scanf also has a format string which contain both
ordinary characters and conversion specifications. The conversion specifications
with scanf are same as those used in printf. Figure 3.5 shows scanf is doing reverse
to what printf does. The printf function send the value of 1 (5) to the output device
(monitor) while the scanf function accept the value given by user (assuming user
types S5) and store it to the memory variable (1).

In general terms, the scanf function is written as
scanf(format string, arg,, arg,, args, . .. arg,)

Consider a program in Table 3.18 where programmer is asked to enter two
integer and two floating point input. Suppose, programmer enters following input
line :

lo —200.30 — 4. 0e3*

68 NSOU e CC-MT-06

where o and * represent the white space and new line character respectively. scanf
will read the line and convert its characters to numbers they represent and then
assign 1, —20, .3, and —4000.0 to 1, j, a, b, respectively.

Processor Processor

[

——— e
Output Device Output Device
after executing printf(*“%d”,1) the value
before executing printf(“%d”,i) of 1 is sent to output device
/ﬁ;]
Processor
-

Memory
y
- 1
Input Device \)

before executing scanf(“%d”,&1) after executing scanf(“%d”,&i) the user
input 5 is stored in memory variable i.

Figure 3.5
#include<stdio.h>
int main()
{
int 1i;
float a,b;
scanf("%d%d% %", &i,&},&a,&b);,
return 0;
}

Table 3.18

NSOU e CC-MT-06 69

The programmer must check that the number and types of format specifications
match with number and types of the variables used in the program. Another
important point to be noted is that the symbol “&” needs to be placed in front of a
variable while using scanf. “&” denotes the address of a variable where the input
value will be stored. This is analogous to the fact that when a letter or parcel is
delivered, the post office always use the address of the receiver instead of the name.
Similarly, when a value is coming from input device (sender), it needs the address
of the variable (receiver) instead of the name.

How scanf works

scanf is actually a pattern matching function which tries to match group of characters
to conversion specifications. scanf begins reading the input string starting from left.
For each conversion specification in the format string, scanf try to locate an item that
is appropriate to input data, skipping white space (space, tab, new line etc.), if
necessary and stop when it encounters a character that possibly can not belong to the
item. If the data is read successfully then it continues to read the remaining input
string otherwise return immediately without looking at the rest of the string.

Consider the same program of Table 3.18 and assume that the programmer
enters the following as input line :

10
—20 3
—4.0e3

which is basically in our symbolic notation o o1*#—20 0 0 0.3% o 0 0 —4 0e3* where ©
and * represent the white space and new line character respectively. scanf will be
executed in following steps (Figure 3.6) :

1. Skips the leading 2 spaces.

2. The first conversion specification is %d. The first non-blank character 1 in
the input line can be treated as integer so scanf continue reading next
character <new line>. Since <new line> can’t be part of integer, it returns 1
to the variable 1 and puts back the <new line> character in the input string
for further scanning process.

3. Next conversion specification 1s %d again. Now scanf repeatedly skips the
white space characters (<new line>, <space>) until it reaches to non-space
character minus (—). Then it reads —20 that can be treated as next integer j.
After that, scanf encounters a <space> which can’t be part of the integer. As
a result, it returns —20 to the variable j and puts back <space> in the input
string.

4. Similar to the third step variable a becomes 0.3.

b becomes 4000.0 and completes the scan process successfully.

70

NSOU e CC-MT-06

Stape | Intermediate state of input string State of memory variables
v
ocol*—200co00 3%000—4.0e3* I:l I:l I:I I:I
1 i] a b
Skips the <space characters>
ocol*—20co00 3%000—4.0e3* I:l I:l |:| |:|
i] a b
Store 1 into variable i
2
ool*—20ooo_3*ooo—4_Oe3* I:l I:l I:‘
1] a b
Skips the <new line character>
ool*£20000,3*ooo—4.0€3* I:l I:l I:l
3 i] a b
Store -20 into variable j
00]l*%—200c00.3%k000—4.0e3 * I:I I:I
1] a b
Skips the <space characters>
4 ool*—20000_%*ooo—4_063* I:' I:l
1] a b
Store .3 into variable a
ool*—20000,3tooo—4.0€3* I:l
i] a b
Skips the <new line and space characters>
ool*—20000,3*oooi4,063* I:I
5 i] a b
Store -4000.0 into variable b
001*_20000_3*000_4,063i [-20 | [.3] [-4000.0 |
1] a b

Figure 3.6

NSOU e CC-MT-06 71

Example 3.2

Explain how scanf of the program in Table 3.19 will read the data for following
input string 4, 005 *

#include<stdio.h>

int main()

Lo

mt 1;
scanf("%d,%d",&1,&j);
return 0;

}

Table 3.19
Solution :
The scanf has two conversion specification :

1. The first conversion specification(%d) : The first character of the input string
is 4; since integer can begin with 4, scanf then reads the next character
comma (,) which can’t be the part of the integer so scanf returns 4 to the
variable 1 and put the comma (,) back. Since the character comma (,) in input
string matches with comma (,) in format string, scanf successfully continue
reading the remaining input string.

2. The second conversion specification (%d) : The two space characters are
skipped and 5 is read and stored in the variable j.

Therefore, the scanf successfully read the input data, which makes i=4 and j=5.
Check Your Progress 3.11
Explain how scanf of the program in Table 3.19 will read the data for following

input string
4oool %
The first character 4 is read and stored in 1. As the input string doesn’t have any

matching comma (,) as in format string, the scanf stops reading the remaining input
string and 5 is not stored in variable j. Therefore, j retains its old value.

Check Your Progress 3.12

Write a program that accepts a date from the user in the form of mm/dd/yyyy
and then display it in the form of yyyymmdd :

72 NSOU e CC-MT-06

Sample Output :

Enter a date (mm/dd/yyyy) : 2/17/2012
You entered date 20120217.

The program is given in Table 3.20.

#include<stdio.h>

int main()

{
int 1,,k;
printf("enter date mm/dd/yyyy:");
scanf("%d/%d/%d", &i1,&),&k);
printf("you entered date %d%.2d%.2d\n" k,i,j);
return O;

Table 3.20
Check Your Progress 3.13

Suppose scanf is used in following way in a program where i, k are integers and
j 1s a float.

scanf(*“%d%t%d”, &1,&j,&k)
If the programmer enters
10.30305%
where o and * represent the white space and new line character respectively, then
what are the values of 1, j and k after the scanf call? Justify the answer.
Check Your Progress 3.14
Suppose scanf is used in following way in a program where i, k are floats and
] 18 an integer.
scanf(“%f%d%ft”, &1,&j,&k)
If the programmer enters
12.3045.60789%

where o and * represent the white space and new line character respectively, then
what are the values of 1, j and k after the scanf call? Justify the answer.

NSOU e CC-MT-06 73

Check Your Progress 3.15

Write a program that formats product information entered by the user. A session
with the program should look like :

Enete item number : 234
Enter unit price : 26.5
Enter purchase date (mm/dd/yyyy) : 3/8/2019

Item Unit Price Purchase Date

234 Rs. 26.5 03/08/2019

The item Number and date should be left justified. Unit price should be right
justified. Allow Rs. amounts up to Rs. 9999.99.

Check Your Progress 3.16

Write a program that prompts the user to enter a telephone number in the form
(xxx) xxx-xxxx and then display the number in the form of xxx.xxx XXXX.
Sample Output :

Enter phone number [(xxx) xxx-xxxx] : (899) 817-6122
You entered 899.817.6122

Check Your Progress 3.17

For each of the following pairs of scanf format strings, indicate whether or not
the two strings are equivalent. If they are not show how they can be distinguished?

1. “%d” versus “ %d 7 2. “%f” versus “ %f 7 3. “%f % versus “%f, %f”’

3.8 Summary

Several important topics of C language have been discussed in this chapter.
Character set which includes alphabets, numeric characters, special characters are
used as building block of identifier, keyword, variable, constants. Three basic data
types have been discussed — int, char, float. Some qualifiers are used as prefixes to
data types like signed, unsigned, short, and long. The constants are the fixed values
and may be either integer or floating point or character or string type. The learner
can now use printf and scanf function as a tool for data input/output. They can also
write some small program using all these features of C language.

74 NSOU e CC-MT-06

3.9 Reference and Further Reading

1. The C Programming Language, Kernighan & Ritchie, PHI Publication, 2011.

2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,
2003.

3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata McGraw
Hill, 2002.

4. C Programming : A Modern Approach, Second Edition, K.N. King, W. W.
Norton & Company, 2008.

5. What Every Computer Scientist Should Know About Floating-Point Arithmetic,
David Goldberg (ACM Computing Surveys, March, 1991).

Unit - 4 O Expressions and Operators

Structure
4.0 Introduction
4.1 Objectives
4.2 Operators
4.2.1 Arithmetic Operators
4.2.2 Assignment Operators
4.2.3 Increment and Decrement Operators
4.2.4 Relational Operators
4.2.5 Logical Operators
4.3 Operator Precedence and Associativity
4.4 Summary
4.5 References and Further Reading

4.0 Introduction

In the previous unit, variables, constants, datatypes and other building blocks of
C programming were discussed and the way to declare them in C programming was
also explained. In fact, the variables and constants are the simplest form of
expressions. The next step is to learn more complicated expressions which is a
sequence of operators and operands that does one or a combination of the following :

> Specifies the computation of a value
> Designates an object or function
> Generates side effects.

An operator performs an operation (evaluation) on one or more operands. An
operand is a subexpression on which an operator acts.

This unit focuses on different types of operators available in C including the
syntax and use of each operator and how they are used in C. A computer is different
from calculator in a sense that it can solve logical expressions also. Therefore, apart
from arithmetic operators, C also contains logical operators. Hence, logical expressions
are also discussed in this unit.

75

76 NSOU e CC-MT-06

4.1 Objectives

After going through this unit the learner should be able to :

> Write and evaluate arithmetic expressions;

> Express and evaluate relational expressions;

> Write and evaluate logical expressions;

> Write and compute complex expressions (containing arithmetic, relational
and logical operators), and

> Check simple conditions using conditional operators.

4.2 Operators

C has several operators like arithmetic, assignment, increment, decrement,
relational, logical etc.

4.2.1 Arithmetic Operators

The arithmetic operators perform addition, subtraction, multiplication and division.
These operators are of two types based on the number of operands :

> Unary : need one operand
> Binary : need two operand

The binary operators are again of two types based on the nature of the operation :

> Additive : addition (+), subtraction (-)
> Multiplicative : multiplication (*), division (/), remainder (%)

The Table 4.1 shows these different types of operators. The unary operators are
used just to specify that the numeric constant is positive or negative.

Unary Binary
Additive Multiplicative
+ unary plus * multiplication
— unary minus + addition / division
— subtraction % remainder

Table 4.1

NSOU e CC-MT-06 77

For example :

i=t1; /* + used as a unary operator here*/
=2; /* — used as a unary operator here*/

The binary operators have their usual meaning except the remainder (%)
operator. In C, 1%y is the remainder when i is divided by j. Here the operands i and
j are both integers. For example, the value of 8%6 is 2. In all other binary operators,
the operand may be either integer or float or float and integer both. When integer and
float operands are mixed then the result has always the type float. For example,
8+4.2f results is 12.2, and 8/4.2 gives 1.904762. Following points needs to be noted
while using division (/) and remainder (%) operators.

>> When both the operands of division (/) operator are integers, the / operator
truncates the result by dropping the fractional part. Thus the value of 1/4 is
0 not 0.25.

> The remainder (%) operator needs two integer operands. Compiler will raise
an error if both of the operands are not integers (Table 4.2).

Code Output
#include<stdio.h> Message

int main() === Build file: "no target" in "no project” (compiler: unk...

{ In function 'main':
printf("result 1§ %1",8.2%6); error: invalid operands to binary § (have 'double’ and 'int!)

return 0; == Build failed: 1 error(s), 0 varning(s) (0 minute(s), 9...

}

Table 4.2
> Zero can’t be used as a right operand of either remainder (%) or division (/)

Example 4.1

Show that, remainder (%) operator can be implemented using other arithmetic
operators.

Solution :

Consider two integers x and y. The expression x%y produces the remainder
when x is divided by y. The same operation can also be achieved by x — (x/y) * y.
Table 4.3 shows this by considering x=7 and y=5.

78 NSOU e CC-MT-06

#include<stdio.h>

int main()

{
int x=7,y=5;
printf("Remainder using operator is %d\n",x%y);
printf("Remainder using formula is %d\n" x-(x/y)*y);
return 0;

OUTPUT

Remainder using operator is 2
Remainder using formula is 2

Table 4.3
4.2.2 Assignment Operators

Normally we use assignmment (=) operator to store value of some constant or
variable or an expression. For example :
1=10;
I= 5
k =i+ 10%;
For any assignment statement i=j, if the type of i and j are not same then the
value of j is converted to the type of i as assignment takes place. For example,

int i;

float j;

1= 148f /* 11s now 14 */
j=14 /* j1s now 14.0 */

Several assignment operators can be chained together. For example :
i=j=k=25;

The assignment operator (=) is right associative meaning, if any expression is
having multiple = operators, the execution order of the operators is right to left.
Associativity of operators will be explained in detail in section 4.3. Therefore, the
above assignment statement is equivalent to

i= = (k=)

NSOU e CC-MT-06 79

which means 5 is assigned to k first, then to j, finally to i. One important point that
needs to be noted is that the left operand of = operator can’t be a constant or an
expression and it must be a variable. In C, every variable has two attributes :

> Address of the variable
> Value contained in that variable.

These two parts have been shown in Figure 4.1. Any variable in assignment
statement is used either as left operand or right operand. For example :

Address Value
0010ABC4 : Variable a
0010ABC5 10 +—
0010ABC6 :
Figure 4.1
int a=10;
int b;
b=a; /* variable a used as a right operand of = */
a=5; /* variable a used as a left operand of = */

When variable a is used as a right operand, the value attribute of a is considered.
This value is commonly known as rvalue. Therefore, after executing b=a, b takes the
value 10 in the example. When variable a is used as a left operand, the address
attribute of variable a is considered. Using the statement, a=5, the compiler searches
the address of variable a and copy 5 as a value attribute of variable a. This address
or reference is known as Ivalue of the variable a. The point need to be noted that,
while using assignment operator if any constant or expression (rvalue) is used as a
left operand the compiler raises error (Ivalue required) and stops the program
execution. Table 4.4 shows an example of this type of error.

Code Output
#inclu@e<stdio.h> Nessage
int main() === Build file: "no target" in "no project" (compiler: -
{ int a=5: In function 'main':
error: lvalue required as left operand of assignment
return 0; === Build failed: 1 error(s), 0 warning(s) (0 minute(s)
}

Table 4.4

80 NSOU e CC-MT-06

Compound Assignment

Compound assignment shortens the assignment statements. For example, an
assignment statement of the form i =1 + 2 can be written as 1 += 2. The following
list gives few more example :

Assignment Compound assignment
i=i1-2 i—=2
i=1%*2 i*=2
1=1/2 1/=2
1=1%2 1% =2

4.2.3 Increment and Decrement Operators

In C, incrementing (adding 1) and decrementing (subtracting 1) a variable are
two most common operations. The operation can be written as :

1=1+1;
[l B
In short, these operations are also written as ++ (two consecutive + sign) and

-- (two consecutive - sign). These increment and decrement operations are of two
types based on the position of the sign (++/--).

> Prefix (Pre-increment/Pre-decrement) : for example, ++i and --j
> Postfix (Post-increment/Post-decrement) : for example, i++ and j— —

Before going into detail of ++ or -- operator, an important feature of C language
needs to be highlighted. In Mathematics, operator can’t modify the value of the
operand. For example, i + J doesn’t modify either i or j, it simply computes the result
of adding 1 and j. Assignment operator in C is one of few operators which can modify
its operand. This phenomenon is known as side effect of the operator. The statement
i = 10 can be considered as an expression since = is an operator in C. Every
expression produces a value. In this case, the value of the expression i = 10 produces
the value 10 which can be ignored and then it modifies the value of i to 10 as a side
effect. Ignoring the expression’s value is of no loss, since the primary reason for
writing the statement was to modify 1.

Now at a first look, it may be assumed that both postfix and prefix increment
operators do the same. In fact, they behave similarly in many places. For example,

NSOU e CC-MT-06 81

see the program and their output in Table 4.5. Both expressions ++i and i++
increment the value of 1 from 5 to 6 after completion. Here ++i, increment 1 at first
from 5 to 6 as a side effect and then produce the value 6. On the other hand, operator
i++ first produce the value 5 (original value of i) and then increment i from 5 to 6
as a side effect. Since value of the expressions in both cases are ignored, it shows
same result because of the same side effect.

Operator type Code Output
Prefix #include<stdio.h>
int main()
{ i=6
int 1=5;
++1;
printf("i=%d",1);
return 0;
}
Postfix #include<stdio.h>
int main()
{
int 1=5; 1=6
i++;
printf("i=%d",1);
return 0;
}
Table 4.5

But if the operators are used little differently, then the value of i and j are
different. For example, consider the output of the code in Table 4.6. In case 1, the
first printf contains ++i and in case 2, the first printf contain i++ as arguments. Since
printf function prints the value of the expression, the printf prints 6 (value of ++i)
in case 1 while printf prints 5 (value of i++) in case 2. Once the first printf statement
is complete 1 is incremented as a side effect in both the cases. Therefore, second
printf prints 6 in both cases.

MATH (CC-MT-06)—6

82 NSOU e CC-MT-06

Case No | Operator type Code Output

#include<stdio.h>
int main()

1 { i
Prefix int 1=5; i
printf("i=%d\n",++1);
printf("i=%d\n",1);
return 0;

}

#include<stdio.h>

int main()

{

2 Postfix int 1=5;
printf("i=%d\n" i++);
printf("i=%d\n",1);
return 0;

}
Table 4.6

I
N

I
AN W

Example 4.2

Determine the output of the following code in Table 4.7.

Line# Code
1 #include<stdio.h>
2 int main()
3 {
4 int 1=5,j=6,k;
5 k=++1+j++
6 printf("i=%d,j=%d, k=%d\n",1,j,k);
7 return 0;
8 }
Table 4.7

To determine the output, line no 5 (containing prefix and postfix ++) needs to
be analyzed. Here the first operand in the right hand side of assignment is (++i)
which means it produces i+1 then increments i. The second operand is (j++) which
means it produces j and then increments j. Therefore, the line can be broken into

NSOU e CC-MT-06 83

following statements :

1=1+1;
k=i+j
i=ith

Thus the output will be 1 =6, j =7, k = 12.
4.2.4 Relational Operators

C has various relation operators which are mainly used to compare integers and
floating point numbers, with operands of mixed type allowed. The list of relational
operator is given in Table 4.8. These operators produce O (false) or 1 (true) when
used in expressions. For example, the value of 8 >10 is 0 and 10 >8 is 1.

Symbol Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
I= Not equal to

Table 4.8
4.2.5 Logical Operators

Logical operators in C are used to evaluate expressions which may be true or
false. C has three logical operators which are presented in the Table 4.9.

Symbol Meaning
! Logical negation
&& Logical and
I Logical or
Table 4.9
The ! operator is unary, while ‘&&’ and ‘|| are binary. Logical operator

produces either 1 (true) or O (false) as their result. Normally, the operands of any
logical operator are expected to be either O or 1. If any operand has the non-zero
value, then the operator will treat the value as true (1) and any zero value as false.
The logical operator behaves as per the rules listed in the truth tables in Table 4.10.

84 NSOU e CC-MT-06

X Y x&&y X y x|y
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

X Ix

0 1

1 0

Table 4.10

4.3 Operator Precedence and Associativity

C expressions contain more than one operator in most of the times. It may create
confusion which operator should operate first. For example, consider the following
expression containing two operators + and * along with three operands :

2+3 %4
The above expression can be evaluated in different ways :

> Add 2 and 3, then multiply the result by 4 and finally it becomes 20
(Figure 4.2a)

> Multiply 3 and 4, then add 2 to the result and finally it become 14
(Figure 4.2b)

One way to solve this problem is to add parenthesis, writing either (2+3)*4 or
2+(3*4). Otherwise, to use operator precedence rules to resolve this potential
ambiguity. For example, * operator has higher precedence than + operator, therefore,
the expression 2+3*4 is evaluated as depicted in Figure 4.2b which is equivalent to
2+(3*4) and the result is 14. Operator precedence rules alone aren’t enough when an
expression contains two or more operators at the same precedence. In this situation,
associativity of the operators is considered. An operator is left-associative if it groups
from left to right. For example, binary arithmetic operators (*, /, %, + and —) are all
left associative. Therefore, the expressions :

i—j -k is equivalent to (i —j) — k and
1 * 7/ kis equivalent to (1 * j) / k.

NSOU e CC-MT-06 85

Y ~
(a) (b)
Figure 4.2

An operator is right-associative if it groups from right to left. For example, the
unary arithmetic operators (+ and -), are both right-associative. Therefore, the
expression

— + 1 1s equivalent to — (+ 1).

Table 4.11 gives the precedence and associativity of operators those are mostly
used in C.

Precedence | Name Symbol(s) Associativity
1 Parenthesis 0 Left
2 increment(postfix) ++ Left
decrement(postfix) ——
3 increment(prefix) ++ Right to left
decrement(prefix) ——
unary Plus +

unary Minus -
Logical Not !

4 Multiplicative * 1, % Left to right
5 Additive +, — Left
6 Relational <, <=, >, >= Left
7 Equality == 1= Left
8 logical and && Left
9 logical or | | Left
10 Assignment =, *= /= %= += Right

Table 4.11

86 NSOU e CC-MT-06

Example 4.3

Show the output produced by the following program segments. Assume 1, j and
k are integer variables.

L i=7, j=8, k=9; . i=1, =2, k=3:
printf(“%d”, (i + 10) % k / j); i*=j *=k;
printf(“%d %d %d”, 1, j, k);
. i=7,j;
i=6+(=25)
printf("%d %d", 1, j);

Solution (I) :

Replacing the variables by their values the expression (i + 10) % k / j becomes
(7+10) % 9 / 8.
(7+10) % 9 / 8

17 % 9 / 8 [() has the highest precedence in Table 4.10)]
= (17 % 9) / 8 [% and / has same precedence and left
associative, so evaluation is from left to right]

Solution (II) :

1 *=j *= k expression has multiple *= operator. Since this operator is right
associative (Table 4.10), the evaluation of the expression starts from right. Therefore,
1 *=] *= k expression can be equivalently written as :

ko L g
ek =it
i*=]j i=i%*]j

we get,

ok

J =]
2 * 3 [replacing values of j and k]
6

Similarly, i =1 * j
=1 *6=06
Therefore, the final values are 1 =6,] = 6, k = 3.
Solution (II) :

The statement j = 6 + (1 = 2.5); can be split into two statements as = is right
associate.
1=25;
j=o6+i

NSOU e CC-MT-06 87

being an integer i can store integer. So the new value of i = 2 and as a result] = 6
+2 =28

Example 4.4

Supply parenthesis to show how C compiler would interpret following expressions
based on precedence of operator given in Table 4.10.

Il.La*b-c*d+e II.a/b%c/d
Solution (I) :

The expression has four operators. The * operators has the highest precedence
in the expression but it appears twice. Since * operator is left associative so the *
which comes first from the left side is evaluated first. Then the second * is evaluated.
The operands between * can be grouped as follows :

(a*b)—(c*d)+e

So the expression becomes R, — R, + e where R, = (a * b) and R, = (¢ * d).

We can see from Table 4.10, + and — operators have same precedence. Since
they are left associative the grouping of operands is done from left to right. So, the
equivalent expression is

Ry —Ry+e
= ({(a*b)-(c*d)+e
Solution (II) :

All the operators are in same level of precedence and they are left associative.
So the expression can be written as :

((a/b)%c)/d
Check Your Progress 4.1

Show the output produced by the following program segments. Assume 1, j and
k are integer variables.

L i=1, j=2, k=3; 1. i=7, j=8;
printf(“%d”, (i+5) % (j+2)/k); P*=j+ 1
printf(“%d %d”, i, j);
1. i=1, =2, k=3; IV. =6, J;
i*:j*:k. j:i“r:i;

printf(“%d %d %d”, i, i, k); printf(“%d %d”, i, i):

88 NSOU e CC-MT-06

V.i=2,j=8;
i=i=06)+(G=23)
printf("%d %d", i, j);

Check Your Progress 4.2

Only one of the expressions ++i and i++ is exactly same as (1 += 1). Which is
it? Justify your answer.

Check Your Progress 4.3

Supply parenthesis to show how C compiler would interpret following expressions
based on precedence of operator given in Table 4.10.

L. —a-b+c—-+d Ia*-b/c—-d
. a=b+=ct+-d+ --e/f

Example 4.5

Show the output produced by the following program segments. Assume 1, j and
k are integer variables.

Li=10,j; I i=10,j=5;
j=3*1i-+2; printf(“%d\n”, i++ - ++9);
printf(“%d %d”, 1, j); printf(“%d %d”, i, j);

L i =5, =10, k=1 IVi=2j=1
printf(“%d”, k>i< j); printf(“%d”, i + 1),

Solution (I) :

In line 2, the expression is] = 3 * i-- + 2. Let us place parenthesis based on
precedence and associativity in the expression. Post increment has highest precedence.
So the expression becomes :

j=37%(-)+2
=]=0C*(0-) +2 [* has higher precedence than + and = operators]
=]=(3 * (i--)) + 2) [+ has higher precedence than = operator]

Here the post decrement operator produces the value of i first and then
decrements 1 to i-1. Therefore, the above expression can be split into following
expressions.

i=@*E)+ = j=G*D)+2;
1=1-1;

NSOU e CC-MT-06 89

Let us evaluate the expression by placing actual value of the operand :
i=(G*10)+2=32
i=10-1=9
Therefore, the printf displays 9 and 32.
Solution (II) :

In line 2 printf statement has expression i++ — ++j as an argument. After placing
parenthesis similar to solution (I), we get the equivalent expression as :

(i++) — (+4))
Here the post increment (i++) produces the value of i first and then increments

the value of 1 to i+1 . The pre increment (++j) produces the value of (j+1) and then
increments the value of j to j+1.

Therefore, the above expression can be split into following three consecutive
expressions.

=it
(it++) - (+) = i—j; [argument of printf statement]
i=i+1;

Therefore, at first j becomes 6. Then the printf displays (10 — 6) = 4 and finally
i becomes 11. The second printf displays value of i and j i.e. 11 and 6 respectively.

Solution (II) :

The argument in printf statement is the expression k>1<j contains all relational
operators which are left associative. So the equivalent expression is

(k>) <]
= 0<j [k =1 and i = 5, therefore, k > 1 is false and statement produces 0]
= 1 [j = 10, therefore, 0<j is true and statement produces 1]

The printf finally displays 1.
Solution (IV) :

The expression !!i + !j has logical not (!) operator and arithmetic operator +.
First parenthesize the expression based on the precedence and associativity given in
Table 4.10.

i +

= (! (1)) + (!5)[H has higher precedence and is right associative]

90 NSOU e CC-MT-06

Since 1 and j both have non-zero value, they both are treated as true. (refer
section 4.3.5). Therefore, the expression becomes,

(! (! TRUE)) + (! TRUE)

= (! FALSE) + FALSE

= TRUE + FALSE

1+0[TRUE =1 and FALSE = 0]
=1

Therefore, the printf finally displays 1.

Check Your Progress 4.4

Write a program that asks the user to enter a two-digit number, then print the
number with its digits reversed.

Sample Output :
Enter a two-digit number : 34
The reversal is 43.

Check Your Progress 4.5

Show the output produced by the following program segments. Assume 1, j and
k are integer variables.

Li=1; I i=7,j=8,
printf(“%d\n”, i++ - 1); printf(“%d\n”, i++ - --);
printf(*“%d”, 1); printf(*“%d %d”, 1, j);

L. i =7, j = 8, k=5, IV.i=5j
printf(“%d\n”, i++ - j++ + --k); j=+H *3-2)
printf(*“%d %d %d”, 1, ,k); printf(“%d %d”, 1j);

Vi=177, VL i=17j;
j=3*i-+2) j=3+-i*2)
printf(“%d %d”, 1j); printf(“%d %d”, 1j);

VII.i=5,;j=0, k=-5 VIL i=1,j=2k=3;
printf(*“%d”, 1 && j || k); printf(“%d”, 1 <j || k);

4.4 Summary

In this unit, we discussed about the different types of operators, namely
arithmetic, relational, logical, increment-decrement present in C. These operators

NSOU e CC-MT-06 91

have a pivotal role in developing complex program segments. In the following units,
more usage of these operators along with few new operators will be discussed in the
context of constructs like control statements, arrays etc. Since Logical operators are
used further in all types of looping constructs and if/else construct (in the next unit),
it is expected that the learner should understand thoroughly the usage of these
operators.

4.5 References and Further Reading

1. The C Programming Language, Kernighan & Ritchie, PHI Publication, 2011.

2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,
2003.

3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata McGraw
Hill, 2002.

4. C Programming : A Modern Approach, Second Edition, K.N. King, W. W.
Norton & Company, 2008.

Unit - 5 O Decision and Loop Control Statements

Structure
5.0 Introduction
5.1 Objectives
5.2 Select Statements
5.2.1 The if Statement
5.2.2 The switch Statement
5.3 Iterative Statements
5.3.1 while Loop
5.3.2 do-while Loop
5.3.3 for Loop
5.3.4 Exiting from Loop
5.4 Summary
5.5 References and Further Reading

5.0 Introduction

A program consists of different types of statements. So far, two types of
statements have been encountered: the return statement (Table 2.2) and expression
statements (unit 4). Most of the remaining statements fall into three other categories,
depending on how they affect the order in which statements are executed :

> Selection statements : It allows the program to choose a particular path from
set of alternatives.

> lterative statements : It allows the program to execute a specific instruction
or set of instructions repetitively.

> Jump statement : It allows the program to jump unconditionally from one
place to other place.

All these different statements are the main topics of this unit.

5.1 Objectives

After going through this unit the learner will be able to :

> Work with different types of selection statements;
> Know the appropriate use of the various iterative statements in programming;

92

NSOU e CC-MT-06 93

> Transfer the control from within the loops;
> Use the goto, break and continue statements in the programs; and
> Write programs using branching, looping statements

5.2 Select Statements

As introduced earlier, select statement is used when the program needs to choose
a specific path from a set of paths. Two types of select statements are available :

> if statement

> switch statement

5.2.1 The if Statement

if statement has the form :
if (expression)
statement,
The following points need to be emphasized :

> Parenthesis around the expression are mandatory.

> When if statement is executed, expression inside the parenthesis are evaluated.
If the value of the expression is non-zero which C interprets as true, the
statement after parenthesis is executed.

For example, see the code and flowchart of a simple if statement in Table 5.1.
Here the expression 1 > 0 produces 1 if true, O if false. Assigning 14 to 1 makes the
expression true and as a result the statement after the expression printf(“%d is
positive”, 1) is executed. Choosing any negative value for 1 will make the expression
false and therefore, printf statement will not be executed.

Code Flowchart

#include<stdio.h> *
int main() [i=14]
{

int i=14; False

if(i>0) < Expression — %

ooy A e
printf("%d is positive",i) | Statement § True

return O;

} printf(‘“%d is positive”,i);
\ 4

Table 5.1

94 NSOU e CC-MT-06

Compound Statements

if statement given in the last example is known as simple if statement. The
statement after the expression has a single statement. If the statement is plural, then
it is known as compound if statement. The form of the compound if is similar to
simple if with additional braces around a group of statements which force the
compiler to treat it as a single statement.

if (expression)
{ statements }

The previous example has been extended in Table to form an example of
compound if statement.

In the example given in Table 5.2, two statements will be executed sequentially
if the expression is true. The two printf statements are grouped together to form a
statement block.

Code Flowchart
#include<stdio.h> l
int main() [i=14 J
{
int i=14;
if(i>0) < Expression —p >0 False
{
printf("%d is positive",i); True
printf("\nThank You"); [<7 Statement
} printf(“%d is positive, i);
return 0: printf(“‘\nThank You™);
}
y
Table 5.2

The Else Clause

An if statement may have else clause. When else clause is present then the if
statement is of the following form :

if (expression)
Statements
else statements

NSOU e CC-MT-06 95

The statements those follow else is executed when the expression in parenthesis
has the value O or the expression is evaluated to be false.

Consider a program which takes an integer as input and display whether the
integer is odd or even. Table 5.3 shows the program along with a sample output. A
variable t is used to store the remainder when the given integer is divided by 2.
Obviously, if the expression (t==0) has the value 1 (equality condition true) the
integer is even integer else (equality condition false) is odd. Table 5.3 also shows
the outputs for two different types of input. The flowchart of the if else statement is
give in Table 5.4.

Code Output
#include<stdio.h> Output 1
int main()
{ Enter the integer : 12
int a,t; 12 in an even integer

printf(“Enter the integer: ”);
scanf(“%d”, &a);

t=a%?2;
if(t==0) Output 2
printf(*\n%d is an even integer”,a);
else Enter the integer : 5
printf(“\n%d is an odd integer”.a); 5 in an odd integer
return 0;

}

Table 5.3

Important point is to be noted that the expression used equality (t==0) operator
not the assignment (t = 0). Use of assignment operator produces the value 0, which
makes the expression always false and the statement following the else clause is
executed. Therefore, for any input integer the program always displays the integer as
odd. This has been shown in Table 5.5. The output suggests that for both the inputs
12 and 5 the program displays the message from the printf statement after else
clause.

96 NSOU e CC-MT-06

False

/printf(”%d is an even integer”, a4);/ / printf(”%d is an odd integer”, a); /

|

Table 5.4
Code Output

#include<stdio.h> Output 1

int main()

{ Enter the integer : 12
int at; 12 in an odd integer
printf("Enter the integer: ");
scanf("%d",&a);
t=a%?2;
if(t=0) Output 2

printf("\n%d is a even integer",a);
else Enter the integer : 5
printf("\n%d is an odd integer",a); 5 in an odd integer

return 0;

}

Table 5.5

Nested if statement

It is quite common in C, that an if statement to be nested inside another if
statement. The general form of nested if of depth 2 is shown in Figure 5.1 :

If statement can be nested to any depth. Consider the program, which finds the
largest of the numbers a, b and ¢, all of which can be either integer or floating point
numbers. The flowchart and the program code is shown in Table 5.6. This program
has two inner (child) if-else statement (first one at line no. 9 and second at line
no. 15) nested inside an outer (parent) if else statement (at line no. 7). The

NSOU e CC-MT-06 97

braces are not mandatory as the if else statements are all simple, rather it helps the
program to make more readable.

if (expression)
if (expression) if else block
statements in depth 1

else statements \
else \

if (expression) if else block
statements <+——in depth 2
else statements

Figure S.1
Line
Flowchart 4 Code

1 #include<stdio.h>
2 int main()
3 {
4 int a,b,c,max;
5 printf("Enter the numbers: ");
6 scanf("%d%d%d",&a,&b,&c);
7 if(a>b)
8 { \
9 if (a>c) =N
10 max=a; & CO
11 else max=c; B g
12 } > o
13 else &
14 { =

max = a max = ¢ 15 if (b>C) =
16 max=b; &

v 17 else max=c; B »
print max "_ 18 }
19 printf("\nThe maximum number is
20 | %d",max);
21 return 0O;
22 }
Table 5.6

MATH (CC-MT-06)—7

98 NSOU e CC-MT-06

Cascaded if Statement

It is often required to test a series of conditions, stopping as soon as one of them
is true. A cascaded if is the best way in those situations. The general form of
cascaded if is shown in Figure 5.2 :

if (expression)
statement

else if (expression)
statement

Figure 5.2 |
else if (expression)
statement

else statement

The last else statement is not mandatory. For example, let us consider a C
program which will display the English word that corresponds to the grade of the
students of a class. Let us also assumed that grade can be any number from O to 4.
Any other value is treated as illegal grade. The flowchart and the C code of the
program are given in Figure 5.3 and Table 5.7 respectively. Sample outputs for two
specific choices of grade are also given in Table 5.7.

False
Good
Truc
False
| <o

True

f Failing ; fIllegal grade;

Figure 5.3

NSOU e CC-MT-06 99

Code Output
#include<stdio.h>
int main() Output 1
{
int grade; Enter the grade : 2
printf("Enter the grade: "); Perfromance is Good

scanf("%d",&grade);
if(grade == 4)
printf("\nPerformance is outstanding"),
else if (grade == 3)

printf("\nPerformance is very good"), Output 2
else if (grade == 2)

printf("\nPerformance is good"); Enter the grade : 7
else if (grade == 1) lllegal grade

printf("\nPerformance is average");
else if (grade == 0)
printf("\nPerformance is poor");
else printf("\nlllegal grade");
return 0;

}

Table 5.7
Example 5.1
Is the following if statement legal?

if (n>=1<=10)
printf(“n is in between 1 and 10\n”);
If so, what does it do when n=0.

Solution :

The if statement is legal. Let us first evaluate the expression in if statement. The
expression contains two relation operator with same precedence. These operators are
left associative (Table 4.11). So the expression can be parenthesized in following
way :

(n>=1<=10) = ((n>=1)<=10)

= (0<=10) [assuming n=0, (n>=1) is false and produces 0]
= 1 [(0<=10) is true and produces 1]

100 NSOU e CC-MT-06

Since C treat any non-zero value as true so the printf statement is executed and
prints the message “n is in between 1 and 10”. The output in Table 5.8 shows the
fact.

Code Output

#include<stdio.h>
int main()
{
int n=0;
if(n>=1<=10) n is between 1 and 10
printf("n is between 1 and 10");
return 0;

}

Table 5.8
Example 5.2

Write a program that finds the largest and smallest of four integers entered by
the user. (You can use maximum four if statements.)

Solution :
Assume a, b, ¢ and d are integers. Implement following steps in C code.

1. Compare a and b and store larger integer into variable max1 and smaller one
into minl.

2. Compare ¢ and d and store larger integer into variable max2 and smaller one
into min2.

3. Compare maxl and max2 and larger integer into variable largest.

4. Compare minl and min2 and smaller integer into variable smallest.

Use four if —else statements for above four steps.
Check Your Progress S.1
Is the following if statement legal?

if (n==1-10)
printf(“n is in between 1 and 10\n”);
If so, what does it do when n=5.
Check Your Progress 5.2

The following if statement is unnecessarily complicated. Simplify it using one
single if statement.

NSOU e CC-MT-06 101

if (age >= 13)
if (age <= 19)
printf(“Teenager\n”);
else
printf(*“Not teenager\n”);
else
if (age < 13)
printf(*“Not teenager\n”);

Check Your Progress 5.3

Write a program that calculates how many digits a number contains assuming
that the number has no more than four digits.

Sample output :
Enter a number : 374
The number 374 has 3 digits

Hint : Use if statement to test the number. For example, if the number is
between 0 and 9, it has one digit. If the number is between 10 to 99, it has two digits.

Check Your Progress 5.4

In a state, single residents are subject to the following income tax.

Income (in lakhs) Amount of Taxes(% of income)
Not over 2 0
Over 2 - 3.5 5
Over 3.5 -5 10
Over 5 - 10 20
Over 10 30

Write a program that asks the user to enter the income amount, then display the
corresponding Tax.

Check Your Progress 5.5

Write a program that prompts the user to enter two dates in the form of
mm/dd/yy and then indicate which date comes earlier in the calendar.

5.2.2 The switch Statement

The switch statement is used as an alternative way to implement cascaded if
statement. In fact, a switch statement is often easier to read than cascaded if and often

102 NSOU e CC-MT-06

faster than if statement specially when there are more than a handful number of
cases. The same program given in Table 5.7 could also be written using switch
statement (Table 5.9).

#include<stdio.h>
int main()
{
int grade;
printf("Enter the grade: ");
scanf("%d",&grade);
switch(grade) {
case 4 : printf("\nPerformance is outstanding");
break;
case 3 : printf("\nPerformance is very good");
break;
case 2 : printf("\nPerformance is good");
break;
case 1 : printf("\nPerformance is average"),
break;
case O : printf("\nPerformance is poor");;
break;
default : printf("\nlllegal grade"),
break;
}

return 0;

}

Table 5.9

When this statement is executed, the value of the variable grade is tested against
4, 3,2, 1, and 0. If it matches with 4, for example, the message ‘Performance is
outstanding’ is printed, then the break statement transfers control to the statement
following the switch. If the value of grade doesn’t match any of the choices then
default case applies, and message ‘Illegal grade’ is printed. The most common form
of the switch statement is given in Figure 5.4.

NSOU e CC-MT-06 103

switch (expression) {
case constant-expression : statements
case constant-expression : statements
default : statements

Figure 5.4
Break Statement

It can be observed from the previous example that swifch statement is a form
of jump based on certain value. The word switch must be followed by an integer
expression in parenthesis. This expression is known as controlling expression. Even
the characters also can be controlling expression in swifch statement as they are
treated as integer in C. However, the floating point numbers and string don’t qualify
for becoming a controlling expression. When controlling expression is evaluated,
control jumps to the case label matching the value of the switch expression. A case
label is nothing more than a marker indicating a position in the swifch statement.
Once one of the case labels matches with the controlling expression, the remaining
case labels should be ignored. This feature of the switch statement is achieved by the
break statement. Without break (or some other jump statement) control will flow
from one case to another. See the output of the previous program in Table 5.10 if
break is not used.

The output in Table 5.10 shows that when the grade is chosen the value 2, the
control jumps to case 2 and executes all the print statements one after another till the
end of the block. Although the last case in switch statement never needs a break
statement, it’s a common practice to put one there anyway to guard against a missing
break problem if cases should later be added.

Though forgetting break in switch statement is common error, the programmer
intentionally omits the break statement in certain situation. For example, let us
consider that we need to display the message “student failed” when the student
acquires either grade as O or 1, and “student passed” for acquiring any of the
remaining grades. In that case, omitting break statements is one of the possible
option to solve the problem (see the code in Table 5.11. We can make the code even
shorter as it is shown in Table 5.12.

104 NSOU e CC-MT-06

Code Output

#include<stdio.h>
int main()
{

int grade;

printf(“Enter the grade: 7);

scanf(“%d”,&grade); Enter the grade : 2

switch(grade) { Performance is good

case 4 : printf(“\nPerformance is outstanding”); | Performance is average
case 3 : printf(“\nPerformance is very good”); [Performance is poor
case 2 : printf(“\nPerformance is good”); lllegal grade

case 1 : printf(*\nPerformance is average”);
case O : printf(“\nPerformance is poor™);

default: printf(*“\nlllegal grade”);

}
return O,
}
Table 5.10
#include<stdio.h>
int main()
{
int grade;
printf("Enter the grade: ");
scanf("%d",&grade);
switch(grade) {
case 4 :
case 3 :
case 2 : printf("\nStudent Passed");break;
case 1 :

case O : printf("\nStudent Failed");break;
default: printf("\nlllegal grade");break;

}

return 0;

Table 5.11

NSOU e CC-MT-06 105

#include<stdio.h>
int main()
{
int grade;
printf("Enter the grade: ");
scanf("%d",&grade);
switch(grade) {
case 4 : case 3 : case 2 :
printf("\nStudent Passed");break;
case 1 : case O :
printf("\nStudent Failed");break;
default: printf("\nlllegal grade");break;
}

return 0;

}

Table 5.12
Check Your Progress 5.6

What does the following program fragment produce? (Assume that 1 is an
integer variable.)

1=1;
switch (1 % 3) {

case 0 : printf(*“zero”),
case 1 : printf(“one”),

case 2 : printf(“two”)
}
Check Your Progress 5.7

The following table shows partial list of pin codes of few districts in West
Bengal.

Pin Code District Pin Code District
700020 Kolkata 731303 Birbhum
700027 Kolkata 724404 Darjeeling
700046 Kolkata 734301 Darjeeling
713144 Bardhaman 741235 Nadia

713335 Bardhaman 742202 Murshidabad

106 NSOU e CC-MT-06

Write a switch statement whose controlling expression is the variable pin code.
If the value of the pin code is in the table, switch statement will print the
corresponding district. Otherwise, it will display the message “District not found”.
Use techniques to make the switch statement as simple as possible.

Check Your Progress 5.8

Write a program that asks the user for a two-digit number, then prints the
English word for the number :

Sample Output :
Enter a two-digit number : 67
The number entered is sixty-seven

Hint : Break the number into two digits. Use one switch statement to print the
word for first digit (“Twenty”,
to print the word for second digit. Don’t forget that numbers between 11 and 19
require special treatment.

Thirty”, and so forth). Use a second switch statement

5.3 Iterative Statements

An iterative statement repeatedly executes other statement/s, known as body of
the iteration or loop. In C, there are mainly three types of iterative statement or loop.
They are :

> while loop
> do-while loop
> for loop

5.3.1 while Loop
The while loop has a general form like the following :
while (expression) statement

The expression inside the parenthesis is known as controlling expression. The
statement after the parenthesis is known as loop body. Let us understand the while
loop using a program that asks the user to enter a number n. The program will print
n lines of output, with each line containing a number between 1 and n along with
its square. The program will have following sequential steps.

NSOU e CC-MT-06 107

1. Ask user for a value of n.

2. Initialize a variable 1 by 1.

. Check whether the value of 1 is less than or equal to the value of n. If “Yes’
then go to step 4, otherwise go to step 7.

Print the value of i and its square.

Increment the value of 1.

Go to step 3.

Stop.

(9%

=N ok

In summary, the program will repeatedly print a number and its square until the
number exceeds n. The controlling expression (step 3) determines whether the
program control will enter into or exit from the loop. The statements in step 4 and
step 5 are executed repeatedly in a loop and form the body of the loop. The
sequential steps mentioned above can be presented as a flowchart (Figure 5.5).
Variable i, known as loop control variable, needs to be initialized before entering the
loop (step 2). Without that 1 can take any value which may give some unexpected
result. The value of 1 also needs to be updated (step 5) inside the loop body before
checking the condition in the next iteration (step 3). The C code and the output of
the above program is given in Table 5.13.

Let us see how the program execution takes place for a specific value of n equal
to 4.

n=4; n is chosen as 4.
i=1; i1s now 1.

Is 1 <= n? Yes; continue.
Print i and i*1 1 1

i++; 11s now 2.

Is 1 <= n? Yes; continue.
Print i and i*1 2 4

i++; i1s now 3.

Is 1 < =n? Yes; continue.
Print i and i*1 3 9

i++; i1s now 4.

Is 1 < =n? Yes; continue.
Print i and i*1 4 16

i++; 1 1S now 5.

Is 1 < =n? No; exit from the loop.

108 NSOU e CC-MT-06

Initialization

-
=~
~——
-

Condition

Loop Body

[Print i and square of i]

v

|
Increment- — = = = == === —— -~ > [Increment 1]

Figure 5.5

Therefore, the final output will have 4 lines as it is shown in Table 5.13. Notice
how the loop keeps going as long as the controlling expression (1 < n) is true (non-
zero). When the controlling expression is false (zero), loop terminates and 1 is greater
than or equal to n as desired. Since the controlling expression is tested before the
loop body is executed, it is possible that the body isn’t executed even once. For
example, if the value of i initially is set to any integer greater than 4 the body will
not be executed at all.

Code Output
#include<stdio.h>
int main()
{
int 1,n; Enter the value of n: 4
printf("Enter the value of n: "); 1 1
scanf("%d",&n);, 2 4
i=1; 3 9
while(i<=n) 4 16
{
printf("\n%d\t%d" ,i,1*1);
i++;
}
return 0;
}

Table 5.13

NSOU e CC-MT-06 109

Infinite Loop

A while statement will never terminate if the controlling expression always has non-
zero value. For example, the code in Table 5.14 prints the string “Hello” infinite number
of times. At times, C programmers use this technique to implement infinite loop.

#include<stdio.h>
int main()
{
int 1=4;
printf("Enter the value of n: ");
while(i)
{

printf("Hello\n");
i++;
}

return 0;

Table 5.14

Example 5.3

For a set of n numbers given by the user, write a program to calculate the sum
of the numbers and print the sum as output.

Solution :

The algorithm of this program is already discussed in section 1.5.2 in Unit-1.
The C-code for algorithm in Figure 1.8 is given in Table S.15.

#include<stdio.h>
int main()
{
int i=1,s=0,n,a;
printf("Enter how many numbers you want to add(n): ");
scanf("%d",&n);
while(i<=n)
{
printf("Enter the number: "),
scanf("%d",&a);
s=sta,
i++;
}
printf("\nThe sum is %d",s);
return O;

110 NSOU e CC-MT-06

Output

Enter How many numbers you want to add(n): 4
Enter the number: 3
Enter the number: 4
Enter the number: 6
Enter the number: 7

The Sum is 20
Table 5.15
Example 5.4
Explain the difference between the output produced by following two program
fragments?
Program 1 Program 2
#include<stdio.h> #include<stdio.h>
int main() int main()
{ {
int i=1; int i=1;
while(i<=6) while(i++<=6)
printf("%d ",i++); printf("%d ",1);
return 0; return 0;
} }
Solution :

The main difference between two program is the position of post increment (++)
operator. In program 1, The controlling expression of while loop is evaluated first.
Since the expression is true (non-zero) for the initial value 1, the control enters into
the loop body. Because of the post increment operator, first the value 1 is printed and
then 1 is incremented to 2. The condition is re-tested for i=2 again and keeps repeating
for six times until 1 reaches to 7. Finally, 1 becomes 7 as a result the condition is
violated and the loop terminates. Therefore, the final output is — 1 2 3 4 5 6.

In program 2, immediately after testing the condition value of 1 is incremented.
Therefore, the incremented value is printed. The condition is true for 6 times and the
value displayed from 2 to 7. So the final output is — 2 34 56 7.

NSOU e CC-MT-06 111

The equivalent code for the two programs are as follows.

Program 1 Program 2
#include<stdio.h> #include<stdio.h>
int main() int main()
{ {
int i=1; int i=1;
while(i<=6) while(i<=6)
{ {
printf("%d ",1); i+t
i++; printf("%d ",1);
} }
return 0; return 0;
} }
Example 5.5
The following code results in an infinite number. Justify the reason.
int 1, n =4;
1=1;
while (1 <= n);
1++;

Solution :

The semicolon after the while loop indicates the end of the while loop.
Therefore, the next statement i++ is no longer a part of loop body and variable i
doesn’t get incremented, so condition remains true forever. Figure 5.6 shows
difference of control-flow in a while loop based on the position of the semicolon.
The Figure on the left side is example of a simple while loop with a single statement
(i++) in its body. The control flows repeatedly according to the arrow diagram. On
the other hand, the Figure on the right side also has a while loop but without any
statement in its body (semicolon ends after controlling expression). Therefore, the
i++ statement will never be executed and loop will continue for ever.

TN\
while(1 <=n) S

while(1 <=n); —

i++; i++;

Figure 5.6

112 NSOU e CC-MT-06

Check Your Progress 5.9

Write a C program to compute the sum of squares of n numbers using a while
loop (Develop the C program using the algorithm designed in Check Your Progress
1.3).

Check Your Progress 5.10

Write a C program to compute the harmonic mean of n numbers using a while
loop (Develop the C program using the algorithm designed in Check Your Progress
1.4).

Check Your Progress S.11

Write a C program to print the following sequence of n numbers using a while
loop (Develop the C program using the algorithm designed in Check Your Progress
1.5).

Check Your Progress S.12

Write a C program to compute the factorial of n numbers using a while loop
(Develop the C program using the algorithm designed in Check Your Progress 1.7).

5.3.2 do-while Loop

do-while loop is mostly similar to while loop with only difference — the
controlling expression is tested after each execution of loop body. The general form
of do statement is

do
{
Statement
+ while (expression);

When a do statement is executed, the loop body is executed first, then the
controlling expression is evaluated. If the value of the expression is non-zero, the
loop body is executed again and then the expression is evaluated again. The
statement terminates if the controlling expression is evaluated to zero after the loop
body has been executed. The program in Table 5.13 can be written using do-while
loop. The flow chart is given in Figure 5.7.

NSOU e CC-MT-06 113

Enter n

Initialization @~ =======-= .]

Increment o _____ _ | Loop Body

—

Condition

Figure 5.7

Note the difference of position of the condition in Figure 5.5 and Figure 5.7.
This says that the condition is checked at the end of the loop unlike while loop where
condition is checked at the beginning of the loop. The C code for the same program
using do-while loop and the corresponding output is given in Table 5.16. Even
though the output remains the same for both while and do while loop implementations
of the program for all values of n>0, it may not be same if n is chosen as 0. In that
case the while will be false at the first time and loop body will not be executed at
all. So the final output will be 0. On the other hand, in the case of do while loop the
loop body will be executed at least for the first time which is not desired. The output
for n equal to O is shown in Table 5.17 for both while and do-while loop
implementation of the given program.

Another important difference is the position of semicolon (;). In do-while loop,
the semicolon (;) is present after the while statement to indicate the end of the loop
whereas the same shouldn’t be there in case of while loop.

MATH (CC-MT-06)—8

114 NSOU e CC-MT-06

#include<stdio.h>
int main()
{
int i=1,s=0,n,a;
printf("Enter how many numbers you want to add(n): ");
scanf("%d",&n);
do
{
printf("Enter the number: "),
scanf("%d",&a);
s=sta,
i++;
4 while(i<=n);
printf("\nThe sum is %d",s);

return 0;
}
Output
Enter How many number you want to add (n) : 4
Enter the number : 3
Enter the number : 4
Enter the number : 6
Enter the number : 7
The sum is 20
Table 5.16
Output (Using While loop) Output (Using do-while loop)
Enter How many number you want | Enter How many nhumber you want to add
to add(n) : 0 (n) : 0 Enter the number :
The sumis 0 \

Table 5.17

NSOU e CC-MT-06 115

Example 5.6

Write a C program to print first #» terms of Fibonacci sequence where n > 1
using a do-while loop (Develop the C program using the algorithm designed in
section 1.5.3) considering the first two terms are O and 1 respectively.

Solution :

The program has been given in to Table 5.18. Refer the algorithm in section
1.5.3 for detailed explanation.

#include<stdio.h>
int main()
{
int i=2,a=0,b=1,c,n;
printf("Enter how many terms you want(n>1): ");
scanf("%d",&n);
printf("\nThe Fibonacci sequence for first %d terms is: \n" n);
printf("\n%d\t%d",a,b);
if (n>2)
{ do
{ c=atb,
a=b;
b=c;
i++;
printf("\t%d",c);
} while (i<n);
}

return 0;

Output
Enter how many terms you want (n>1): 8
The Fibonacci sequence for first 8 terms is :
0 1 1 2 3 5 8 13

Table 5.18

116 NSOU e CC-MT-06

Check Your Progress 5.13

The program in Example 5.6 is valid for n greater than 1. Modify the program
so that it can also consider the case when value of n is greater than or equal to 1.
(Hint: add the logic using select statement discussed in section 5.2.1 and print a if
n is equal to 1, print a and b if n is equal to 2, execute the do-while loop in Table
5.18 otherwise.)

Example 5.7

Write a C program to reverse the digits of an integer n using a do-while loop
(Develop the C program using the algorithm designed in section 1.5.4).

The program has been given in Table 5.19. Refer the algorithm in section 1.5.4
for detailed explanation.

#include<stdio.h>
int main()
{
int i=1,r=0,R=0,n;
printf("Enter the number you want to reverse(n): ");
scanf("%d",&n);
do
{
=n%10;
n=n/10;
R=10*R+r;
ywhile (n!=0),
printf("\nThe reversed number is %d",R);
return O;

Output
Enter the number you want to reverse(n) : 34521

The reversed number is 12543

Table 5.19

NSOU e CC-MT-06 117

Check Your Progress S.14

Write a C program to count the number of digits of an integer n using a while
loop (Develop the C program using the algorithm designed in Check Your Progress
1.13).

Check Your Progress S.15

Write a C program to compute the sum of the digits of an integer n using a while
loop (Develop the C program using the algorithm designed in Check Your Progress
1.14).

Check Your Progress 5.16

Write a C program that reads in a set of » single digits and convert them into
a single decimal integer using a while loop. For example, the algorithm should
convert the set of 5 digits {2,7,4,9,3} to the integer 27493. (Develop the C program
using the algorithm designed in Check Your Progress 1.15).

5.3.3 for Loop

Another way to implement repetitive statement in C is for loop. This loop is
ideal for loops that have a counting variable, but it is versatile enough to be used for
other kinds of loops as well. The for loop is of following form :

for (exprl; expr2; expr3)

Expression expr/ is mainly responsible for initializing the counting variable or
loop index. Expression expr?2 is controlling expression or the condition and expression
expr3 mainly modify the loop index. To understand how for loop works let us take
the same example where a number and its square are displayed given in Table 5.13.
The C code and its output are given in Table 5.20.

Code Output

#include<stdio.h>

int main()

{ Enter the value of n: 4
int i=1,n; 1
printf("Enter the value of n: "), 2
scanf("%d",&n); 3
for(i=1;1<=n;i++) 4

printf("\n%d\t%d" 1,1*1);
return 0;

1
4
9

16

Table 5.20

118 NSOU e CC-MT-06

Here, loop index 1 is initialized first and then the condition 1 <= n is evaluated.
If the condition is true then the print statement inside the loop body is executed and
then loop index i is incremented and checks the condition again. If the condition is
evaluated to false(zero) the program control exits from the loop. Figure 5.8 shows
the working principle of for loop. for loop is closely related to while and do-while
loop. The only difference is the relative positions of expressions which makes the
syntax of for loop different from other loops. In fact, except in few rare cases, a for
loop can always be replaced by equivalent while or do-while loop.

for (injtialilzation; Co‘nd%tion; Updating)

{
False True
Loop body
| I—
}
Next Section
Figure 5.8

Omitting Expression in a for Loop

The expressions are not mandatory inside the parenthesis of the for loop. If the
first expression is omitted, no initialization is performed before the loop is executed.
In that case, the loop index may be initialized by a separate statement. For example,

1=0;
for(; 1<=10 ; i++)
printf("%d", 1);

The important point to be noted is that, the semicolon between first and second
expression remains. In fact, two semicolons must be present, even when the
expressions are omitted.

The third expression could also be omitted. In that case, the loop index needs
to be modified inside the loop body. When the first and third expressions are omitted,
the resulting loop is nothing more than a while loop in disguise. Table 5.18 compares
the structure of a for loop without first and third expression vs. while loop. Finally,
the second expression or the condition also can be omitted. If the condition is
missing then by default it is evaluated to true, and therefore, for loop will not
terminate. So for (; ;), is a valid statement in C which creates an infinite loop.

NSOU e CC-MT-06 119

For Loop While Loop
#include<stdio.h> #include<stdio.h>
int main() int main()
{ {
int i,n; int i,n;
printf("Enter the value of n: "); printf("Enter the value of n: ");
scanf("%d",&n); scanf("%d",&n);
=1, i=1;
for(;i<=n;) while(i<=n)
{ {
printf("\n%d" 1), printf("\n%d" 1),
i++; i++;
} }
return 0; return 0;
} }
Table 5.21

5.3.4 Exiting from Loop

The conditional expression is commonly used as an exit point which is
responsible for exiting the control from the loop. Now it has been observed that the
loop has this kind of exit point either before (while, for loop) or after the loop body
(do-while loop). There are certain situations, when the exit point is needed in the
middle of the loop body. This additional exit point can be created using break
statement in C. There is another C statement known as continue which is used very
frequently to skip remaining part of loop body from its presence without jumping out
of the loop. In fact, the break and continue statements are controlled jumps where
the program control either jump to exit the loop or to the end of the loop body. For
any kind of uncontrolled jump, C uses gofo statement. It allows the program to jump
from one statement to any other statement without any restriction.

Break Statement

The break statement is already used to transfer control out of switch statement.
The break statement can also be used to jump out of a while, do-while and for loop.
For example, a C program that can check whether a given number n is prime or not.
A for loop may be used that divides n by the numbers between 2 and n-1 (Table
5.22). As soon as any divisor is found the control should exit from the loop without
checking the condition for remaining numbers. The loop can be terminated due to
following two reason.

120 NSOU e CC-MT-06

>> Normal Termination : no divisor found from 2 to n-1, and the
value of loop index 1 is incremented to n which results in violation
of condition and terminates the loop. This implies n is prime
number.

>> Premature Termination : a divisor found and loop is terminated
because of the break statement. In this situation, the value of loop
index 1 < n-1. This implies n is not a prime number.

Code Output
#include<stdio.h>
int main()
{ Output 1
int i,n;
printf("Enter the value of n: "); Enter the value of n: 79
scanf("%d",&n);, 79 is prime
for(i=2;i<n;i++)
{
if(n%i==0)
break; Output 2
}
if (i<n) Enter the value of n: 36
printf("\n%d is not prime" n); 36 is not prime
else printf("\n%d is prime" n);
return 0;
)
Table 5.22

After the loop has terminated, select (if-else) statement is used to determine
whether termination was normal (n is prime) or premature (n is not prime). The
performance of the C program in Table 5.22 can be improved by modifying the
condition of the for loop. Considering the fact that the maximum value of any factor
of an integer can’t be more than square root of the integer, the condition of the for
loop can be replaced by i < n instead of i < n.

A break statement transfers control out of the innermost loop enclosing while,
do-while, for or switch statement, therefore, when loops are nested, the break
statement can escape one level of nesting. Consider the case of a switch statement
nested inside a while loop in Figure 5.9 :

NSOU e CC-MT-06 121

while (...)
{ switch (...)
{ ..
break;
}
}
Figure 5.9

The break statement transfers control out of switch statement, but not out of
while loop.

Continue Statement :

While the break statement transfers the control just past the end of the loop,
continue statement transfers the control to the point before the end of the loop
(Figure 5.10). As a result, the loop automatically goes to the next iteration and start
checking the condition again. In that way, continue eventually sends the control at
the beginning of the loop. Unlike break, continue statement can’t be used in switch
statement.

Continue Break
int main() int main()
{ EERTTEREETTERPETT L - {
for (exprl; expr2; gxprS) for (exprl; expr2; expr3)
{ : {
CONtinue; e break;
oooooooooo JLlInpS DR N N Jllrnps
e }
} «
} }

Figure 5.10

122

NSOU e CC-MT-06

The following C program (Table 5.23), that reads a series of numbers and

computes their sum, illustrate a simple use of confinue. The program takes n non-
zero numbers and print their sum as output. Here, whenever the user provides a 0
the continue statement skips rest of the loop body but remains inside the loop.

{

#include<stdio.h>
int main()

int 1i=1,n,x,sum=0;
printf("Enter how many non-zero numbers you want to add(n): "),
scanf("%d",&n);
while(i<=n)
{

printf("\n Enter the number: "),

scanf("%d",&x);

if(x==0)

continue;

sum-+=x;

i++;
}
printf("\nSum of %d non-zero numbers is %d",n,sum);
return 0;

Output

Enter how many non-zero numbers you want to add(n) : 3
Enter the number : 5

Enter the number: 0

Enter the number : -2

Enter the number: 0

Enter the number : 65

Sum of 3 non-zero numbers is 68

Table 5.23

goto Statement :

It has been observed that break and continue transfer control to the point past

the end of loop and before the end of loop respectively. In that sense, this jump

NSOU e CC-MT-06 123

statements are controlled or restricted. In C, there is another jump statement known

as goto which can jump to any statement without any restriction, provided the
statement has a label.

A label is an identifier placed at the beginning of a statement. For example,

goto L1,
L1 : printf(*“Welcome”);

Executing the statement gofo L1, transfer the control to the statement that
follows the /label L1. The gofo statement can be used instead of break in program
given in Table 5.22. The modified program is given in Table 5.24.

Table 5.22.

The modified program is given in Table 5.24.

#include<stdio.h>
int main()
{
int i,n;
printf("Enter the value of n: ");
scanf("%d",&n);
for(i=2;i<n;i++)
{
if(n%i==0)
goto done;
}
done : if (i<n)
printf("\n%d is not prime" n);
else printf("\n%d is prime",n);
return 0;

Table 5.24

Here, if a divisor is found, then the control transfers to the label ‘done’ and
gives the desired result.

Example 5.8

Which one of the following statements is not equivalent to the other two
(assuming that the loop bodies are the same) ?

L fori=0;1<5;it+)
O for 1=0;1<5;++H)
I fori=0;1++<5;)

124 NSOU e CC-MT-06

Solution :

Statement 111 is different from statements I and II. Statements I and II both enter
to loop body after evaluating same condition (i < 5). Even though the increment
operators are different (post and pre), that will not impact the value of i in the next
iteration. Post and pre increment operators gives same result if they are executed as
a singular statement. Statement III, has different condition. Though conditional
expression evaluates 1 < 5, but immediately after that it increments the value of 1 and
enters the loop with incremented value. For example, after successful evaluation of
condition for the first time the value of i is equal to 1. On the other hand, the value
of 1 1s equal to O while executing statement I and II for the first time. Therefore, the
result is different. The output is given in Table 5.25.

Statement 1 Statement 11 Statement 111

#include<stdio.h>
int main()
{ . .
mnt 1
for(i=0;1<5;i++)
printf("%d ",1);

2

#include<stdio.h>
int main()
{ . .
mnt 1
for(i=0;1<5;++1)
printf("%d ",1);

#include<stdio.h>
int main()
{ . .
mnt 1
for(i=0;i++<5;)
printf("%d ",1);

Check Your Progress S.17

return 0; return 0; return 0;
} } }
Output Output Output
0o 1 2 3 4 0 1 2 3 4 1 2 3 4 5
Table 5.25

Which one of the following statements is not equivalent to the other two
(assuming that the loop bodies are the same)?

I while (1 <10) { }
I for (;1<10;) { }
I do {........... } while (1 < 10) ;

Check Your Progress 5.18

Show how to replace a continue statement by an equivalent goto statement in
C.

NSOU e CC-MT-06 125

Check Your Progress 5.19

Write a C program to compute the GCD (greatest common divisor) of two
integers m, n using approachl and approach2 (Euclid) discussed in section 1.6.2).
Check Your Progress 5.20

What output does the following program produce?

sum=0,
for 1=0;
{

;1 <10 ; 1++)

if i % 2)
continue;
sum +=1 ;

2

}
printf("%d", sum);

Example 5.9

The value of the trigonometric function cos(x) at a given x can be expressed as
an infinite series using Taylor series expansion of cos(x) centered at x = 0.

Using the above formula write a C program to compute the value of cos(x) at
x = 0.2 and at x = 1.6 accurate up to 4 decimal points.

Solution :

It is easy to check that the general term £, =(— 1)’m fori=0,1,2, ...

1)(2) f,_;, assuming f, = 1. Now the first four
terms of the series are given below in Table 5.26.

oo,

Therefore, we can write 7, =(-1)>—55~ ai-

Value of i t
0 T (by assumption)
1 = ED =G =
2 - OO = 5
3 -V =D

Table 5.26

126 NSOU e CC-MT-06

The C program and the output is given in the Table 5.27.

The program used a function fabs (floating argument) which gives absolute
value of a floating point number supplied as argument. The function fabs is defined
in the <math.h> header file which the program includes. The while loop terminates
when the desired accuracy of 4 decimal point has been reached. The original value
of cos(x) is also provided in the output. The cos(x) function is also defined in
<math.h> header file. The output suggests that as and when the higher order terms
in the series are added the estimated values of cos(0.2) and cos(1.6) approach to the
true values of cos(0.2) and cos(1.6) respectively. Another important observation is
that more number of iterations (terms) is required to achieve the desired accuracy for
cos(1.6) than cos(0.2). This happens because 0.2 is closer than 1.6 with respect to
center 0 of Taylor series expansion.

#include<stdio.h>
#include<math.h>
int main()
{
int 1=0;
float x,t=1,sum=1;
printf("Enter the value of x: ");
scanf("%f",&x);
printf("\n 1\t term\t sum\t cos(x)\n"); /*Header of the output table*/
printf(" \n");
printf{("%4d\t%6.41\t%6.4£1t%6.4f\n" 1,t, sum,cos(x)),/*The Oth term displayed*/
i++;
while(fabs(t)>.00001)
{
t=(-1)*t*x*x/((2*1-1)*(2*1)),
sum=sum-t;
printf("%4d\t%6.4£1t%6.411t%6.4f\n",1,t,sum,cos(x));
i++;
}
printf("\n\nThe value of cos(%2.1f) is %06.4f" x,sum);
return 0;

NSOU e CC-MT-06 127

Output 1 Output 2
Enter the value of x: .2 Enter the value of x: 1.6
i term sum cos(x) i term sum cos(x)

0 1.0000 1.0000 0.9801 0 1.0000 1.0000 -0.0292
1 -0.0200 0.9800 0.9801 1 -1.2800 -0.2800 -0.0292
2 0.0001 0.9801 0.9801 2 02731 -0.0069 -0.0292
3 -0.0000 0.9801 0.9801 3 -0.0233 -0.0302 -0.0292

4 0.0011 -0.0292 -0.0292

5 -0.0000 -0.0292 -0.0292
6

The value of cos (0.2) is 0.9801 0.0000 -0.0292 -0.0292

The value of cos(1.6) is —0.292

Table 5.27
Check Your Progress 5.21

The value of the trigonometric function log(x) at a given x can be expressed as
an infinite series using Taylor series expansion of log(x) centered at x = 1 :

log(x) = (x — 1)_(96—21)2 L= @=Dt

3 4

Using the above formula write a C program to compute the value of log(x) at
x = 1.4 accurate up to 4 decimal points. What happens when you compute log(x) at
x = 2.4. Justify the result mathematically (Hint : Find out the radius of convergence
of the series and check that x = 2.4 lies outside the radius of convergence. Any value
beyond the radius of convergence make the series divergent and the condition will
be always true which makes an infinite loop).

Check Your Progress 5.22

Write a program for e* using Taylor expansion about x = 0 and then find out the
value of e. Check that, the program can accurately (up to 4 decimal places) estimate
any value of e* where x € R (real number) as the radius of convergence is (—oo, o).

Hint : The formula for Taylor expansion of f{x) centered at x = a is given by

3 3
@ =fa+ L “)1 dzf()(x “’2 + L @By

128 NSOU e CC-MT-06

5.4 Summary

A program is usually not limited to a sequence of simple instructions. During
its process it may require to select a specific path based on certain condition. C
provides select statement to handle those situations. Often program may repeat
execution of a part of code more than once depending upon the requirements. For
that purpose, C provides repetitive statements. In this unit, different select statements
like if, if-else, switch and repetitive statements like while, do-while and for have been
discussed with different scenarios. Different types of jumps like break, continue and
goto statements have also been illustrated with many examples by which the control
can leave a loop even if the condition for its termination is not fulfilled. All the
further topics are heavily dependent on these constructs of C, and therefore it is
mandatory for the learners to understand these topics completely.

5.5 References and Further Reading

1. The C Programming Language, Kernighan & Ritchie, PHI Publication, 2011

2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,
2003.

3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata McGraw
Hill, 2002.

4. C Programming : A Modern Approach, Second Edition, K.N. King, W. W.
Norton & Company, 2008.

5. Computer Science : A Structured Programming Approach Using C, Second
Edition, Behrouz A. Forouzan, Richard F. Gilberg, Brooks/Cole Thomas
Learning, 2001.

6. The C Primer, Leslie Hancock, Morris Krieger, McGraw Hill, 1983.

Unit - 6 Q Arrays

Structure
6.0 Introduction
6.1 Objectives
6.2 One Dimensional array
6.2.1 Array Declaration
6.2.2 Array Subscripting
6.2.3 Array Initialization
6.2.4 Sorting the Elements of an Array in Ascending Order
6.3 Multidimensional array
6.3.1 Physical View and Logical View of an Array
6.3.2 Initializing Multidimensional Array
6.4 Summary
6.5 References and Further Reading

6.0 Introduction

The basic datatypes int, char, float and double has been discussed in unit 3.
These data types are known as scalar type as they are capable of holding single data
item. In some situations, using scalar data type makes the coding tedious and
inefficient. For example, consider a program which read 5 integers and display them
in reverse order. One obvious way to solve this is by writing the program in the
following way :

int main()

{

int a, b, ¢, d e

printf(“Enter the numbers”);
scanf(*“%d%d%d%d%d”, &a, &b, &c, &d, &e);
printf(*\n%d %d %d %d %d”, e, d, ¢, b, a);
return 0;

}
129

MATH (CC-MT-06)—9

130 NSOU e CC-MT-06

Since the int datatype can store a single integer at a time, five different integer
variables have been created. All these names of variables need to be remembered for
further operations. It will be a nightmare for the programmer if the program contains
more than 100 variables or so. To get rid of this issue C provides aggregate variables

which can store collection of values. There are following two kinds of aggregates in
C:

> Arrays
> Structures

The array can store multiple data items of homogeneous or same type. For
example, marks of all 50 students of a class can be stored in an array. On the other
hand, structure can store multiple data items of heterogeneous or different types. For
example, Different attributes of a student like roll-no, name, address, department,
marks etc. can be stored in a structure. The array will be discussed in detail in this
unit. Discussion on structure is beyond the scope this syllabus. Arrays are of
following two types :

>> One dimensional array

>> Multi-dimensional array

6.1 Objectives

After going through this unit the learner will be able to :

>> Declare and use arrays of one dimension;

> Initialize arrays;

> Use subscripts to access individual array elements;
> Write programs involving arrays;

> Do searching and sorting; and

>> Handle multi-dimensional arrays.

6.2 One Dimensional array

One dimensional array has a single dimension, therefore, the elements of the
array are conceptually arranged one after another either in a row or a column. The
one dimensional array named a with 5 elements is drawn in Figure 6.1.

NSOU e CC-MT-06 131

2 | | | | | |

al0] a[l] a[2] a[3] a[4]

Figure 6.1
6.2.1 Array Declaration

Before using an array, it must be declared like most of the other C objects. To
declare an array, following two things need to be specified.

> Type of the array elements

> Size of the array or number of elements in the array.

For example, int a[5] declares an array which can store 5 integers.

6.2.2 Array Subscripting

A particular array element can be accessed by the array name followed by an
integer value in square bracket (known as subscripting or indexing the array). In C,
the array elements are indexed from O to n-1 instead of 1 to n. For example, the
elements of array a with 5 elements in Figure 6.1 are designated by a[0], a[1], a[2],
a[3], a[4]. Expressions are of the form a[i] and can be used in the same way as
ordinary variables :

a[0] = 4;
printf(“%d\n”,a[5]);
++a[i];

The important point that needs to be noted is that it is the responsibility of the
programmer to stay inside the subscript bounds (0 to n-1 for array of size n elements)
while writing the program. If the subscript goes out of range, the program behavior
is undefined; sometimes it may work and sometimes not. Array subscript may have
only integer expression. The program fragment written in Table 6.1 illustrate this
fact. An array of size 10 is declared in line 4.

The line no 6 in the left side of Table 6.1 shows that array index can be an
integer expression. When floating expression is used in line 6 in the right side of
Table 6.1 the compiler throws error.

132 NSOU e CC-MT-06

L:#ne Code L:#ne Code
1 #include<stdio.h> 1 #include<stdio.h>
2 int main() 2 int main()
3 { 3 { Error
4 int a[10]; 4 int a[10]; /
5 a[3]=5; 5 a[3]=5;
6 a[2*3]=3; 6 CGa[2*3.0]1=3>
7 7 printf("%d\t%d",a[3],a[6]);
8 printf("%d\t%d",a[3],a[6]); | 8 return 0;
9 return 0; 9 }
}
Output
Output L., Message
s 3 = Build file: "no target" in "no proje
In function 'main':
6 error: array subscript is not an integer
= Build failed: 1 error(s), 0 warning(
Table 6.1

6.2.3 Array Initialization

In C, an array can be initialized at the time of declaration like any variable. The
most common way of initializing an array is assigning a list of constant expressions
enclosed in braces and separated by commas. For example,

int a[5] = {1, 2, 3, 4, 5};
If the initializer is shorter than the size of an array, then the remaining elements
of the array are given the value O if the type of the array is int, float or double and

null character if the type of the array is character. This is shown in the program
output in Table 6.2.

#include<stdio.h>

int main()

{
int a[5]={1,2,3};
printf("%d\t%d\t%d\t%d\t%d",a[0],a[1],a[2],a[3],a[4]);
return O;

}

NSOU e CC-MT-06 133

Output
1 2 3 0 0

Table 6.2
All the elements of an array can be reset to zero using this feature.
int a[5]={0};

Sometimes it is necessary to initialize very few elements of an array and most
of the other elements are defaulted to zero. In that case, C uses designated initializer.

Suppose following array in Figure 6.2 has only two non-zero elements (5" and
11th),

alolololols]ololofolo[8[o[o]o]o]
a[0] a[4] a[10]

Figure 6.2

For a large array like this it is very tedious and error prone to initialize each
element separately. In this situation, the designated initializer can solve the problem
very easily. For example, to initialize the array by two non-zero number in 4th and
10t position the following code is sufficient

int a[15] = {[4] =5, [10] = 8};

Each number in bracket is said to be designator. The other elements are
automatically given the value zero. The designated initializer has another advantage.
Initialization doesn’t depend on the order in which the elements are listed. Therefore,
to initialize the array in previous example, following statement also can be used :

int a[15] = {[10] = 8, [4] = 5};
An initializer may use both element by element technique and designated
technique. For example, if the statement,
int a[5] = {1,3,[2] =5, [3] = 9,7}
is used to initialize the array then compiler executes following step by step process :
1. 1st element (a[0]) is initialized by 1; next element to be initialized is a[1].
2. 2nd element (a[1]) is initialized by 3; next element to be initialized is a[2].

3. Designator [2] initializes 3rd element (a[2]) to 5; next element to be initialized
is a[3] (index next to previously initialized index).

134 NSOU e CC-MT-06

4. Designator [3] initializes 4th element (a[3]) to 9; next element to be initialized
is a[4].
5. 5th element (a[4]) is initialized by 7 and process stopped at the end of the list.

At the end, the array becomes

al Ut [3 | 5 [9 [7]
al0] a[l] al2] al3] a4]

Example 6.1

Using designated initializer one can initialize an element more than once.
Consider the following array declaration :

int a[5] = {1,3,4,[2] = 5, 8,[3] = 9,7};
Is the declaration legal? If so, what is the final content of the array?
Solution :
Step1,2,3:

1, 3, 4 initializes the elements a[0], a[1] and a[2] respectively in first three steps.
After the third step, the next element to be initialized is a[3] or the 4th element of
array.

a | 1 | 3 | 4 [uninitialized | uninitialized |
al0] a[l] a[2] a[3] a[4]

Step 4 :

The designated initializer [2] force the compiler to initialize a[2] again, even
though it is initialized already. Because of this re-initialization the value 4 is replaced
by value 5 in a[2]. The next element to be initialized is the one following the element
that was last initialized which is a[2].

a | 1 | 3 | 5 | uninitialized | uninitialized |
a[0] a[l] a[2] a[3] a[4]

Step S :

8 initializes a[3] and next element to be initialized is a[4].

a | 1 | 3 | 5 | 8 | uninitialized|
a[0] a[l] a[2] a[3] a[4]

NSOU e CC-MT-06 135

Step 6 :

Now even though the element a [4] is supposed to be initialized, the compiler
is forced to initialize a[3] because of the presence of designated initializer [3]. a[3]
is now re-initialized to 9 and the next element to be initialized is a[4].

a | 1 | 3 | 5 | 9 | uninitialized|
a[0] a[l] a[2] a[3] a[4]

Step 7 :

Element a [4] is initialized to 7 and the initialization process terminates.
Therefore, the final content of the array is

a [1 | 3 | s [9 [7]
al0] a[l] a[2] a[3] a[4]

The actual result is given in Table 6.3.

#include<stdio.h>
int main()

{

int a[5]={1,3,4,[2]=5,8,[3]=9,7};
printf("%d\t%d\t%d\t%d\t%d",a[0],a[1],a[2],a[3],a[4]);
return 0;

}

Output
1 3 5 9 7
Table 6.3

Example 6.2

Write a program that prompts the user to provide five numbers and display the
numbers in reverse order.

Solution :

In this case, array can’t be initialized by any of the previous initialization
method as the numbers are unknown and user provides them at the runtime.
Therefore, the program should have the provision to ask for the number to the user
repeatedly for five times and store them one after another in the array. This could be
achieved easily using any of the loop techniques discussed in the previous unit.
Table 6.4 illustrates the way of initializing array elements using while and for loop.
The scanf function stores the value entered by the user in the location specified by
&a[i] (ith location of the array a). Every time when the control enters into the loop

136 NSOU e CC-MT-06

the value is stored into the array element. Another point is to be observed is that the
loop index starts from O (not 1) and end at 4(<5) which satisfy the subscript bound
mentioned earlier. Though either of the loops in Table 6.4 can be used while
inserting data into or retrieving data from the array, the for loop is more frequently
used. Now to retrieve the data in reverse order the loop index starts from the highest
value 4 and gradually decreases to zero as following :

for (=4 ; >=0 ; i--)

{
printf(“%d\t”, a[i]);
}
Initialization using while loop
Code Output
#include<stdio.h>
int main()
{
int a[5],1=0;
while(i<5) Enter the element at 0: 4
{ Enter the element at 1: 5
printf("\nEnter the element at %d: ",i); | Enter the element at 2: 8
scanf("%d",&al1]); Enter the element at 3: 2
i++; Enter the element at 4: 3
}
return 0;
}
Initialization using for loop
Code Output
#include<stdio.h>
int main()
int a[5],i=0; Enter the element at 0: 4
for(i=0;i<5;i++) Enter the element at 1: 5
Enter the element at 2: 8
printf("\nEnter the element at %d: ",i); | Enter the element at 3: 2
scanf("%d",&ali]); Enter the element at 4: 3
}
return 0;
}

Table 6.4

NSOU e CC-MT-06 137

The program written in Table 6.4 has a major drawback. Since the array is of
fixed size 5, the user can only enter at most 5 numbers. To solve this issue, the array
must be of variable length size. Unfortunately, the variable length array is only
defined in C99 standard. In C99 standard, the program asking for an arbitrary
number of values from user is written in Table 6.5.

Line # Code
1 #include<stdio.h>
2 int main()
3014
4 int i,n;
5 printf("Enter the no of elements: ");
6 scanf("%d",&n);,
7 int a[n];
8 for(i=0;1<n;i++)
9 {
10 printf("\nEnter the element at %d: ".1);
11 scanf("%d",&al1]);
12 }
13 return 0;
14 |3

Table 6.5

The program must declare the array a[n] after the initializing variable n (line 7
of Table 6.5), otherwise program throws either compilation or runtime error. For C98
compiler, the method doesn’t work as the compiler can’t allocate memory for the
array at runtime (static memory allocation).

There are two alternative ways to solve this problem in C98 compiler which the
programmer often uses. They are following :

> Use a simple macro: This method doesn’t solve the static memory
allocation problem completely but of course gives a better solution than the
program given in Table 6.4.

> Use system defined function for dynamic memory allocation : This method
completely solves the static memory allocation problem. This method
mainly uses pointers and therefore, beyond the scope of this syllabus.

Use a simple macro

The definition of simple macro has the form :
#define identifier replacement-list

138 NSOU e CC-MT-06

A macro’s replacement-list may include identifiers, keywords, numeric constants,
character constants etc. When a program encounters a macro definition, the
preprocessor (section 2.2.3) makes a note that identifier represents replacement-list,
wherever identifier appears later in the program, preprocessor substitute the
replacement-list. With this new definition, let us now analyze the program given in
Table 6.6.

Line # Code
1 #include<stdio.h>
2 #define n 5
3 int main()
4 |
5 int a[n].i;
6 for(i=0;1<n;i++)
7 {
8 printf("\nEnter the element at %d: ".1);
9 scanf("%d",&al1]);
10 }
11 return 0;
12 }

Table 6.6

Before compiling the program, the preprocessor replaces the identifier n by 5
(replacement list) in all places inside the main. Therefore, after unfolding the macro
defined in line 2 (Table 6.6) the program looks like :

Line # Code
1 #include<stdio.h>
2 int main()
30 H
4 int a[5].1;
5 for(i=0;1<5;i++)
6 {
7 printf("\nEnter the element at %d: ".1);
8 scanf("%d",&al1]);
9 }
10 return O,
11 }

NSOU e CC-MT-06 139

and creates an array of 5 elements entered by the user. Whenever user wants to have
more numbers, they just need to change the value of n in macro definition at line no
2 of Table 6.6. The complete program of reversing the elements of array and the
output is given in Table 6.7.

Code Output
#include<stdio.h>
#define n 5 Enter the element at 0: 5
int main() Enter the element at 1: 6
{ Enter the element at 2: 1
int a[n].i; Enter the element at 3: 9
for(i=0;i<n;i++) Enter the element at 4: 3
{ You have entered
printf("\nEnter the element at %d: "), | _ _ _ _ _ _ _ _ _ _ _ _
scanf("%d",&ali]); 5 6 1 9 38
} The reversed numbers are
printf("\nYou have enteredwn"); | __ _ _ __ __ _ _ _ __ _ _
printf(" \n"); 3 9 1 6 5

for(i=0;1<n;i++)

printf("%d ",a[i]);
printf("\nThe reversed numbers are\n");
printf(" \n");
for(i=n-1;1>=0;i--)

printf("%d ",a[i]);
return 0;

Table 6.7

Example 6.3

Write a program that prompts the user to enter an arbitrary number of integers
in an array. Display the maximum of the integers.

Solution :

Entering an arbitrary number of integers is already discussed in previous
example. Now to display the maximum of the given integers in an array a, following
steps are needed :

140 NSOU e CC-MT-06

1. Store the 1st element (a[0]) of the array into an integer variable named max.

2. Compare the next array element with the value of the variable max. Replace
the value of max by the array element if max is less than the array element.

3. If no more array element is there to compare then stop the process and print
max is the maximum value, otherwise go to step 2.

The flowchart of the above step by step process is given in Figure 6.3.

[max=a[0], i=1]

No
> i<n
1++
A
No
L ——
A Yes
[max=al[i]]

v
/ Print max ;

Figure 6.3

NSOU e CC-MT-06 141

The program and its output which follows the flowchart are given in Table 6.8.

#include<stdio.h>
#define n 5
int main() Enter the element at 0: 3
{ Enter the element at 1: 2
int a[n],i,max; Enter the element at 2: -9
for(i=0;i<n;i++) Enter the element at 3: 14
{ Enter the element at 4: 3
printf("\nEnter the element at %d: ",i); The maximum number is 14
scanf("%d",&al1]);
}
max=a[0];
for(i=1;i<n;i++)
if(max<a[i])
max=al[i];
printf("\nThe maximum number is %d",max);
return O,
}

Table 6.8
Check Your Progress 6.1

Write a program that prompts user to enter n floating point numbers in an array.
Display the sum of the numbers.

Check Your Progress 6.2

The Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13,where each number is the
sum of two preceding numbers. Write a program that declares an array named
fib numb of length 40 and fills the first 40 Fibonacci numbers. Hint: Fill in the first
two numbers individually, then use a loop to compute the remaining numbers.

Check Your Progress 6.3

Write a program that can display the digit which is repeated (if any) in a given
number.

Sample output :

Enter a number : 343834

Repeated digits : 3(3 times) 4 (2 times)

Hint : Use an array a of 10 elements where a[i] denotes the number of times the
digit is repeated in the given number.

142 NSOU e CC-MT-06

Check Your Progress 6.4

—4 2
Consider two vectors a=| 5 | and »=|—-1|. Write a program which can
3 0

display the vector sum of these vectors. Hint : Use array for every vector.
6.2.4 Sorting the Elements of an Array in Ascending Order

Let us consider an array a which contains following 6 elements :

a6] 1 | 5 | 9 | 3 | 2 |
af0] afl] af2] af3] al4] a[5]

Several algorithms can be designed to sort these elements in assending or
descending order. One of such algorithms, known as bubble sort is very popular and
simple algorithm which is used to sort a given set of elements stored in an array.
Bubble Sort compares all the elements one by one and sort them based on their
values.

If the given array has to be sorted in ascending order, then bubble sort will start
by comparing the first element of the array with the second element, if the first
element is greater than the second element, it will swap the elements, and then move
on to compare the second and the third element, and so on.

If the array contains total n elements, then the above process will be repeated
for n-1 times in the first iteration. The buble sort algorithm is given in Table 6.9.

1. Start

2. Read » elements in the array a

3. [Initialize] i <0

4. Repeat step 5 through 10 until i <n—1

5. [Initialize] j <0

6. Repeat step 7 through step 11 until j<n-i-1
7. 1f (a[j]1> a[j+1]) then go to step 8 otherwise go to step 9
8. [Swap] d[j] <> a[j+1]

9. j«j+1

10. i «i+1

11. Print the array a

12. Stop

)

dooT 1010
doo 1ouug

(

Table 6.9

NSOU e CC-MT-06 143

Let us apply the algorithm to sort the numbers stored in array a[6]. The algorithm
in Table 6.9 has two loops. Line 4 to 10 and Line 6 to 9 form the outer and inner loop
respectively. The outer loop index 1 is initialized to 0. For each value of 7, the inner loop

Value
i | J

The Array Configuration

—

@@5932::>165932

010]

—

0|1 1[®G[9]3][2|=[1[5]6[9[3]2

t

—

0| 3 1 [5/6O[2|=[1[5[6[3]9]2

]

Step3: Compare a/fj] and afj+1]. Since 9>3, swap 9 and 3

—

0| 4 1563@@.::>156329

t]

Step3: Compare a/j] and a/j+1]. Since 9>2, swap 9 and 2

Table 6.10

is executed for n-i-/ times. Table 6.10 shows the array elements while executing the
inner loop for the value of outer loop index i = 0. The inner loop runs for 5 (n-i-1)

144

times. Table 6.10 also shows that the largest element (9) is placed at the end (a[5]) of
the array after completion of the inner loop. As a next step, the value of the outer loop
index 7 is incremented and the inner loop execution starts for 7 = 1. This time the second
largest element (6) of the array is placed at a[4]. Therefore, every complete iteration of
the inner loop finally places the largest element in its appropriate position in assending
order. Once the outer loop completes its execution the array is completely sorted. Table
6.11 illustrates the algorithm for other values of outer loop index i. The C implementation

and the output of the algorithm is given in Table 6.12.

Value of i Array configuration while execution of the inner loop
DIG[6[3[2[9=[1I0I@[3[2][9|={1]5]®B[2]9]
No swap No swap Swap 6 and 3
! . l
Lils]3[2]6[9fk=[1][5]3]®D]9]
Inner loop ends Swap 6 and 2
The elements at a/4] and a/5] are sorted.
DIG[3[2][6[9F=[1I0[2][6][9|={1[3]0®[6]9]
No swap Swap 5 and 3 Swap 5 and 2
2
HK_H
[1[3]2]5[6]9]
Inner loop ends
The elements at a/3/,af4] and a[5] are sorted.
—
D3[2[5]6[9={1IBl@]5]6]9]—{1]2][3][5]6]9]
3 No swap Swap 3 and 2 Inner loop ends
The elements at a/2], af3], a[4] and af5] are sorted.
/_}%
(D23 [5[6]9=(1]2]3][5[6]9]
4 No swap Inner loop end
The elements at a/l/, af2], af3], af4] and a[5] are sorted. The
remaining element a[0] is the lowest element in the array, located at
the begining, therefore the entire array is sorted in ascending order.

Table 6.11

NSOU e CC-MT-06

NSOU e CC-MT-06 145

The algorithm in Table 6.9 is known as bubble sort, because it bubbles up the
largest element towards the last place or the highest index, just like a water bubble
rises up to the water surface.

C implementation of Bubble sort algorithm

#include<stdio.h>
#define n 6
int main()

intaln]=4{6,1,5,9,3,2},1,], temp;
/* Display the given Array */

printf ("\nThe given array is\n");

printf (" \n");
for (i=0 ; i<n ; i++)

printf ("%d\t", a[i]);

/* Bubble Sort Algorithm */

for (i=0 ; i<n-1 ; i++)

2

for =0 ; j<n-i-1 ; j++)

/* Swap the elements if a[j]>a[j+1] */
if(afj] > a[j+1])
{

temp = afj];
alj] = a[j+1];
a[j+1] = temp;

}
}

}

/* Display the Sorted Array */

printf ("\n\nThe sorted array is\n");

printf (" \n");
for (i=0 ; i<n ; i++)

printf ("%d\t", a[i]);

return 0;
}

Output :

The given array is

6 ___1___56 ___9_ __38____2

The Sorted array is

i___2_ __ 3 ___5___6____9
Table 6.12

MATH (CC-MT-06)—10

146 NSOU e CC-MT-06

Check Your Progress 6.5

Modify the code for bubble sort algorithm given in Table 6.12 to sort the array
elements in descending order. Use the modified algorithm to sort the following array
of 8 elements.

5 14 67 | 103 11 0 27 45

Check Your Progress 6.6

Assume the following elements of array are sorted in descending order.

9 6 4 2 1 0

How many times the swapping will take place if the algorithm in Table 6.9 is
used to sort the elements in descending order.

6.3 Multidimensional array

Arrays having more than one dimension are known as multidimensional array.
To understand the multidimensional array, let us consider about a car manufacturer
company having four different stores across the city to sell three different brands of
cars. The management of the company want to capture the sell amount to analyze the
performance of individual stores. Multidimensional array can be used to design the
above model. Each row of the array represents a store and each column represents
a specific brand of car. Figure 6.4 shows an array a[4][3] which stores the car selling
information of the company.

Brand 1 Brand2 Brand 3 j=0 j=1 ;=2
Store 1 8 7 12 =0 | 8 7 112
Store 2 2 3 2 =1 2 | 3|2
Store 3 0 19 5 —> =2 0 [19]5
Store 4 5 0 4 =3 5[0 4
Car Sell Information a[4][3]
Figure 6.4

The array a is an example of two dimensional array as it has exactly two
dimensions store and brand. To access the element of the array a in row 1 and column

NSOU e CC-MT-06 147

j, one must write a[i][j]. If one more dimension say, year is added to the model
(Figure 6.5) then a three dimensional array will be needed to store the information.
The model in Figure 6.5 can be represented by an three dimensional array b[4][3][3].

Most of the topics of this unit has been explained considering the number of
dimensions as two, nevertheless it is easy to extend all of them in case of more
dimensions.

8 '/ Z
Store g 139 ? Year
S——01 4,
Brand
Figure 6.5

6.3.1 Physical View and Logical View of an Array

Although the two dimensional arrays are visualized as tables, that is not the way
they’re actually stored in computer memory. C stores arrays in row major order, with
row O first, then row 1, and so forth. For example, Figure 6.6 shows how array a
in Figure 6.4 is stored.

8 7 12 2 3 2 0 19 5 5 0 4

a[0][0] a[O][1] a[O][2] a[l][0] a[l][1] a[l][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3](1] a[3](2]
Figure 6.6

The array a[4][3] needs 12 (4x3) contiguous location in the memory. Now the

indexing of these 12 elements defines the row and column number while inserting

elements into the array locations. For example, Table 6.13 shows the C program to
insert integers into the array of size 12 and display them in the form of a 4x3 matrix.

Let us analyze the program to understand array indexing technique. At line 4,
once the array is declared, 12 consecutive memory location is allocated to the array.

148

The program uses two loop index i and j. The outer loop index i is used for the rows
and the inner loop index j is used for the columns. Table 6.14 shows the step by step
process how the array index is constructed using the C instructions given in line

6to 13.

{

#include<stdio.h>
int main()

int a[4][3],1];
printf("Enter array elements\n");
for(i=0;1<4;i++)/* Array inserts*/
{
for(j=0;j<3;j++)
{
printf("Enter the number: ");
scanf("%d", &al1][j]);

}
}
printf("\nThe array in matrix form\n"),
printf(" \n");

for(i=0;i1<4;i++) /* Array display */
{

for(j=0;j<3;j++)

{

printf("%ed ",ali][j]);

}

printf("\n");
}

return 0;

Enter array elements
Enter the number: 1
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:
Enter the number:

PO PRL,O - ~NODORL,WDN

The array is matrix form

Table 6.13

NSOU e CC-MT-06

NSOU e CC-MT-06 149

Step | Value of i Value of j scanf(“%d”,a[i][j]); d

1 0 scanf(*%d”.a0][0D: |~ Index = Data

2 0 1 scanf(“%d”,a[0][1]); \“[0] o] 1

3 2 scanf(“%d”,a[0][2]); \a[O][l] 2
Inner loop ends , i incremented to 1, j is reset to 0 a[0][2] 3

I O | I

od ,a N

6 2 Scanf(“%d”,a[l][Z]); \a[l][l] 9
Inner loop ends , i incremented to 2, j is reset to 0 a[1][2] 8

7 0 scanf(“%d”,a[2][0]); |=————p-a[2][0] | 7

8 2 1 scanf(“%d”,a[2][1]); |~ a[2][1] 1

9 _ 2 Sca.n.f(“%d”,a[Z][2]); —— a[2][2] 0
Inner loop ends , i incremented to 3, j is reset to 0 3170 1

10 0 scanf(“%d”,a[3][0]); |—— 431101

11 3 1 scanf(“%d”,a[3][1]); p=———>al31[1]| O

12 2 scanf(“%d”,a[3][2]); | = a[3][2] 4

Table 6.14

The important point that needs to be noted is that in each step while inserting
data into the array the array index entry is created. As far as the physical construction
in concerned, array is still a 12 contiguous memory locations after the insertion of
data. The code actually creates the index in such way, so that the array can be
displayed in the format required by the user only using the loop index variable 1 and
j. For example, Table 6.9 illustrates this fact in line 16-23 while displaying the
elements. For a fixed value of 1 in the outer loop, the program prints the entries in
afi][j] for all j using inner loop. Once the inner loop is terminated, a new line is
printed (line 22) before entering into outer loop for the next value of 7. This new line
character differentiates two rows when the array is displayed in matrix form.

6.3.2 Initializing Multidimensional Array

Initializer can be created for a two dimensional array by nesting one dimensional
initializers. For example, the two dimensional array « in Figure 6.4 can be initialized
by the following statement :

int a[4][3] = {{8, 7, 12}, {2, 3, 2}, {0, 19, 5}, {5, 0, 4}};

Each inner initializer provides values for one row of the array. Initializers for
higher dimensional arrays can be constructed in similar fashion. Following rules are
applicable while initializing a large array :

150 NSOU e CC-MT-06

1. If an initializer is not large enough to fill a multidimensional array, the
remaining elements are given the value 0. For example, the initializer in
Table 6.15 fills only the first two rows of a; the last row will contain all 0’s.

Code Output
#include<stdio.h>
int main()
{

int a[3][3]={{1,4,3},{0,1}},1,j;
printf("The array is\n");
printf("---------emmem-- \n"); The array is
for(i=0;i<3;i++) | ——————-———————

1 4 3
for(j=0;1<3;j++) 0 1 0
{ 0 0 0

printf("%d ".a[i][j]);
}
printf("\n");

return 0;

Table 6.15

2. If the inner list is not long enough to fill a row, the remaining elements are
initialized to 0. For example, the initializer used in line 4 of the C program
in Table 6.15 has only two elements in 2nd row. The 3rd element is
initialized to O by default.

Check Your Progress 6.7

Write a program that declares an 8x8 char array named checker board and then
uses a loop to store the following data into the array (one character per array
element) :

W R W R W R W
PAREW AW R DR
W R W R W R W
PAREW AW R DR
W R W R W R W
PAREW AW R DR
W R W R W R W
PAREW AW R DR

NSOU e CC-MT-06 151

Hint : The element in row i, column j, should be the letter B if i + j is an even
number.

Check Your Progress 6.8

Write a program that generates an nxn identity matrix. Use for loop to initialize
the matrix instead of initializer.

Sample Output :
Enter the value of n: 3
The 3x3 identity matrix is :

o O =
S = O
—_— o O

6.4 Summary

C uses arrays to describe a collection of variables with identical (homogeneous)
properties. The group has a single name for all its members, with the individual
member being selected by an index. This unit shows the basic purpose of using an
array in the program, declaration of array and assigning values to the arrays. All
elements of the arrays are stored in the consecutive memory locations. Without
exception, all arrays in C are indexed from O up to one less than the bound given
in the declaration. One important point about array declarations is that they don't
permit the use of varying subscripts in C98 standard. The numbers given must be
constant expressions which can be evaluated at compile time, not run time (static
memory allocation). Though this limitation is not there in C99 compiler which
supports varying length array. The unit also explains the techniques of declaring,
initializing, accessing multi-dimensional arrays.

6.5 References and Further Reading

1. The C Programming Language, Kernighan & Ritchie, PHI Publication, 2011.

2. Programming with C, Second Edition, Byron Gottfried, Tata McGraw Hill,
2003.

152 NSOU e CC-MT-06

3. The C Complete Reference, Fourth Editon, Herbert Schildt, Tata McGraw
Hill, 2002.

4. C Programming : A Modern Approach, Second Edition, K.N. King, W. W.
Norton & Company, 2008.

5. Computer Science: A Structured Programming Approach Using C, Second
Edition, Behrouz A. Forouzan, Richard F. Gilberg, Brooks/Cole Thomas
Learning, 2001.

6. The C Primer, Leslie Hancock, Morris Krieger, McGraw Hill, 1983.

Unit - 7 O Application of C Programming : Solution
of Non-Linear Equations

Structure
7.0 Introduction
7.1 Objectives
7.2 Bisection Method
7.2.1 Method Description
7.2.2 Algorithm and Implementation Issue :
7.2.3 Implementation : Bisection Method
7.3 Regula-falsi Method or Method of false-position
7.3.1 Method Description
7.3.2 Algorithm and Implementation Issue :
7.3.3 Implementation : Regula Falsi Method
7.4 Secant Method
7.4.1 Method Description
7.4.2 Algorithm and implementation Issue :
7.4.3 Implementation : Secant Method
7.5 Newton Raphson Method
7.5.1 Method Description
7.5.2 Algorithm and Implementation Issue :
7.5.3 Implementation : Newton Raphson Method
7.6 Summary
7.7 References and Further Reading

7.0 Introduction

You cannot teach a man anything; you can only help him discover it in himself. —
—Galileo

This unit is designed to show the usage of C programming in solving non-linear
equations using different techniques which are taught in the undergraduate
mathematics, engineering and other relevant courses. Therefore, the learners are

153

154 NSOU e CC-MT-06

expected to have solid background of basic calculus. As a prerequisite, the learner
needs to revisit the Calculus - CC3 taught in first semester and Numerical analysis
- CCS5 taught in third semester of Bachelor Degree Program in Elective Mathematics
(EMT) under Netaji Subhas Open University.

The main objective of this unit is to find the roots of the equation of the form

fx)=0 (7.1)
i.e., zeros of the function f (x). In most of the cases it is very difficult to obtain an exact
root of the equation (7.1). Therefore, it is quite natural to seek for a solution which is
approximate in nature. The approximate solution may then mean either a point x*, for
which equation (7.1) is approximately satisfied, i.e., for which | £ (x")| is small, or a
point x* which is close to a solution of (7.1). Moreover, an approximate solution
obtained on a computer will almost always be in error due to round off or instability or
due to the particular arithmetic used. Indeed, there may be many approximate solutions
which are equally valid even though the required solution is unique. This is definitely
a drawback of using computer while solving non-linear equations, nevertheless, the
computational techniques have become indispensable for solving complex numerical
problems in modern days because of its speed and memory capacity. A number of
iterative methods to find out the approximate solution of the equation 7.1 will be
discussed in this unit. These methods have the following basic strategy :

Step 1 : Guess an initial solution

Step 2 : If the solution achieve the desired accuracy then stop the process,
otherwise go to next step.

Step 3 : Improve the solution and go to step 2.
The above strategy is iterative as it expects the solution to converge after finite

no of iterations. In this unit, the following iterative methods will be discussed in
detail :

> Bisection method

> Regula falsi or False-position method
> Secant Method

>> Newton Rapson Method

7.1 Objectives

After going through this topic, the learner should able to

> Explain the difference between closed domain (bracketing methods) and
open domain methods (non-bracketing methods)

NSOU e CC-MT-06 155

> Use parameterized macro

> Explain how the internal halving (bisection) method works

> Wirite C program for bisection method

> Explain how the false position (regula falsi) and secant methods work
> Write C program for regular falsi and secant methods

> Explain how Newton Raphson method works

> Write C program for Newton Raphson method

> Visualize different methods and theorem with the help of graphs and data.

7.2 Bisection Method

The first technique used here is known as bisection method which is based on
intermediate value theorem.

7.2.1 Method Description

Suppose fis a continuous function defined on the interval [a, b], with f(a) and
f(b) of opposite sign. The intermediate value theorem implies that a number p exists
in [a, b], with f(p) = 0. Even though the procedure will work for the equation having
more than one root, for simplicity let us assume the root is unique in the interval [a,
b]. The method calls for a repeated halving (or bisecting) of subintervals of [a, b],
and, at each step, locating the half containing p. Even though the bisection method
can’t find the root if f(a) and f(b) of same sign but that doesnot necessarily mean
that the equation has no root. In those cases, the equation may have even number of
roots (Figure 7.1).

RIAN
/

roots

v

Figure 7.1

156 NSOU e CC-MT-06

Let us illustrate this with an example of a simple polynomial equation
f)=x3-x-3 (7.2)
with an initial interval [a;, b;] where a; = 1 and b, = 3.

It can be seen that, f (1) =-3 <0 <f(3) = 21.Since f (x) is continuous, f (x) must
vanishes in the interval [1, 3]. Now the interval [1, 3] will be divided into two equal
parts. To do that, let us find out the midpoint of the interval p; = 2. So the new
intervals, those need to be investigated for the desired root, are [a;, p;] = [1, 2] and
[Py, b;]1 =[2, 3]. Now according to the method the interval needs to be chosen in such
a way that the values at two end points are of opposite signs. Clearly, the next
interval [1, 2] needs to be investigated since /(1) = -3 and f(2) = 3 are of opposite
signs. Therefore, the new value of left end point is a, = 1 and new value of right end
point b, = 2 in the next iteration. Now the same interval halving process is to be
continued until the condition f (p;) = O is satistied. The value of f(p,) is decreasing
at every iteration and finally becomes 0. Mathematically speaking, the sequence
J@D. f@). f@3), oo , f (p,) converges to limit O as 7 — oo. In that case, p,, is
the desired root. Figure 7.2 illustrates this process up to third iteration using the
graph of the function f(x) = x* — x — 3.

a3 p3 b3
1 1

Figure 7.2

NSOU e CC-MT-06 157

Here the algorithm terminates when the value f (x) is close to zero (not exactly
zero) even when the solution exist. This is because of the limited precession of the
floating point numbers while representing them in binary format. For example, the
number 0.1 can’t be represented exactly in binary (similarly as fraction !/; can’t be
represented exactly in decimal). Therefore, floating points are normally rounded off
to the nearest value while arithmetic operations are performed on them. This
generates a certain amount of error which may finally be quite large and produce
different result than the actual one. Because of this, instead of comparing the values
of two floating point numbers for equality, it is better checking whether their
difference is within some error bound or not. Therefore, the condition f (p;) = 0 needs
to be written as — 001 <= f(p;) <= 0.001 assuming the error bound or accuracy is up
to 2 decimal places in this case.

7.2.2 Algorithm and Implementation Issue :
Algorithm 7.1 : Bisection Method
Input : Function f(x), end points of the interval a, b ; accuracy or tolerance 7.
Output : Approximate solution p or message of failure.

Steps Description

1. Read a, b and t

2. if f(a) and f (b) have same sign, print “root cannot be found’™ and go
fo step 8.

3. if l[f (@) < t then p = a and go to step 8.

4. if [f (b)| < t then p = b and go to step 8.

5. p=a+(b-a/2

6. if f(a) and f (p) have opposite sign then b = p, otherwise a = p.

7. if |[f (p)| > t then go to step 5.

8 Print the root p.

9. Stop.

Other stopping criteria can be applied in Step 6 of Algorithm 7.1 or in any of
the iterative techniques in this chapter. For example, we can select a tolerance ¢ >
0 and generate py, Py, P35 coooveeeieeninn, p, until the following condition is met :

158 NSOU e CC-MT-06

‘pn 7pn71‘ =1 (7°3)

The flow chart of the algorithm is given in Table 7.1. Now to convert the above
algorithm into C program following problems may arise :

1. How to provide a function like f(x) = x> — x — 3 in C program?

2. How to determine the absolute value of a number (integer or floating
point)? Absolute value is required in several places of the algorithm
7.1.

3. At the time of halving the interval, the formula used isp=a+ (b —a)/
2 (Step no 4) instead of p = (a + b) / 2. Is there any benefit of using this
in the context of C?

To solve problem 1, there are several options in C that can be implanted. Among
them functions are one of the best. A user defined function for f(x) = x> — x — 3 can
be designed. Since user defined functions are out of the scope of this syllabus an
alternate way can be applied which is known as parameterized macro. As of now we
used simple macro in previous unit. The macro can also be parameterized.

Parameterized Macro

The definition of a parameterized macro (also known as function-like macro)
has the form #define identifier (x|, x5, x,) replacement list

where x;, X;, ..o x,, are the parameters of the macro. The parameters may
appear as many times as desired in the replacement list. The important point that
needs to be noted that there must be no space between the identifier (macro name)
and left parenthesis. If space is left the processor will assume it a simple macro and
will treat (), xp, x,) as a part of replacement list. Therefore, f(x) = x* — x —
3 can be written using a parameterized macro as the root of the function will be not
found.

#define f(x) x*x*x —x - 3

NSOU e CC-MT-06

159

[Enter a,b,t¢; }

Root not found
Choose different a,b

~

a
<
A

Gk

160 NSOU e CC-MT-06

Example 7.1
What is the output of the program in Table 7.27

Line no Code
1 #include<stdio.h>
2 #define print(n) printf("The value is %d",n)
3 int main()
4 {
5 int i=1;
6 print(i);
7 return 0;
8 }
Table 7.2

Solution :

The program uses a parameterized macro print(n) in line 2 and invoke the macro
from the program using print(i) statement in line no 6. The preprocessor first replace
the macro print(i) by the replacement list printf (“The value is %d”,i) and then the
code is compiled. Therefore, the output becomes “The value is 17,

Example 7.2

What is the value of j and k after executing the following code?

#include<stdio.h>
#define f(x) x+2
int main()
{
int 1=3,},k;
=1,
k=f(i)*5;
return O;

}

Solution :
j = 1))
= 112 [definition of macro f(x)=x+2]
= 3+2 [1=3]
=35
k= f(i)*S
= +2%5 = 3+2*5 =13

NSOU e CC-MT-06 161

It may appear that the value of k=25. But, actually the macro f(i) is not
evaluated at first, rather replaces its definition by i+2. After this replacement the
evaluation starts. Therefore, the value of k finally becomes 13. To get the value of
k is 25, the macro needs to be redefined as #define f(x) (x+2), then k = f(1)*5
=(i+2)*5=(3+2)*5=25.

Example 7.3
Suppose a macro is defined in the following way to represent /' (x) =x3 —x — 3 :
#define f(x) x*x*x-x-3

What is the value of f(1)*(2)? What is the result if the macro definition is
changed to :

#define f(x) (x*x*x-x-3)

To solve the problem 2 in Table 7.1 a new library function is needed. C has
several library functions to determine the absolute value based on the type of the
number for which absolute value is to be determined. Two commonly used functions
are :

> abs(argument)
> fabs(argument)

The abs() function is used when the argument is an integer and fabs() function
is used when the argument is floating point number. In most of the cases in numerical
analysis, the fabs() function is used as it can handle both float and integer. Any
program which use fabs() function, need to add the header file <math.h> as a
preprocessor directive as the fabs() function is defined under <math h> file.

The formula p = a + (b — a) / 2 (Step no 4 in Algorithm 7.1) is used instead of
p =(a+ b)/2toreduce the round off error. For example, consider a machine which can
handle arithmetic calculation no more than 4 digits. Let a = 56.35 and b = 68.27 are two
numbers. To determine the average of these two numbers using the formula (a +) /2,
first the addition takes place. The result of addition (@ + b) will produce a number
124.62 which is rounded to124.6, the nearest 4-digit number. Then after dividing this
result by 2, the average is determined as 62.3. On the other hand, the formula
a+ (b—a) /2. produce the average as 62.31. The later result is more accurate since no
round off error has been produced by the arithmetic operation a + (b — a) /2.

Another important issue of the Algorithm 7.1 is to stop the algorithm when both
f(a) and f(b) are of same sign (Step 1). One way to solve this is to use return

MATH (CC-MT-06)—T11

162 NSOU e CC-MT-06

statement in main function. Another way is to call the exit function, which belongs
to <stdlib.h> header file. Argument passed to exit has the same meaning as main’s
return value: both indicate the program status at termination. To indicate normal
termination O is passed.

exit(0); /*Normal termination®/

In the bisection method, the exit function is used to terminate the program when
f(a) and f(b) are of same sign (Step 1).

When using a computer to generate approximations, it is good practice to set an
upper bound on the number of iterations. This eliminates the possibility of entering
an infinite loop, a situation that can arise when the sequence diverges (and also when
the program is incorrectly coded). Therefore, the do-while loop of the program
contains an additional condition on maximum number of iterations.

The C implementation of bisection method has been given in Table 7.3. The
macro defined in this program uses a C library function pow() which is defined in
the math.h header file. The pow() function takes two arguments (base value and
power value) and, returns the power raised to the base number. For Example, ¥¥ in
mathematics can be used as pow(x, y) in C programming. Therefore, the given
function x3 — x — 3 can be defined by pow(x, 3) — x — 3 using a parameterized macro
in C program. Choosing a =1, » =3, t=0.01, n =20 and f(x) = x> — x — 3, the
above program produces the output which is given in Table 7.4. The output shows
that the root is 1.67 which takes 7 iterations to determine the desired root accurate
up to 2 decimal point. The output numbers in Table 7.4 have only 3 digits after
decimal point. Changing the format of floating point more digits can be accommodated
(refer Section 3.7.1).

7.2.3 Implementation : Bisection Method

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define f(x) (pow(x,3)-x-3) /* Function f(x) */
int main()

{

float a,b,p,t;

NSOU e CC-MT-06 163

int 1=0,n;
printf("Enter the value of a,b,eps: ");
scanf("%f%1%f" &a,&b,&t),
printf("\nHow many maximum no of iterations you need? ");
scanf("%d",&n);,
if (f(a)*f(b)>0) /*Check the initial interval chosen properly*/
{ printf("Root can't be found using bisection method");
exit(0);
}
if(fabs(f(a))<t) /*Checking for root at the left end of initial interval*/
p=a,
else if (fabs(f(b))<t) /*Checking for root at the right end of initial interval®*/
p=b;
else
{ printf("\nlter\t a\t b\t p\t fla)\t f(b)\t f(p)\n");
printf(" \n");
do /*Iterative method to find the root™*/
{ it
p=at(b-a)/2,
printf{("%d\t%6.3f\t%6.31\t%6.31\t%06.31\t%6.31\t%6.3f\n" 1,a,b,p,f(a),
f(b).f(p));
if (f(a)*f(p)<0)
b=p;
else a=p;
+ while (fabs(f(p))>t && i<n);
}
if(i==n)
{
printf("\nExceeds maximim number of iterations"),
exit(0);
}
printf("\n\nThe desired root is %6.2f",p);
return O,

Table 7.3

164 NSOU e CC-MT-06

Enter the value of a,b, eps: 1 3 .01
How many maximum no of iteration you need? 20
Iter a b p f(a) f(b) f(p)

The desired root is 1.67

Table 7.4
Check Your Progress 7.1

Use the program in Table 7.5 to find an approximate value of x accurate up to
5 decimal point in [0.5, 1.5] which satisfy the equation e* — 2 cos(e* — 2). Hint : e*
and cos(x) are written as exp(x) and cos(x) in <math.h>.

Check Your Progress 7.2

Find an approximation to v3 correct up to 4 decimal point using the Bisection
Algorithm. [Hint : Consider f(x) = x> — 3]

Example 7.4

Use the program in Table 7.3 to find an approximate solution (accurate up to
2 decimal point) of the equation (x — 1)!> = 0.

Solution :

The approximate solution must be very close to 1 as the polynomial has factor
(x — 1). Let us run the program in Table 7.5 just by changing the macro definition
of the function. Let us also choose the value of @ = -2 and b = 3 which satisfy the
initial criteria of bisection method. The output is shown in Table 7.5.

Surprisingly, the root produced in Table 7.5 is 0.5 which is far away from the
actual root 1. The algorithm is stopped because at p = 0.5 the value satisfies the
stopping criteria £ (p) = (0.5 — 1)!°> = (-0.5)!5 = 000030517 = 0.

NSOU e CC-MT-06 165

Enter the value of a, b, eps : -2 3 .01
How many maximum no of iterations you need? 20
Iter a b p f(a) f(b) f(p)

1 -2.000 3.000 0.500 -14348907.000 32768.000 -0.000
The desired root is 0.50

Table 7.5

To analyze the problem let us look into the graph of the function f (x) = (x — 1)1
in Figure 7.2. It shows that during the entire interval [0.5, 1.5] the value of the

o
o

o
=]
[4)]
-y
w

&
P

Figure 7.3

function f(x) = (x — 1)!° has the value very close to 0. Therefore, in this case the
stopping criteria |[f (p)| <t will not work. Instead of that, the stopping criteria
p, — P,_1] <1 (given in equation 7.3) may work better here. For this, every time after
entering into the do-while loop the current value of p needs to be compared with
previous value of p. Therefore, two variables p, and p, will be created to denote old
value and current value of p in the program. The modified program is given in
Table 7.6.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define f(x) pow(x-1,15) /* Function f(x) */
int main()

166 NSOU e CC-MT-06

float a,b,p0,pl.t;
int i=0,n;
printf("Enter the value of a,b,eps: ");
scanf("%t%f%f" & a,&b,&t);
printf("\nHow many maximum no of iterations you need? ");
scanf("%d",&n);
if (f(a)*f(b)>0) /*Check the initial interval chosen properly*/
{ printf("Root can't be found using bisection method");
exit(0);
}
if(fabs(f(a))<t) /*Checking for root at the left end of initial interval*/
pl=a;
else if (fabs(f(b))<t) /*Checking for root at the right end of initial interval®/
pl=b;
else
{ printf("\nlter a\t b\t p\t f{a)\t f(b)\t f(p)\n");
printf(" \n");
pl=b; /* p is initialized to right end of the interval*/
do /*Iterative method to find the root*/
{ it
pO=pl; /*p0 contains the previous value of p*/
pl=at+(b-a)/2; /* New value of p */
printf("%d\t%6.3f\t%66.3ft%6.31\t%12.3ft%12.3£1t%6.3f\n" i,a,b,p1,f(a),f(b),f(p1));
if (fla)*f(p1)<0)
b=p1;
else a=pl;
+ while (fabs((p1-p0)/pl)>t && i<n);
}
if(i==n)
{
printf("\nExceeds maximim number of iterations"),
exit(0);
}
printf("\n\nThe desired root is %6.3f",p1);
return 0;

Table 7.6

NSOU e CC-MT-06 167

Now this modified program produces more accurate result as given in the
Table 7.7.

Enter the value of a, b, eps: -2 3 .01
How many maximum no of iterations you need? 20
Iter a b p f(a) f(b) f(p)
1 -2.000 3.000 0.500 -14348907.000 32768.000 -0.000
2 0.500 3.000 1.750 -0.000 32768.000 0.013
3 0500 1.750 1.125 -0.000 0.013 0.000
4 0.500 1.125 0.813 -0.000 0.000 -0.000
5 0.813 1.125 0.969 -0.000 0.000 -0.000
6 0969 1.125 1.047 -0.000 0.000 0.000
7 0969 1.047 1.008 -0.000 0.000 0.000
8 0.969 1.008 0.988 -0.000 0.000 -0.000
9 0.988 1.008 0.998 -0.000 0.000 -0.000
The desired root is 0.998

Table 7.7

Therefore, we can easily conclude that the stopping criteria should include both
P, — P, <tand |[f(p,) <t together to take care of all type of functions.

Check Your Progress 7.3

Use the programs in Table 7.3 and Table 7.6 to find an approximate solution
(accurate up to 2 decimal point) of the equation x2> — 1 = 0 separately with the initial
conditions @ = -4, b = 4 and n = 20. Which program gives more accurate result?
Explain graphically. The graph for the function is given below.

168 NSOU e CC-MT-06

Check Your Progress 7.4

Modify the program of bisection method by including both stopping criteria
P, — P, <tand |[f(p,)| <t where p,, f(p,), t have their usual meaning.

Even though the Bisection method is conceptually simpler, it has significant
drawbacks. It is relatively slow to converge. However, the method has the important
property that it always converges to a solution, and for that reason it is often used
as a starter for the more efficient methods which will be discussed later in this
chapter.

7.3 Regula-falsi Method or Method of false-position

7.3.1 Method Description

The bisection method presented in the last section was based on the procedure
which continuously divides the initial interval until it reaches to the approximated
root. This method never relies on the nature of the function. As a result, it uses same
interval halving method irrespective of the nature of the function. Let us take an
example, 7 (x) = x> — x — 15 = 0 to investigate how the process changes if function
is assumed to be approximately linear in the local region of interest. Starting with
initial interval [1, 3] we can write,

f(H)=-150<f(3)=9

Since |f(3)| is closer to zero than |[f(1)], the root is likely to be closer to 3 than
to 1 (assuming f(x) is linear in the interval). Hence instead of the midpoint, or
average value 2 (average of 1 and 3), the weighted average (w) can be considered.

More weight should be given to 3 than 1 to push the solution towards 3. Therefore,
weighted average of 1 and 3 can be calculated by the following formula

_ ro) 1+ r@)*3
WO+ A

Now since f(1) and f(3) have opposite sign, the formula can be simplified as

f@)*1=f()*3
LN TORNT0) (7-5)

This gives, for the above example,

(7.4)

_ 9%4+1+15%3 _
N 9+15 =225

NSOU e CC-MT-06 169

and f (w) = —5.859. Therefore, the root now lies in the interval [2.25, 3]. This process
now continues until the desired accuracy is reached. The point to be noticed is that
after iteration 1, the bisection method gives the midpoint value as 2 while this
method gives 2.25 which is closer to the actual root 2.6. The formula of weighted

fO) ra=flab . : : S
average w =)= fla) _ gives the point at which the straight line(known as

secant line) through the points {a, f(a)}and {b, f(b)} intersects the x-axis. This
method is known as regula falsi or false-position method. Figure 7.4 shows the
method in comparison to the Bisection method.

Weighted average of two end
points of the interval (Regula falsi
Method)

A

Average of two end points of the
interval (Bisection Method)

Figure 7.4
7.3.2 Algorithm and Implementation Issue :
Algorithm 7.2 : Regula falsi Method

Input : Function f(x), end points of the interval a, b ; accuracy or tolerance ¢,
maximum number of iterations 7.
Output : Approximate solution w or message of failure.

170 NSOU e CC-MT-06

Steps Description
1. Read a, b, t and n and set i=0.
2. if f(a) and f (b) have same sign, print “root cannot be found” and

go fo step 11.

if [f(a)| <tthenw = a and go to step 10.

if [f(b)| <tthenw = b and go to step 10.

Increment i

w = (f (B)*a — fl@)* B/ (B) — [(@).

if f(a) and f (w) have opposite sign then b = w, otherwise a = w.
if [fw), > t and i < n then go to step 5.

if (i=n) then print message “Fxceeds maximum number of
iterations” and go to step 11.

10. Print the root w.

11. Stop.

0 NSN R W

The flowchart is almost same as bisection method with only change in the
formula where weighted average replaces the average of two end points.

7.3.3 Implementation : Regula Falsi Method

The C implementation along with an output of regula falsi method has been
given in Table 7.8.

include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define f(x) (pow(x,3)-x-15) /* Function f(x) */
int main()
{
float a,b,w,t;
int i=0,n;
printf("Enter the value of a,b,eps: ");
scanf("%f%1%f" &a,&b,&t),
printf("\nHow many maximum no of iterations you need? ");
scanf("%d",&n);,
if (f(a)*f(b)>0) /*Check the initial interval chosen properly*/
{ printf("Root can't be found using bisection method");

exit(0);

}

NSOU e CC-MT-06 171

if(fabs(f(a))<t) /*Checking for root at the left end of initial interval*/
w=a,
else if (fabs(f(b))<t) /*Checking for root at the right end of initial interval*/
w=b;
else
{ printf("\nlter\t a\t b\t w\t f{a)\t f(b)\t f{w)\n");
printf(" \n");
do /*Iterative method to find the root*/
{ it
w=(f(b)*a-f(a)*b)/(f(b)-f(a));
printf("%d\t%6.3ft%6.3f\t%6.3f\t%6.3f1t%06.3£1t%6.3f\n" i,a,b,w,f(a),
f(b),f(w));
if (f(a)*f(w)<0)
b=w;
else a=w;
} while (fabs(f(w))>t && i<n);
}
if (i==n)
{
printf("\nExceeds maximim number of iterations"),
exit(0);
}
printf("\n\nThe desired root is %06.2f",w);
return 0;

}

Enter the value of a,b, eps: 1 3 .01
How many maximum no of iterations you need? 20
Iter a b w f(a) f(b) f(w)

The desired root is 2.60

Table 7.8

172 NSOU e CC-MT-06

Now while bisection method (Table 7.3) is used to determine the root of the
function f(x) = x3 — x — 15, it produces the same result but takes 3 more iterations
to converge. The Table 7.9 shows this result. This observation is of no surprise if
the nature of function is taken into consideration. Figure 7.4 shows the near linear
nature of function f(x) = x> — x — 15 in the interval [1, 3].

Enter the value of a,b, eps: 1 3 .01
How many maximum no of iterations you need? 20
Iter a b p f(a) f(b) f(p)

2.000 3.000 2.500 -9.000 9.000 -1.875
2.500 3.000 2750 -1.875 9.000 3.047
2.500 2.750 2.625 -1.875 3.047 0.463
-1.875 0.463 -0.736
2.563 2.625 2594 -0.736 0.463 -0.144
2.594 2.625 2.609 -0.144 0.463 0.157
2.594 2.609 2.602 -0.144 0.157 0.006

The desired root is 2.60

ONOU A WN =
N :
3]

o
o
)
o
N
o
)
o
o
W

Table 7.9
Example 7.5

Determine the root of the equation f(x) = %—0.4 using

1. Bisection method
2. Regula falsi method

Which of the above method gives better result? Justify your answer. You can
choose initial interval [0.4, 4] and accuracy up to 2 decimal point.

Solution :

By executing the program written in Table 7.4 the following output for bisection
method has been generated.

NSOU e CC-MT-06 173

Enter the value of a,b, eps: .4 4 .01
How many maximum no of iteration you need? 20
Iter a b p f(a) f(b) f(p)

The desired root is 2.54

This shows the approximated value of the root is 2.54 and the method takes 5
iterations to converge. Again regula falsi method (Table 7.8) produce following
output.

Enter the value of a,b, eps: .4 4 .01
How many maximum no of iterations you need? 20
Iter a b w f(a) f(b) f(w)

1 0.400 4.000 3.760 2100 -0.150 -0.134
2 0.400 3.760 3.558 2100 -0.134 -0.119
3 0.400 3.558 3.389 2100 -0.119 -0.105
4 0.400 3.389 3.247 2100 -0.105 -0.092
5 0.400 3.247 3.127 2100 -0.092 -0.080
6 0.400 3.127 3.027 2100 -0.080 -0.070
7 0.400 3.027 2.943 2100 -0.070 -0.060
8 0.400 2.943 2.872 2100 -0.060 -0.052
9 0.400 2.872 2.812 2100 -0.052 -0.044
10 0.400 2.812 2.762 2100 -0.044 -0.038
11 0.400 2.762 2.720 2100 -0.038 -0.032
12 0.400 2.720 2.685 2100 -0.032 -0.028
13 0.400 2.685 2.655 2100 -0.028 -0.023
14 0.400 2.655 2.631 2100 -0.023 -0.020
15 0.400 2.631 2.610 2100 -0.020 -0.017
16 0.400 2.610 2.592 2100 -0.017 -0.014
17 0.400 2.592 2.577 2100 -0.014 -0.012
18 0.400 2.577 2.565 2100 -0.012 -0.010
19 0.400 2.565 2.555 2100 -0.010 -0.009

The desired root is 2.55

174 NSOU e CC-MT-06

Even though regula falsi method produce the value of the root 2.55, almost same
as bisection method, the total no of iterations 19 is much higher with respect to 5
iterations of bisection method. Therefore, it can be easily concluded that bisection
method is much better than regula falsi method for this example.

This is because of the fact that the given function shows very less or no linearity
in the chosen interval (Figure 7.5).

f(x) g

Figure 7.5

7.4 Secant Method

The bisection and regula falsi methods are known as bracketing methods since
they always converge to a root which is inside the chosen interval. Both these
methods need an additional constraint that the values of the function at the end point
of interval are opposite in sign. Relaxing this criterion from the regula falsi method,
a new method was developed which has faster rate of convergence with respect to
regula falsi method. Unfortunately, this method loses the guaranteed convergence
characteristic as the bracketing constraint is removed from the method.

7.4.1 Method Description

: JO) *a-f@)*b :
The formula of weighted average w =)= fla) _ n regula falsi method

gives the point at which secant line through the points (a, f (a)), (b, f (b)) intersects
the x-axis. In the next iteration, the method uses the same formula to determine the
intersecting point between x-axis and the secant line either through (a, f(a)),
(w, f (w)) or through (w, f (w)), (b, f (b)) based on the sign of / (w). The secant method
always considers secant line passing through two most recently used points, i.e.
(b, f (D)), (w, f(w)) in this case. More generically, the intersecting point of secant line
and the x-axis can be found from following equation :

N (x,-);é;l_— f];(;:;)*x,. fori, 123, .n (7.5)

NSOU e CC-MT-06 175

This process now continues until the desired accuracy is reached. Figure 7.6
shows the secant method for first 3 iterations.

7.4.2 Algorithm and implementation Issue :
Algorithm 7.3 : Secant Method

Input : Function f(x), two arbitrary points a, b ; accuracy or tolerance 7 ,
maximum number of iterations 7.
Output : Approximate root x if method converges to the root x or message of failure.

Steps Description
1. Read a, b, t and n and set i=0
2. Xg=a x;, = b
3. if |f (xp)| <t then x = x, and go to step 11.
4. if [f (x;)| <t then x = x; and go to step 11.
5. Increment i
6. x = (f(xp)* xy = f (x)* x)(flx)) — f (xp))-
7. Xp = X
8 X; = x
9. if [f(x)| >t and i <n then go to step 5.
10. if (i =n) then print message “FExceeds maximum number of
iterations” and go to step 12.
11. Print the rooft x.
12. Stop.

w, uses points (a, f(a)),(b, f(b))
w, uses points (w,, f(w,)),(b, f(D))
wj uses points (w,, f(w,)),(w;, f (W)

a=1

A
v

Figure 7.6

176 NSOU e CC-MT-06

Check Your Progress 7.5
Draw the flow chart of the algorithm for secant method.
7.4.3 Implementation : Secant Method

The C implementation of secant method has been given in Table 7.10.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define f(x) (pow(x,3)-x-15) /* Function f(x) */
int main()
{
float x0,x1,x2.t;
int 1=0,n;
printf("Enter the value of a,b,eps: ");
scanf(" %% %", &x0,&x1,&t);
printf("\nHow many maximum no of iterations you need? ");
scanf("%d",&n);,
if(fabs(f(x0))<t) /*Checking for root at the left end of initial interval*/
x2=x0;
else if (fabs(f(x1))<t) /*Checking for root at the right end of initial interval*
x2=x1;
else
{ printf("\nlter xO\t x1\t x2\t f{xO)\t f{x1)\t f{x2)\n");
printf(" \n");
do /*Iterative method to find the root*/
{ it
x2=(f(x1)*x0-f(x0)*x1)/(f(x1)-f(x0));
printf{"%d\t%66.3£t%66.3ft%66.3£\t%66.3£\t%6.3f1t%6.3fin",1,x0,x1,x2,f(x0),f(x1),{(x2));
x0=x1;
x1=x2;

4 while (fabs(f(x2))>t && i<n);

}
if (i==n)

printf("\nExceeds maximum number of iterations");
exit(0);

printf("\n\nThe desired root is %6.2f",x2);
return 0;

Table 7.10

NSOU e CC-MT-06 177

The equation ' (x) = (x)> — x — 15 = 0 is solved using the program in Table 7.10
using initial value a = 1, b = 3 and accuracy # = .01. The output of the program is
given in Table 7.11.

Enter the value of x0, x1, esp: 1 3 .01
How many maximum no of iterations you need? 20
Iter X0 x1 x2 f(x0) f(x1) f(x2)
1 1.000 3.000 2.250 -15.000 9.000 -5.859
2 3.000 2.250 2.546 9.000 -5.859 -1.047
3 2.250 2.546 2610 -5.859 -1.047 0.172
4 2.546 2.610 2.601 -1.047 0.172 -0.004
The desired root is 2.60

Table 7.11

The output clearly shows that secant method takes only 4 iterations to achieve
the desired accuracy 0.01 which is better than bisection as well as regula falsi
method. The point to be noted that the initial values a and b can be chosen arbitrarily
without any constraint which was not the case in any of the previous two methods.
For example, bisection and regular falsi methods can’t be used to solve the equation
f(x) =x3 —x — 15 = 0 with initial interval [3, 4] since £ (3), 7 (4) both are positive.
On the other hand, the secant method can successfully produce the output for same
set of initial values. The result shows in Table 7.12.

The output of bisection method

The output of regula falsi method

Enter the value of a, b, eps: 3 4 .01

How many maximum no of iterations you
need? 20

Root can't be found using bisection method

Enter the value of a, b, eps: 3 4 .01

How many maximum no of iterations you
need? 20

Root can't be found using regula falsi method

The output of secant method

Enter the value of x0, x1, eps: 3 4 .01
How many maximum no of iterations you need? 20

lter x0 x1 x2 f(x0) f(x1) f(x2)
1 3.000 4.000 2750 9.000 45000 3.047
2 4.000 2.750 2.659 45.000 3.047 1.145
3 2.750 2.659 2.605 3.047 1.145 0.064
4 2.659 2.605 2.601 1.145 0.064 0.001
The desired root is 2.60
Table 7.12

MATH (CC-MT-06)—12

178 NSOU e CC-MT-06

Check Your Progress 7.6

The polynomial f(x) = x3 — 2x — 1 has a zero between 1 and 2. Using the secant
method (Algorithm 7.3), find this zero correct to three significant figures.

Check Your Progress 7.7

The polynomial /' (x) = x> — 4 has a zero at x = 2. Check that, the root can be
found out using secant method when the initial values are a =1, =4 and 1 = 0.1.
Why the same method doesn’t work if the initial values are @ = -3, b = 3 and
t = .01? Modify the program written in Table 7.10 so that the program can generate
proper message when this type of situations arises.

7.5 Newton Raphson Method

Newton’s method (sometimes called the Newton-Raphson method) for solving
nonlinear equations is one of the most well-known and powerful procedures in all of
numerical analysis. It always converges if the initial approximation is sufficiently
close to the root, and it converges faster than the methods discussed as of now. Its
only disadvantage is that the derivative f’(x) of the nonlinear function f(x) must be
evaluated.

7.5.1 Method Description

Let x, be a good estimate of the root r and let = x, + 4 where the number A
measures how far the estimate x,, is from the truth. Since 7 is the root of the equation,
we can conclude,

0=f() =f(xy+) (7.6)
= f(x)+hf"(xy) + %2' S7(x)+ e [Using Taylor’s series] (7.7)

Assuming /4 is small and using linear approximation (tangent line), the higher
order terms can be ignored from equation 7.7. Therefore, we get,

0= f(xo) + hf" (xo) (7.8)
It follows that,
h~— J(x)
S(x)
The new estimate x; of r is therefore given by

(o)

NSOU e CC-MT-06 179

The next estimate x, is obtained from x; in exactly the same way as x; was
obtained from x :

JS(x)
(%)

Continue in this way. If x,, is the current estimate, then the next estimate x,,, | is
given by

ntl = Xp JJ;(();Z)) (7.9)

X

The geometric interpretation of the Newton-Raphson method has been given in
Figure 7.7. The curve y = f(x) meets the x-axis at 7. Let x,, be the current estimate
of r. The tangent line to y = f(x) at the point (x,, f(x,)) has equation

Y =1 o)+ (o) = Xo) (7.10)
If the tangent line intersects the x-axis at x;, then we can write from equation
(7.10),

0 =7 (xp) +./ (xp)Cx; — xp)
=X =X _]J:/((—fc(:))) (7.11)

Equation (7.11) is same as equation (7.9) for n = 0. Therfore, x; can be thought
of as next estimate of r in Newton-Raphson method. Similarly, the tangent line
drawn at (x, f(x;)) intersects the x-axis at x,, giving a new estimate x,. Repeating
this process the actual root » can be obtained theoretically.

J'(x)

A
A\ 4

f'(x) f'(x)

Figure 7.7

180

NSOU e CC-MT-06

7.5.2 Algorithm and Implementation Issue :

Algorithm 7.4 : Newton Raphson Method

Input : Function f(x), an arbitrary point x,; accuracy or tolerance, maximum

number of iterations n.

Steps

Output : Approximate root x if method converges to the root x.

Description

Read x, t, n and set i = 0

if |[f (xp)| <t then x = x, and go fo step §.
Increment i

)
J(x)
Xg =X
if [f(x)| > tandi < n then go to step 3.
if (i=mn) then print message “FExceeds maximum number of
iterations” and go to step 9.
Print the root x .
Stop.

Check Your Progress 7.2

Draw the flow chart of the algorithm for Newton Raphson method.

7.5.3 Implementation : Newton Raphson Method

The C implementation of Newton-Raphson method has been given in Table 7.13.

{

#include<stdio.h>

#include<stdlib.h>

#include<math h>

#define f(x) (pow(x,3)-x-15) /* Function f(x) */
#define df(x) (3*pow(x,2)-1) /* Derivative of f(x) */
int main()

float x0,x,t;

int 1=0,n;

printf("Enter the value of x0,eps: ");
scanf("%f%f" &x0,&t),
printf("\nHow many maximum no of iteration you need? "),

2

NSOU e CC-MT-06 181

scanf("%d",&n);,
if(fabs(f(x0))<t) /*Checking for root at the initial point*/
x=x0;
else
{ printf("\nlter\t x\t f(x)\n"),
printf(" \n");
do /*Iterative method to find the root™*/
{
i++;
x=x0-{(x0)/df(x0);
printf("%d\t%6.3f1t%6.3f\n" 1, x,f(x));
x0=x;

+ while (fabs(f(x))>t && i<n);

}
if (i==n)
{
printf("\nExceeds maximim number of iterations"),
exit(0);
}
printf("\n\nThe desired root is %6.2f" x);
return 0;

Table 7.13

Newton’s method requires the value of the derivative f'(x) in addition to the
value the function f (x). Therefore, one more macro to calculate f’(x) has been added
in the program in Table 7.13. When the function f(x) is an algebraic function or a
transcendental function, f’(x) can be determined analytically. However, when the
function f(x) is a general nonlinear relationship between an input x and an output
f(x), f'(x) cannot be determined analytically. In that case, f’(x) can be estimated
numerically by evaluating f(x) at x; and x; + € (> 0), and approximating f’(x) as

f(x+82—f(X) (7.12)
This procedure doubles the number of function evaluations at each iteration.

However, it eliminates the evaluation of f’(x) at each iteration. If € is small, round-
off errors are introduced, and if € is too large, the convergence rate is decreased.

182 NSOU e CC-MT-06

The equation f(x) = x* — x — 15 = 0 is solved using initial value x, = 3 and
accuracy f = .01. The output of the program is given in Table 7.14.

Enter the value of x0, esp: 3 .01
How many maximum no of iterations you need? 20

Iter X f(x)

1 2.654 1.037

2 2.602 0.021

3 2.601 0.000
The desired root is 2.60

Table 7.14

The output clearly shows that Newton-Raphson method takes only 3 iterations
to achieve the desired accuracy 0.01 which is better than all the methods discussed
previously.

The accuracy and speed of the Newton-Raphson method mainly depends on two
assumtions. Among them, the first one is tangent line approximation. To understand
this, let us consider a particle travelling in a straight line, and let f (x) be its position
at time x. Then f’(x) is the velocity at time x. If the acceleration of the particle were
always 0, then the change in position from time x, to time x, + # would be Af’(x,).
So the position at time x, + /2 would be f(x,) + Af'(x,). It can be noted that this is
the tangent line approximation, which can be thought of as the zero-acceleration
approximation. If the velocity varies in the time from x, to x, + A, that is, if the
acceleration is not O, then in general the tangent line approximation will not correctly
predict the displacement at time x, + 4. And the bigger the acceleration, the bigger
the error. It can be shown that if the function f is twice differentiable then the error

in the tangent line approximation is %hZ f7(c) for some ¢ between x, and x, + A. In

particular, if |f”(x)| is large between x, and x, + A, then the error in the tangent line
approximation is large. Thus we can expect large second derivatives to be bad for
the Newton-Rapshon Method (see the example given in Example 7.6).

The second assumption in this method is to start with a intial value which is
close to the actual root. The result can be very bad if the value of x;, is quite far from

r. We have seen that 7 =— JJ:,(();(;)) . Therefore, the value of f’(x) close to 0, makes the

value of & large enough which may produce bad result. Thus we can expect first

NSOU e CC-MT-06 183

derivatives close to 0 to be bad for the Newton’s Method (see the example given in
Example 7.7).

Example 7.6

. 1
A devotee of Newton-Raphson used the method to solve the equation 3x3 =,
using the initial estimate x, = 0.1. Calculate the next 10 Newton Method estimates.

Solution :
_2 _3 _5
Here f(x)=x 3 and £”(x) :—%x 3= 7)) :%x 3 It is easy to observe that

the equation 3x% =0 has the root at x = 0. The graph of the function f (x) shows that
the slope of the tangent line at the point x, increases when x slides slowly along the
curve f(x) (Figure 7.8) from the intilal point x, = 0.1 to the root » = 0. The f ”(x)
values for different values of x from the intilal point x, to the root » are given in
Table 7.15. Now let us apply the Newton-Raphson algorithm to find out the next 10
estimates of the root r starting from x, = 0.1. The C program for Newton Raphson
method given in Table 7.13 uses macro definitions for f(x) and f’(x) which contains
the pow (base, power) function defined in math.h library. This function can’t
generate the result when the base is negative and the power is a fraction. To avoid
that we can deduce simpler expression for x,,, in the following manner :

A

Figure 7.8

184 NSOU e CC-MT-06

We know from equiation 7.9, v F7(x)
L 0.1 30.63449
Xyt =%, =]]:((fc)) =, - 2o 0.05 97.25843
Xn 0.01 1421.927
O S (7.13) 0.0001 | 3063449
Table 7.15

Using the expression given in equation (7.13), the program given in 'l;able 7.13
can be modified to find next ten estimates of the root for the equation 3x3 =0. The

modified C program and the corresponding output are given in Table 7.16 and
Table 7.17 respectively.

The output of Table 7.17 shows that the new estimates are going further from
the root 7 = 0. In fact, if we start with any non-zero estimate, the Newton-Raphson
estimates oscillate more and more wildly. The example shows that the Newton-
Raphson method may be highly susceptible to produce the erroneous result if f”(x)
is large between the intial value of x and the actual root 7.

#include<stdio.h>
int main()
{
float x0,x;
int 1=0,n;
printf("Enter the value of x0:");
scanf("%ft",&x0);
printf("\nHow many maximum no of iterations you need? ");
scanf("%d",&n);,
printf("\nlter\t x\n");
printf(" \n");
do
{ it
x=-2*x0;
printf("%d\t%6.3f\n"1,x);
x0=x;
} while (i<=n);
return 0;

Table 7.16

NSOU e CC-MT-06 185

Enter the value of x0: 0.1

How many maximum no of iterations you need? 10

-51.200
102.400
—-204.800

T o0ON®OUIARWN =
I
—
N
®
o
=)

Table 7.17

Example 7.7

A devotee of Newton-Raphson used the method to solve the equation x!%0 = 0,
using the initial estimate x, = 0.1. Calculate the next 10 Newton Method estimates.

Solution :
Here f'(x) = 100x*° and observe that the value of f'(x) is very close to 0 from
intial value x, = 0.1 to r = 0. The Newton Raphson-Method iteration is

£ 5

Y1 T 00T (k) " 100k,
_ 99
:}xn+1 = mxn (7.14)

Using the iteration equation (7.14) now we can run the program given in Table
7.16. The output in Table 7.18 shows that the convergence rate is very slow and after
10th iteration the value of x = .09 which needs lot more iterations to reach the
original root ». This slow convergence is due to the fact that the value of first
derivative is close to O for the function f (x).

186 NSOU e CC-MT-06

Enter the value of x0: 0.1
How many maximum no of iterations you need? 10

T o0ONOUGIRWN =
o
o
©
w

Table 7.18
Example 7.4

Use the Newton-Raphson method, with 3 as starting point, to find a fraction that
is within 10 of I0.

Solution :

The value of the ./10 can also be thought of as the root of the equation
f(x)=x?>-10= 0. Now f’(x) = 2x. Modify the program written in Table 7.13 using
following macros for f(x) and f’(x).

#define f(x) (pow(x,2)-10)
#define f(x) (2*x)

Assuming x, = 3, and # = .00001, the above program produces the following
output :

Enter the value of x0, esp : 3 .00001
How many maximum no of iterations you need? 20

Iter X f(x)
1 3.167 0.028
2 3.162 0.000
3 3.162 0.000

The desired root is 3.16

NSOU e CC-MT-06 187

It can be noted that after replacing f(x) and f’(x) in equation 7.8, we get

. (xn2—10):2xn2—(xn2—10):xn2+10:l(xn+m

il = Xp T
2x, 2x, 2x, 2 x,

The above formula is used in Section 1.6.1 while finding the square root of a
number using Babylonian method.

Check Your Progress 7.3

Find a solution of e?* = x + 6, correct to 3 decimal places; use the Newton-
Raphson Method. The graph of the function ¢** — x — 6 = 0 is given below.

Check Your Progress 7.4
It costs a firm Rs. C(g) to produce g grams per day of a certain chemical, where

2
C(g) = 1000 + 2g + 3¢3 . The firm can sell any amount of the chemical at Rs 200

a gram. Find the break-even point of the firm, that is, how much it should produce
per day in order to have neither a profit nor a loss. Use the Newton Method and give
the answer to the nearest gram.

Check Your Progress 7.5

A'loan of Rs. 4 is repaid by making » equal monthly payments of Rs. M, starting
a month after the loan is made. It can be shown that if the monthly interest rate is

r, then
ArzM(l— 1]
1+r)"

188 NSOU e CC-MT-06

A car loan of Rs. 600000 was repaid in 60 monthly payments of Rs. 15000. Use the
Newton Method to find the monthly interest rate corrected up to 3 decimal points.

Check Your Progress 7.6

The function f (x) = x — 0.2 sin x — 0.5 has exactly one zero between 0.5 and 1.0,
since f(0.5) f£(1.0) < 0, while f’(x) does not vanish on [0.5, 1]. Locate the zero
corrected up to 3 decimal point using Algorithms 7.3.2, 7.4.2, 7.5.2 and 7.6.2.

7.6 Summary

Several methods to solve non-linear equation on single variable have been
discussed in this chapter. First two closed domain (need two points where the sign
of the function is opposite) methods for finding the roots of a nonlinear equation are
presented in this unit : interval halving (bisection) and false position (regula falsi).
Both of these methods are guaranteed to converge because they keep the root
bracketed within a continually shrinking closed interval. Both methods are quite
robust, but converge slowly. The C implementation of these methods using macros
are also discussed in this unit.

The next two methods discussed here are secant method and Newton-Raphson
method. These methods have a higher-order convergence rate (1.62 for the secant
method and 2.0 for Newton’s method). These methods converge rapidly in the
vicinity of a root. When the derivative f’(x) is difficult to determine or time
consuming to evaluate, the secant method is more efficient. In extremely sensitive
problems, these two methods may misbehave and require some bracketing technique.

7.7 References and Further Reading

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2012.

2. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

3. Numerical Methods for Engineers and Scientists, First Editon, Joe D. Hoffman,
Tata McGraw Hill, 1992.

Unit - 8 O Application of C Programming : Solution
of System of Linear Equations by Direct
Methods : Gauss Elimination and Gauss
Jordan Elimination

Structure

8.0 Introduction

8.1 Objectives

8.2 System of Linear Equations

8.3 Matrix Notation

8.4 Solving Linear System by Direct Method
8.4.1 The Row Echelon Form
8.4.2 Gauss Elimination
8.4.3 Reduced Row Echelon Form
8.4.4 Gauss-Jordan Elimination

8.5 Summary

8.6 References and Further Reading

8.7 Hints and Solution

8.0 Introduction

Considering the inconceivable complexity of processes even in a simple cell, it
is little short of a miracle that the simplest possible model - namely, a linear
equation between two variables - actually applies in quite a general number of
cases.

—Ludwig von Bertalanffy

In the last unit, different algorithms of solving non-linear equations along with
their C-implementations were discussed. C programming is also very useful for
another very important type of problems viz. to find out the solution of system of
linear equations. There are two fundamentally different approaches for solving
systems of linear algebraic equations :

> Direct elimination methods
> lterative methods
189

190 NSOU e CC-MT-06

Direct elimination methods are systematic procedures based on algebraic
elimination, which obtain the solution in a fixed number of operations. Examples of
direct elimination methods are Gauss elimination, Gauss-Jordan elimination, the
matrix inverse method, and LU decomposition method. We will discuss two important
forms of matrix namely row-echelon form and reduced row echelon form in this unit.
We will also discuss C implantations of Gauss elimination and Gauss-Jordan
elimination method with the help of above two forms in this unit. The remaining
direct methods will be discussed in Unit 9. The iterative methods will be discussed
in Unit 10. As a prerequisite, the learner needs to revisit the Algebra — CC1 taught
in first semester of Bachelor Degree Program in Elective Mathematics (EMT) under
Netaji Subhas Open University. The C programs of this unit primarily uses the array,
therefore the learners are expected to have complete understanding of C array and
their processing mentioned in Unit 6.

8.1 Objectives

After going through this topic, the learner should be able to

> Describe the general structure of a system of linear algebraic equations.
> Determine different types of solution for a system of linear algebraic
equations using C program :

(a) a unique solution, (b) no solution, (¢) an infinite number of solutions.
Perform elementary matrix algebra with C programming language.
Convert a system of linear algebraic equations into row echelon form.
Solve a system of linear algebraic equations by Gauss elimination using C
program.

Convert a system of linear algebraic equations into reduced row echelon
form.

Solve a system of linear algebraic equations by Gauss-Jordan elimination
using C program.

Determine whether a set of vectors are linearly independent using C
program.

Y YV YV YVYY

8.2 System of Linear Equations :

A linear equation in the variables x;, x,, ..
written in the form

X, 18 an equation that can be

.y n

ax, tax,+...,+tax,=b 8.1)

NSOU e CC-MT-06 191

where b and the coefficients a;, a,, , a, are real or complex numbers, usually
known in advance. The subscript #» may be any positive integer. The equations

2%, +3x, - 5=x3 and x; = 3(x2—\/§)+x3

are both linear as they can be rearranged algebraically as in equation (1). The
equations

2x, +3x, - 5 =x;x3 and x| = 3(\/5—5)+x3

are not linear because of the presence of x,x; in the first equation and Jx; in the
second.

A system of linear equations (or linear system) is a collection of one or more

linear equations involving the same variables—say, x;, x5, . . . X,,.

A solution of the system is a list (s, S,, ...s,) of numbers that makes each
equation a true statement when the values s;, s,,...s, are substituted for
Xy, X5, . . . X, respectively. The set of all possible solutions is called the solution set
of the linear system. Two linear systems are equivalent if they have the same
solution set. That is each solution of the first system is also the solution of the second

and vice versa.

8.3 Matrix Notation

The essential information of a linear system can be recorded compactly in a
matrix. The system

X = 2%+ x3= 0 I -2 1 x 0
- 8n= 8 can be written as 0 2 B Ixn| =8
—4x+ Sx+ 9% = -9 -4 5 9 X3 -9
I =2 1
which is of the form Ax = b where the square matrix 4 = Z i _3 is known as
%
coefficient matrix, x = | *2 | and b= | 8 | are column vectors whose elements are
X3 -9

the variables and right hand side values of the linear equations respectively. We can
also define the augmented matrix of the linear system by the following matrix :

192 NSOU e CC-MT-06

1 -2 1 0
0 2 -8 8 (8.2)
-4 5 9 -9

8.4 Solving Linear System by Direct Method

The basic strategy to solve a linear system is to replace one system with an
equivalent system (i.e., one with the same solution set) which is easier to solve. Use
x; term in the first equation of a system to eliminate the x, terms in other equations.
Then use the x, term in the second equation to eliminate the x, terms in other
equations, and so on, until a very simple equivalent system is obtained finally.
Following three basic operations are used to simplify a linear system :

Basic Operations to simplify linear system

e Replace one equation by the sum of itself and multiple of another equation.

e Interchange two equations.

e Multiply all the terms in an equation by a non-zero constant.

Table 8.1

Considering the augmented matrix of the same linear system, row operations
corresponding to the three basic operations mentioned in Table 8.1 can be applied.
These row operations are known as elementary row operations and transforms one
matrix to another row equivalent matrix.

Elementary row operations corresponding to basic operations listed in Table 8.1

e (Replacement) Replace one row by the sum of itself and multiple of another
TOW.

e (Interchange)lnterchange two rows.
® (Scaling) Multiply all the entries in a row by a non-zero constant.

Table 8.2

Therefore, the typical method which we have learned in high school to solve
linear equations can be formalised by using matrix and elementary row operations.
The following Table 8.3 illustrate this fact for matrix in equation 8.2.

NSOU e CC-MT-06

193

MATH (CC-MT-06)—13

Steps Linear Equations Augmented Matrix

(Initial State 26— 853= 8————(2) 0 2 -8 8
[new eq(3)] = [eq(3)] + 4[eq(1)] Ry = Ry + 41,

Bxy+ 13x3= —9-———(3) 0 -3 13 -9

[new eq(3)]=[eq(3)] +3 [eq(2)] Ry=Ry+ 3R,

5 Y= 2np+ xp= 0---—() 1 -2 10
26— 8x3= 8—-—--—(2) 0 2 -8 8

= 3----0) 0 0 13

Row Echelon Form
_1
[new eq(2)] = [eq(2)] Ry= 3R,

3 - 2%+ x3= 0----() 1 -2 10
Xy,— dx= d————(2) 0 1 -4 4

u= 3--—--03) 0 0 1 3

The Diagonal Elements are 1

[new eq(2)] = [eq(2)] + 4[eq(3)], Ry = Ry + 4Ry,

[new eq(1)] = [eq(1)] - [eq(3)] Ry =R - Ry
4 - 2 = —-3-—--(0) 1 -2 0 -3
x, = 16---- 0 10 16
r= 3----0) 0 0 1 3

[new eq(1)]= [eq(1)] + 2 [eq(3)] R, =R, + 2R,
5 . = 2----0 100 29
S(}Ti:al n = 16----2) 010 16
olution) = 3----03) 00 1 3

Reduced Row Echelon Form
Table 8.3

194 NSOU e CC-MT-06

8.4.1 The Row Echelon Form

The matrix after step-2 of Table 8.3 is in echelon form (or row echelon form).
It has following three properties.

1. All nonzero rows are above any row(s) of all zeros (if any).

2. Each leading entry (leftmost nonzero entry) of a row is in a column to the
right of the leading entry of the row above it.

3. All entries in a column below the leading entry are zero.

Table 8.4

The matrix formed after the first two steps of the Table 8.3 is in row echelon
form and the matrix is further transformed into reduced row echelon form at the end
of the entire process.

Algorithm 8.1 : Convert a rectangular matrix into row echelon form.

Input : A (m x n) matrix A(m, n). The entry in ith row and jth column of matrix
A is represented by a[i][j]. The column number of leading entry is kept in a variable
lead.

Output : The row echelon form of the given matrix A(m, n).

Steps Description
1. i=0, lead=0
2. while (i<m-1 and lead<n)
3. if afi]llead] # 0 then go to step 4, otherwise

find (the smallest) number p>i such that alp][lead] # 0
and swap row i and row p and go to step 2.
If no such p exists, then go to step 9.

4. for k=i+1, i+2, ..., m-1 do:

3. t=alk][lead]/afi][lead]

6. for j=lead, lead+ 1, . . ., n-1 do:

7. alkl[j] = alk][j]-t*ali][lead]
8. i=i+1

9. lead=lead+ 1 and go to step 2.

10. Print the matrix A and stop.

NSOU e CC-MT-06 195

Let us illustrate the above algorithm with the help of the following 4x5 matrix
(8.3a).

a[0][0 2 -5 -4 1 8 (8.3a)

Initial value of variable i=0 and lead = O (step-1 of Algorithm-8.1). This
means the leading entry of 15t row is a[0][0]. The value of m=4 and n=135 for the
matrix in (8.3a). Now a[0][0] = 2 # 0 and therefore, the control goes to step 4 as per
the Algorithm-8.1. Now we create zero below a[0][0] by applying appropriate row
operations (step 4-7). As an example let us analyse how zero is created in a[1][0].
The value of k = 1(step 4), then t = a[1][0]/a[0][0] = (-4)/2 = -2(step 5). Now apply
the row operation R, = R, — (-2)* R, to transform R, (step 6 to step 7). The same
process will be applied to create zeros in a[2][0], a[3][0] by incrementing the loop
index k in step 4. After completing the above steps the matrix looks like (8.3b). The
value of variable i and /ead are incremented and becomes 1(step 8 to step 9). Then
control goes to initial while loop. The leading entry of second row becomes a[1][1].

2 4 -1 5 =2
0 >3 1 2 -3

a[1][1 0 -9 -3 —4 10 (8.3b)
0 12 4 12 -5

Now after applying similar steps the zeros are created below a[1][1] and the
new matrix looks like (8.3¢). The leading entry of the third row becomes a[2][2] and
control goes to initial while loop.

2 4 -1 5 -2
{o 3012 -3

a[2][2] 60— 2 1 (8.3¢)
{o 0 0 4 7

Since the value of leading entry a[2][2] = O the Algorithm 8.1 searches a row
p>2 for which a[p][2] # O as per the step 3. The next entry a[3][2] = 0, therefore no

196 NSOU e CC-MT-06

such p exists and the control goes to step 9. Now the /lead variable is incremented
and the leading entry of third row becomes ¢[2][3] = 2 # 0 without changing any
other element in the matrix (8.3d). After that the control goes to initial while loop

again.
2 4 -1 5 =2
0 3 12 -3
a[2][3] 6—0—6-2 1
{0 0 0 4 7

The algorithm proceeds similarly and create zeros below the leading
a[2][3]. The final matrix in row echelon form looks like (8.3e).

2 4 -1 5 2
03 12 -3
00 0 2 1
00 00 5

The C-program for row echelon form is given in Table 8.5 :

(8.3d)

entry

(8.3¢)

#include<stdio.h>

#include<math.h>

void main()

{
float a[20][20]={{2,4,-1,5,-2},{-4,-5,3,-8,1},{2,-5,-4,1,8},{-6,0,7,-3,1} }
float temp[20],t,e =.0001;
int m, n, i, j, k, p, lead=0;
printf("Enter the number of rows and columns: ");
scanf("%d%d",&m,&n);,

/* Display the given matrix*/

printf("\n\nThe given matrix is\n");
printf(" \n");
for (i=0; i<m, 1++)

for (j=0; j<n; j++)
{ printf("%6.2\t", a[i][j]);
}

NSOU e CC-MT-06 197

printf("\n");
}
/*Main logic of row echelon form*/
i=0; /*i is pointing to first row™/
while(i<m-1 && lead<n)

{
if (fabs(a[i][lead])>e) /*Check if the entry is nonzero*/

{
/*Apply row operation to create zeros below leading entry*/
for(k=i+1; k<m; k++)
{
t=a[k][lead]/a[i][lead];
for(j=lead; j<n; j++)
alk][jl=alk][j]-t*a[i][j];
o
1++;
lead++;

}

else

{

/*Search a row below current row such that the entry in the same column
is non-zero */
for(p=i+1; p<m; p++)
{
if (fabs(a[p][i])>e) /*Check if the entry is nonzero*/
break;
}
/*if non-zero entry found swap the rows*/
if(p<m)
{
for(j=0; j<n; j++)
{
templ[j]=ali][j];
ali][jl=alp]jl;
a[p][jl=temp(j];
}
}

else

198 NSOU e CC-MT-06

/*if all entry below the leading entry is zero then go to search the next
column*/
lead++;

}
}

printf("\n\nThe echelon matrix is\n");
printf(" \n");
/* Display the matrix in row echelon form*/
for (i=0; i<m, 1++)
{
for (=0; j<n; j++)
{

}
printf("\n");

}

printf("%6.2f\t", a[i][j]);

}

Table 8.5

It is important to note that in the above C program (Table 8.5), the expression
fabs(a[i][lead])>e (-e< a[i][lead]<e) is used instead of testing the equality a[i][lead]|==
where e (0.0001) is defined as a small quantity. Due to round of errors, most floating
point numbers end up being slighltly imprecise. As long as this imprecision stays
small, it can easily be ignored. However, it also means that numbers expected to be
equal often differs slightly, and a simple equality test fails. Therefore, in such
scenarios it is better to check the differences of the numbers within some error bound.

Theorem 8.1: Existence and Uniqueness Theorem :

A linear system is consistent if and only if an echelon form of augmented matrix
has no row of the form

[0 0 0 ... b] where b # 0. (8.4)
If a linear system is consistent, then the solution set contains either

i. a unique solution, or
ii. infinitely many solutions.

The row of the form in (8.4) implies an equation of the form

O0x,+0x,+0x;3+...+0x,=b whereb # 0, obtained after it has been reduced
by elementary row operations. Since O = b where b # 0 is invalid, we say the system
is inconsistent.

NSOU e CC-MT-06 199

Example 8.1

Determine if the following system is consistent without completely solving the
system :

x; +3x;3 =2

Xy —3x, =3

—2x5 + 3x3 + 2x, = 1

3x) + Txy = -5
Solution :

The augmented matrix of the given system of equations is

I 03 0 2
0 0 -3 3
0 -2 3 2 1
300 7 -5

Execute the program in Table 8.5 with data given by above matrix. The output is :
Enter the no of rows and columns :

4 5

The given matrix is

1.00 0.00 3.00 0.00 2.00
0.00 1.00 0.00 -3.00 3.00
0.00 -200 3.00 200 1.00
3.00 0.00 000 7.00 -5.00
The echelon matrix is

1.00 0.00 3.00 0.00 2.00
0.00 1.00 0.00 -3.00 3.00
0.00 0.00 3.00 -400 7.00
0.00 0.00 0.00 -5.00 10.00

Enter the no of rows and columns : 4 5

We can say that the echelon matrix does not have any row of the form
[0 O 0 0 b] with b nonzero. Therefore, using Theorem 8.1, we can
conclude that the system is consistent.

200 NSOU e CC-MT-06

8.4.2 Gauss Elimination

Algorithm 8.1 is generic in the sense that it could be applicable to both square
and non-square matrices. The row echelon form of any square matrix is a upper
(right) triangular matrix i.e. all entries a[i][j] = O for i > j. Which means that the
algorithm eliminates the coefficients a[i][j] of matrix 4 for i > j. It can be easily seen
in the example 8.1 where the intial coefficient matrix 4 is a square matrix.

Algorithm 8.1

Therefore, if we need to solve the system of linear equations of the form Ax =5
where A is a square matrix then the Algorithm 8.1 produces equivalent system of
linear equations of the following form.

apx; Toapx, T o Ay T ayX, = b
apx, T+ T W) T @y, = b
................................... (8.5)
A1y 11 T Yoryn = Dy
B Y
The solution of the above system of linear equations can easily be found if the
diagonal elements a[7][7] are non-zero for all i in O, 1,2, ..., (m— 1) of the upper

triangular matrix A. From the last equation of the linear system given in (8.5), we
find,

= [since a,, # 0]

Now once we know x,, from the second last equation given in (8.5), we can
find,

v = bn—l ~ Ain—1yn*n .
n-1 —a(n—l)(n—l) [since a, 1y, 1y # O]

With x,, and x, ;| now determined, the third last equation

Un-2xn2n-2 T Y211 T An2yn = O

2

contains only one true unknown, namely, x,, ,. Once again, we can solve for x, ,

b, - -2y n-1*n-1 ~ Yn-2)n*n

Xp2 = Urayn2) [since @, 5y, 2) # 0]

NSOU e CC-MT-06 201

In general, with x;,,, X;,5, , x,, already computed, the & equation can be
uniquely solved for x;, since a;; # 0 to give

b, — a,x;
. _i (8.6)
k= a
ek
This process of determining the solution of system of linear equations given in
(8.5) is called back substitution.
Now applying back substitution method in the echelon matrix obtained in

example 8.1 we get the solution,

_ b _10__
X 7 Ayy 5 2
_ by _T-(AHED) 1
377 a4, 3 3
_ hy—apxvs—apxy _3-(0)(=1/3)=(=3)(-2) _ 3
X2 = ay 1
X = by = anyxy — a3y —ay4%y _ 2-(0)(=3) - B3)(=1/3) - (0)(=2) _ 3
L=

ap 1

Therefore, the final solution of the system of linear equations is
x;=3,%x, =-3,x3=-1/3, x, = 2.

The following procedure in Table 8.6 outlines the Gauss Elimination process :

Steps Description

1. If the coefficient matrix A(m % n) is a square matrix i.e, m = n then
go fo next Step, otherwise unique solution is not possible and stop
the process.

Write the augmented matrix of the system of linear equations.

3. Use the row reduction method (algorithm 8.1) to obtain an equivalent
augmented matrix in row echelon form.

4. If the diagonal entries of reduced coefficient matrix is non-zero then
go to next step otherwise either system is inconsistent or unique
solution is not possible and stop the process.

5. Apply back-substitution method.

6. Write the solution of the given system of linear equations.

Table 8.6

202 NSOU e CC-MT-06

8.4.3 Reduced Row Echelon Form

If a matrix in echelon form (follows property in Table 8.4) satisfies the
following additional conditions of Table 8.7, then it is in reduced echelon form (or
reduced row echelon form).

1. The leading entry in each nonzero row is 1.

2. Each leading 1 is the only nonzero entry in the corresponding column.

Table 8.7
Pivot Position :

When row operation on a matrix produce an echelon form, further row
operations to obtain the reduced row echelon form don’t change the position of the
leading entries. Since the reduced echelon form is unique, the leading entries are
always in the same positions in any echelon form obtained from a given matrix.
These leading entries correspond to the leading 1’s in the reduced echelon form.

Algorithm 8.2 : Convert a matrix in row echelon form to reduced row
echelon form.

Input : A (m X n) matrix A(m, n) in row echelon form . The entry in ith row and
jth column of matrix A is represented by a[7][j].

Output : The reduced row echelon form of the given matrix A(m, n).

Steps Description
1. Create an array pivotcol[m] to store the column index of
the pivot element of every row. The array was initially
reset fo 0.
2. Divide every element of a row by non-zero pivot element
of that row to produce 1 in the pivot element. skip if pivot
element is 0.

3. fori=m-1, m—2, ... 1do:
if pivot element of row i = 0 then go fo step 3.
for k=i-1, i-2, ... , 0 do:

t=a[k][pivotcol[i]]
for j=n-1, n-2, ..., 0 do:
alkl[j] = alk][j]-t*a[i][j]

4. Print the matrix A and stop.

NSOU e CC-MT-06 203

Let us illustrate the above algorithm with the help of the matrix (8.3e) which is
in row echelon form and produced by Algorithm 1.1. In step-1, an array pivotcol[m]
has to be reset to 0. The initial configurations are following.

2 4 -1 5 22 0]
0 3 2 -3 0|
00 2 1 0] (8.7a)
00 00 5 K
Row Echelon Matrix Pivotcol array

Now for every row, the leading entry (first non-zero entry in a row) has been
identified. The column index of the leading entry has been inserted to pivotcol array.
As an example, the leading entry of 3™ row is 2 which is in the 4™ column, therefore
the 3™ element (pivotcol[2]) of pivotcol array is 3. Therefore the pivot entry in 3™
row is a[2][3] More generically, we can say that if the leading entry of i th row is in
Jj™ column, then pivotcol[i]=j and pivot element in row i is a[i][pivotcol[i]. (8.7b)
shows the pivotcol array after placing the pivot element for all rows.

2 4 -1 5 =2

0 3 1 2 =3

0 0 2 1 (8.7b)
0 0 0 5

Row Echelon Matrix Pivotcol array

In step2, the elements of every row have been divided by the corresponding
pivot element of that row so that the pivot elements become 1(8.7¢).

1 2 05 25 -l
0 1 033 067 -1
00 0 1 05 (8.7¢)
00 0 0 1

In step3, we apply elementary row operations to create zeros above the pivot
element. The row operation starts from pivot element of the last row and continues
in the upward direction up to the pivot element of the second row which is shown
in the following Figure. (from 8.7d-8.7f).

204

NSOU e CC-MT-06

1 2 05 25 0 1 2 0500
0 1 033 067 0 01 033 0 0
00 0 1 0 (8.7d) 00 0 1 0| (8.7¢
00 0 0 1 00 0 01
1 0 -117 0 0]
01 033 0 0
00 0 10 (8.71)
00 0 0 1]

The final matrix in (8.7f) is in reduced echelon form.

The C-program to convert a matrix of row echelon form into reduced row

echelon form is given in Table 8.8.

{

#include<stdio.h>
#include<math h>
void main()

float a[20][20]={{3,-7,8,-5,8,9},{0,3,-6,6,4,-5},{0,0,0,0,.67,2.67} }
float temp[20], pivot, t, e =.0001;
int m,n,i,j,k,p,pivotcol[20]={0} lead=0;
printf("Enter the number of rows and columns"),
scanf("%d%d",&m,&n);,
/* Display the given matrix*/
printf("\n\nThe given matrix is\n");
printf{(" \n");
for (i=0; i<m; i++)
{ for (j=0; j<n; j+t)

{

printf("%6.2\t", a[i][j]);

}

printf("\n");
}
for(i=0;i<m;i++)
/* Insert the column index of non-zero leading entry of ith row in pivotcol[i]*/

NSOU e CC-MT-06 205

for(j=;j<n;j++)
{ if(fabs(a[i][j])>e)
{
pivotcol[i]=j;
break;
}
if(j==n)
break;
}
/*Divide each row by corresponding non-zero pivot element to make pivot
element 1,skip if pivot element is 0.*/
for(i=0;i<m;i++)
{
pivot=a[i][pivotcol[i]];
if (fabs(pivot)<e)
continue;
else
{
for(j=0;j<n;j++)
a[i][jl=ali][j}/pivot;
}
}

/*Apply row operation to create zeros above the pivot element™/
for(i=m-1;1>=1;i--)
{

if(fabs(a[i][pivotcol[i]])<e)

{ continue; /*ignore row operation if pivot element of the row is zero*/

}

else
{ for(k=i-1;k>=0;k--)
{
t=a[k][pivotcol[i]];
for(j=n-1;>=pivotcol[i];}--)
a[k][j]=alk][j]-t*a[i][j];

206 NSOU e CC-MT-06

}

printf("\n\nThe reduced echelon matrix is\n"),
printf(" \n");
/* Display the matrix in reduced row echelon form*/
for (i=0; i<m, 1++)
{ for (j=0; j<n; j+t)
{

}
printf("\n");
}
}

printf("%6.2f\t", a[i][j]);

Table 8.8

The following procedure in Table 8.9 outlines how to find and describe all
solutions of the linear system.

Steps Description
1. Write the augmented matrix of the system.
2. Use the row reduction method (algorithm 8.1) to obtain an

equivalent augmented matrix in row echelon form.

3. Decide whether the system is consistent using (Check if any row
of the row echelon matrix has the form mentioned in (theorem
8.1). If there is no solution stop, otherwise, go to next step.

4. Continue row reduction fo obtain reduced row echelon form
(algorithm 8.2).

5. Write the system of equations corresponding to the matrix
obtained in step 4.

6. Rewrite each nonzero equation from step 4 so that its one basic
variable is expressed in terms of any non-basic(free) variables
appearing in the equation.

Table 8.9

NSOU e CC-MT-06

207

C Program for the procedure mentioned in Table-8.9 is given in Table 8.10.

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

void main()

{
float a[20][20]={{0,1,2,1,0,0},{1,0,3,0,1,0},{4,-3,8,0,0,1} } ,temp[20];
float t, pivot, e =0.0001;
int m,n,i,j,k,p,pivotcol[20]={0} lead=0;
char flg inconsitent='n',flg_manysol="n',
printf("Enter the number of rows and columns: ");
scanf("%d%d",&m,&n);,

/* Display the given matrix*/

printf("\n\nThe given matrix is\n");
printf(" \n");
for (i=0; i<m, 1++)

2

for (=0; j<n; j++)
{

}
printf("\n");
}
/*Main logic of row echelon form*/
1i=0; /*1 1s pointing to first row™/
while(i<m-1 && lead<n)
{ if (fabs(a[i][lead])>e) /*Check if the entry is nonzero*/
{
/*Apply row operation to create zeros below leading entry*/
for(k=i+1; k<m; k++)

{

printf("%6.2f\t", a[i][j]);

t=a[k][lead]/a[i][lead];
for(j=lead; j<n; j++)

alk][j]=alk][j]-t*afi][j];

208 NSOU e CC-MT-06

i++;

2

lead++;

}

else

{

/*Search a row below current row such that the entry in the same

column is non-zero */
for(p=i+1; p<m; pt+)
{ if (fabs(a[p][i])>e) /*Check if the entry is nonzero*/
break;
}
/*if non-zero entry found swap the rows™*/
if(p<m)
{ for(j=0; j<n; j++)
{ temp[j]=ali][j];
a[i]jl=alp]0l;
a[p][j]=temp[j];
}
}

else
/*if all entry below the leading entry is zero then go to search the

next column*/

lead++;
}
}
printf("\n\nThe echelon matrix is\n");
printf(" \n");

/* Display the matrix in row echelon form*/

for (i=0; i<m; i++)
{ for (j=0; j<n; j*++)
{
printf("%6.2f\t", a[i][j]);
}
printf("\n");
}

NSOU e CC-MT-06 209

/*search any row of the form [0 O 0. .. 0 b] where b is nonzero to check for
consistency*/
for(i=m-1;1>=0;i--)
{
for(j=n-2;>=0;j--)
{
if (fabs(a[i][j])>e)
break;
}
if(j==-1 && fabs(a[i][n-1])>e)
{
printf("The system is inconsistent");
exit(0);
}
}

/*Main Logic for reduced echelon form*/
for(i=0;i<m;i++)
/* Insert the column index of non-zero leading entry of ith row in pivotcol[i]*
for(j=ijj<n;j++)
{
if(fabs(a[i][j])>e)
{
pivotcol[i]=j;
break;
}
if(j==n)
break;
}
/*Divide each row by corresponding non-zero pivot element to make
pivot element 1,skip if pivot element is 0.*/
for(i=0;i<m;i++)
{
pivot=a[i][pivotcol[i]];
if (fabs(pivot)<e)
continue;
else

{

MATH (CC-MT-06)—14

210 NSOU e CC-MT-06

for(j=0;j<n;j++)
a[i][j]=a[i][j}/pivot;
}
}

/*Apply row operation to create zeros above the pivot element™/
for(i=m-1;1>=1;i--)
{

if(fabs(a[i][pivotcol[i]])<e)

{

continue; /*ignore row operation if pivot element of the row is zero*/

}

else
{
for(k=i-1;k>=0:k--)
{
t=a[k][pivotcol[i]];
for(j=n-1;j>=pivotcol[i];j--)
a[k][j]=alk][j]-t*a[i][j];
}
}
}

printf("\n\nThe reduced echelon matrix is\n"),
printf(" \n");

/* Display the matrix in reduced row echelon form*/
for (i=0; i<m, 1++)
{
for (=0; j<n; j++)
{ printf("%6.2f\t", a[i][j]);
}
printf("\n");
}
}

Table 8.10

NSOU e CC-MT-06 211

8.4.4 Gauss-Jordan Elimination.

The procedure outlined in the Table 8.9 is a variant of what is commonly known
as Gauss Jordan Elimination method.

It can be noted that, while generating the echelon matrix we have chosen non-
zero leading entries (pivot elements) to avoid multiplication/division by zero.
Whenever any zero element is found as leading entry, the row has been swapped by
next row where the corresponding column entry is non-zero. This method is a
simpler version of strategy what is known as partial pivoting. In partial pivoting,
before each elimination step the rows need to be rearranged in such way so that the
leading entry (pivot element) takes the largest magnitude of all the values of the
column. This technique reduces the round off error which is originated due to
repeatitive row-operations on the matrix. There are many better techniques for
pivoting to reduce the round off error further, but we have not considered them so
that the code remains simple for the learner at undergraduate level.

Theorem 8.2

—

. . - —
Let A be an m x n matrix, with column a,a,,---a

, and Z) in R™ The matrix

equation
Ax=b
has the solution set as the vector equation

%
xlc71>+x2572>+---+xn57; =b
which, in turn, has the same solution set as the system of linear equations which has

augmented matrix of the form

—

— — -

b1
Example 8.2

Find the general solution of the linear system given below. Explain the
geometric representation of the solution.

3x, — Ox3+ ox,+ 4xy =5
3¢ = Txyt+ 83— Sx4t 8xs =9
3 = 9%+ 12x%3—- 9%, + 6x5 =15

Solution :
Execute the program written is (Table 8.10) with the following :

Input : Given augmented matrix.

212 NSOU e CC-MT-06

Output :
Enter the no of rows and columns: 3 6
The given matrix is

0.00 3.00 -6.00 6.00 4.00 -5.00
3.00 -7.00 8.00 -500 800 900
3.00 -9.00 12.00 -9.00 6.00 15.00
The echelon matrix is

3.00 -7.00 8.00 -500 800 900
0.00 3.00 -6.00 6.00 4.00 -5.00
0.00 0.00 -0.00 0.00 0067 2067
The reduced echelon matrix is

1.00 0.00 -2.00 3.00 0.00-24.00
0.00 1.00 -2.00 2.00 0.00 -7.00
0.00 0.00 -0.00 0.00 1.00 4.00
Write the system of equations from the reduced echelon matrix.

Xo— 2x3 + 2xy = -7

The pivot columns of the matrix are 1, 2, 5, so the basic variables are x;, x,, x5
and the remaining variables x;, x, are non-basic(free). Solving the basic variables, we
obtain the general solution :

x, = 24 + 2x; — 3x,
Xy = =7+ 2x3 — 2x,4
x5 =4

The final solution in terms of vector equation is therefore,

5] [-24 2 -3

X, -7 2 -2 ’
i |=|0 |+x]0][+x4]0

X4 0 0 0 Z’
(x5 | |4 | 10 10] / >
X=G+xyb+x,C

Figure 8.1

NSOU e CC-MT-06 213

Geometrically xﬁ expresses all the vectors obtained by stretching (or shrinking
or reflecting) the vector b by a scalar quantity x;. Similarly, x,¢ expresses all the
vectors obtained by stretching(or shrinking or reflecting) the vector ¢ by a scalar
quantity x,. Therefore, by parallelogram law of addition of vectors, we can say the
quantity x,b +x,¢ is the diagonal passing through the point of contact of two
adjacent sides xﬁ, x,¢ of the parallelogram. Since both the scalar quantity x; and
x, are arbitrary real number, x33>+ x,¢ represents the entire plane spanned by vectors
b and 7. After translating this plane by another vector @ we get the new plane
a+ x35>+x4? which is the final solution set of the linear system. Therefore, The
geometric representation of the set of solutions is a plane passing through the vector
d and parallel to the plane spanned by vectors b and ¢ (Figure 8.1). Here all the
vectors are usually treated as a position vectors. Therefore, if @ be a point in the
space then o is staright line segment from an arbitrary origin O to the point a.

Example 8.3

Consider a linear system of the form Ax = b where 4 is n X n matrix, x is / X n
matrix b 18 / x n matrix. What is the no of arithmetic operations needed to convert
the augmented matrix into row echelon form using Algorithm 8.17

Solution :

To determine the no of arithmetic operations to convert a matrix to row echelon
form, we define a new unit called floating point operation (flop) as follows: 1
flop =1 addition/subtraction + 1 multiplication/division

Stepl. The n x (n + 1) augmented matrix of the linear system is

nt+l
ap Gp 4 a, b,
ay1 dy, 04y Ay n b,
ay, Ay, A3z e a,, by
n-1
a,, a,, Q3 e a,, b,
Figure 8.2

Step 2. Now we will convert the matrix into row echelon form.

a.
We define m; = Iﬂl fori=23,..n (8.8)

214 NSOU e CC-MT-06

We apply R, = R, — myR, fori =2,3,...n 8.9)

Equation (8.8) needs (n-1) division and equation (8.7) needs (n-1)(n+1) flops
(Figure 8.2). In the next step equation (8.6) needs n-2 division and equation (8.7)
needs (n-2)n flops (Figure 8.3).

n
a, a, a; .. a, b
1 1 1 1
0 a,, a; .. a, b
1 1 1 1
0 a5, a3 ... a,, b,
=D e e e e e e
1 1 1 1
0 a,, a,; .. a,, b
Figure 8.3

After second iteration the matrix will look like the following (Figure 8.4).

a,;, a, 4 a, b,
0 a; 2 a;,3 a; n bé
0 0 aj; .. a; b}
0 0 al, .. a;, bl

Figure 8.4

Therefore, if the total no of operation is 7(n) after the completion of Algorithm
8.1, then
Im=[m-D@m+ D+n-2)n)+.. . +13]flops+[(n—1)+m—-2)+... +1]divisions
= T, flops + T, divisions
Now IN'=m-Dn+1)+(m-2)m)+(n-3)n-1)+... +13
=m-1D)n-1+2)+(n-2)(n-2+2)+(n-3)(n-3+2)...+1.(1+2)
= m-1P2+2(n-1)+n-2+2m-2)+m-3>+2(n-3)... +12+2.1
=[n-12+m-2P+n-3P2+.. 1P]+2[(n-1)+n-2)+n-3)...+1]

_ [(n—l)nézn—l)}”[@}: n(n - 1)[2}76_1“}: n(n—1)6(2n+5)

NSOU e CC-MT-06 215

1 _ (1 1 5
(@ + 3% - Sn) = (§n3+§n2—gn)

Iy =(n-D+@n-2)+@-3)+... +1=2nr-D=1¢2-n)

(341,223 L2 LA givisi
Therefore, T'(n) = (37" +5n 6”) ﬂops+(2n 2n)dzvzszons

When n becomes very large (n — <o) the largest power of n will dominate the
other terms. Ignoring the lower power of # and other constants we can write 7(#n) =
O@). O (big ‘O’) notation is used to measure asymptotic (» — <) upper bound of
time complexity of any algorithm. In summary, we can say that when n — oo total

no of flops is proportional to #* in Algorithm 8.1.
Check Your Progress 8.1

Write a C program for back substitution method used in Gauss Elimination. Find
out the solution of the system of linear equations given in example 8.1 using the
program.

Check Your Progress 8.2

Find the general solution of the linear system given below (Using the C program
in Table 8.10).

X, 2% —x3 13xy =0
—2x; T4x, +5x; Sxy =3
3, —6x, —Ox3; +8x, =2

Check Your Progress 8.3
An interpolating polynomial for the data (x,, y;) fori = 0,1,2,....,n is a polynomial

of degree n whose graph passes through every data point. One method for finding
the interpolating polynomial is to solve a system of linear equations for the (n + 1)
polynomial coefficients, obtained by satisfying the (7 + 1) polynomials with (7 + 1)
data points. Find the interpolating polynomial f(x) = a, + a;x + a,x? for the data
(1,12), (2,15), (3,16) (Using the C program in Table 8.10). That is, find the value of

a,, a,, a,.
Check Your Progress 8.4

Do the three lines x; — 4x, = 1, 2x; — x, = -3 and —x; — 3x, = 4 have a common
point of intersection. Explain (Using the C program in Table 8.10).

216 NSOU e CC-MT-06

Check Your Progress 8.5

Consider a given matrix A(n, n+1) in row echelon form. What is the no of
arithmetic operations needed to convert the given row echelon matrix into reduced
row echelon form using Algorithm 8.2 ?

Linear Independence :

An indexed set of vectors {v}, v,,......v,} in R" is said to be linearly independent
if the vector equation x;v;, + x,v, +........ + x,v, = 0 has only the trivial solution.
The set {v), v,,....v,} is said to be linearly dependent if there exists weights
Xgyeonrenn. X, not all zero, such that

Check Your Progress 8.6

1 4 2
Let vy=|2|,v,=|5|,v3=| 1| Determine if the set is linearly independent
3 6 0

(Using the C program in Table 8.10).
Check Your Progress 8.7

Given two matrices A:<al-j> and B:<bl-j>, write a C program to check if the
matrices are equal.

Check Your Progress 8.8

Given two (m x n) matrices 4= <al-j> and B= <bl-j>, write a C program to add A
and B.

Matrix Transpose :

Given m x n matrix A, the transpose of A is the n x m matrix denoted by A”
where columns are formed from the corresponding rows of 4.

Check Your Progress 8.9

Write a C program to find the transpose of a given matrix 4 =

NSOU e CC-MT-06 217

8.5 Summary

Two direct methods for solving systems of linear algebraic equations are
presented in this chapter, namely Gauss Elimination method and Gauss Jordan
Elimination method. Two important matrix forms, row-echelon and reduced row-
echelon forms have been also discussed with the help of C program in this chapter.
How these forms help us to find linear dependent/independent vectors is also
illustrated at the end of the chapter.

8.6 References and Further Reading

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2005

2. Linear Algebra and Its Application, David C. Lay, Pearson, 2007

3. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

4. Numerical Methods for Engineers and Scientists, Second Editon, Joe D.
Hoffman, CRC Press, 2001.

8.7 Hints and Solution

Solution 8.2 :

Enter the number of rows and columns : 3 5
The echelon matrix is

Solution 8.3 :

1.00 -2.00 -1.00 3.00 0.00 The polynomial is f(x) =7 + 6x — x?
0.00 0.00 3.00 1.00 3.00
0.00 0.00 0.00 0.00 5.00
The system is inconsistent

Solution 8.4 :Solution 8.5 :

xl}: [—1.86} T(n) = O(n?)

The common point is [~0.71

X3

218 NSOU e CC-MT-06

Solution 8.6 :

Enter the number of rows and columns : 3 4 The echelon matrix is
The given matrix is

1.00 4.00 2.00 0.00
1.00 4.00 2.00 0.00 0.00 -3.00 -3.00 0.00
2.00 5.00 1.00 0.00 0.00 0.00 0.00 0.00
3.00 6.00 0.00 0.00

The reduced echelon matrix is

1.00 0.00 -2.00 0.00
-0.00 1.00 1.00-0.00
0.00 0.00 0.00 0.00

The reduced matrix shows that x; 1s free variable. The reduced system could be
written as

x)—2x3 = 0 = x;= 2x3

Xyt x3 =0 = x,=-x;5

0=0=x3=x;

2

The solution set is x = x; | —1| which contains a nonzero solution when x; # 0.
1

Therefore, the set {v,, v,, v3} is not linearly independent.

Unit - 9 O Application of C Programming : Solution
of System of Linear Equations by Direct

Methods : Matrix Inverse and LU
Decomposition

Structure

9.0 Introduction

9.1 Objectives

9.2 Matrix Multiplication

9.3 Matrix Inverse

9.4 The Matrix Inverse Method

9.5 LU Decomposition

9.6 Summary

9.7 References and Further Reading
9.8 Hints and Solution

9.0 Introduction

In the last unit, Gauss Elimination and Gauss-Jordan Elimination methods for
solving system of linear equations along with their C-implementation was discussed.
In this chapter, two more direct methods for solving system of linear equations will
be discussed, namely Matrix Inverse Method and LU Decomposition Method. As a
prerequisite, the learner needs to have complete understanding of the algorithm
(Algorithm 8.1 and 8.2) and corresponding C implementations mentioned in Unit 8.

9.1 Objectives

After going through this topic, the learner should be able to
> Understand the concept of matrix multiplication.
> Multiply two matrices using C program.
>> Understand the concept of matrix inverse.

>> Determine inverse of a matrix using C program.

219

220 NSOU e CC-MT-06

> Solve a system of linear algebraic equations by Matrix Inverse Method
using C program.

> Understand the purpose of matrix factorization/decomposition.

> Solve a system of linear algebraic equations by LU decomposition

method using C program.

9.2 Matrix Multiplication :

The process of multiplying matrices is called matrix multiplication and is
defined, in general, as follows : Let A:<al-j> be an m x n matrix, B= b,) an p xr
matrix; then the matrix C = <cl.j> is the (matrix) product of A with B or C = 4 B,
provided n =p and C is of order m x r and the entry in row i and column j of C is
the sum of the products of corresponding entries from row 7 of 4 and column j of
B. If ¢; denotes the (i, j)-entry of AB, then ¢; = a;b;, + apb, ...+ a,b

ij in~ nj
(see Figure 9.1).

r cols

A
v

p rows <‘:| Matrix B
Matrix A v
[f Matrix C

111 TOWS

m rows | i

A
v

A
v

n cols r cols

Figure 9.1
Algorithm 9.1 : Matrix Multiplication
Input : Matrix A (m, n) and B (p, r)
QOutput : Matrix C (m, r).

NSOU e CC-MT-06 221

Steps Description
1. If (n # p) then stop, otherwise go to step 2.
2. fori=1, 2, m do:
for j=1, 2, , 1 do:
cliffj] =0
for k=1, 2, ... , 1 do:
clill j] =c[il[j] + afill kI*b[k][j]

3. Print the matrix C and stop.

When a matrix B multiplies a vector x, it transforms x into the vector Bx. If this
vector is then multiplied in turn by a matrix A, the resulting vector is A (Bx) (See
Figure 9.2).

X ultiplication by B, Multiplication by 4
> m—lly-
Nﬁp“caﬁoM
Figure 9.2

Check Your Progress 9.1
Write a C program to multiply two matrices A and B (Algorithm 9.1). Using the

2 3 4 3 6
program compute AB where A = | | jand B=|, , ;|

Check Your Progress 9.2

Using the program for multiplying two matrices compute AB, where

13 -4 4 6
A=| 6 -8 -7|and B =
3 0 9 302

222 NSOU e CC-MT-06

9.3 Matrix Inverse :

An n x np matrix 4 is said to be invertible if there is an 7 < » matrix C such that
CA=Tand AC=1

where / = /,, the n x n identity matrix. In this case, C 1s an inverse of 4 (Figure 9.3).
In fact C is uniquely determined by 4 and denoted by 4!, So that

A'A=Tand AC'=1]

If 4 is an invertible #» X n matrix, then for each b in K", the equation Ax = b has
the unique solution x = A"'b.

Multiplication by 4

Multiplication by 4~

Figure 9.3

Theorem 9.1

An n x n matrix A4 1s invertible if and only if 4 is row equivalent to /,, and in
this case the sequence of elementary row operations that reduces 4 to [, also
transforms 7, to A7,

If A4 1s invertible, then by Theorem 9.1 A is row equivalent to /, (4 ~1,). Then,
since each step of the row reduction A4 corresponds to left multiplication by an

elementary matrix, there exists elementary matrices £, £,,......... ,E, such that
A -~ EIA -~ EZ(EIA) -~ E3(E2E1A) ~L . NEP(EP71 EIA) =]}’l
That is, £, (E, ... EA) =1, 9.1)
Since the product £,F,......... E, of invertible matrix is invertible, equation 9.1

leads to

NSOU e CC-MT-06 223

(E oy g EY U EE, oo ENA=(EE, ... EY,

=A=(EE, E)!
S A= [, EYV=EE E,
Then A= EE, | . .. FI, which says that 47! results from applying £, [,

E, successively to [, This is the same sequence in equation (9.1) that
produces 4 to /,.

The following procedure (Table 9.1) outlines how to find A!:

Steps Description

1. Place A and I side by side to form augmented matrix [A 1].

2. Use the row reduction method of Algorithm 8.1 and
Algorithm 8.2 together (step 1 to 4 of Table-8.9) to convert
matrix [A 1] into reduced row echelon form.

3. If row reduction process in step 2 converts the augmented
matrix [A 1] to [1 A7Y] then A is invertible and
stop, otherwise A is not invertible.

Table 9.1
Example 9.1
0 1 2
Find the inverse of the matrix 4 = | | 0 3| if exists.
4 -3 8
Solution :
0 2100
The augmented matrix /A] is 1 03010
-3 8 0 0 1

After executing the program of Table 8.9 (steps 1 to 4 of Table 8.9) with the
above augmented matrix as input we get the reduced echelon matrix as following

1.00 0.00 0.00 -450 7.00 -1.50
0.00 1.00 0.00 -2.00 4.00 -1.00
0.00 0.00 1.00 1.50 -2.00 0.50

224 NSOU e CC-MT-06

The first 3 columns forms /5. Therefore the remaining 3 columns forms 4.

-45 7 -15
Sodl=| 2 4 -1
15 =2 5

Check Your Progress 9.3

1 =2 1
Find the inverse of the matrix A = | 4 -7 3| if it exists. Also validate using
2 6 -4

matrix multiplication algorithm that 441 = ;.

Check Your Progress 9.4

1 =2 1
Find the inverse of the matrix 4 = -1 5 6| if it exists.
5 -4 5

9.4 The Matrix Inverse Method

Systems of linear algebraic equations having equal number of variables and
equating can be solved using the matrix inverse, 4-!. Consider the general system of
linear algebraic equations :

Ax=b 9.2)
Multiplying the equation 9.2 by A~! yields
AlAx=A1b
= x=A1b (9.3)

Thus, when the matrix inverse A1 of the coefficient matrix A is known, the
solution vector x is simply the product of the matrix inverse A and the right-hand-
side vector b. Not all matrices have inverses. Singular matrices, that is, matrices
whose determinant is zero, do not have inverses and therefore, they are not
invertible. The corresponding system of equations does not have a unique solution.
The following procedure (Table 9.2) outlines the Matrix Inverse Method to find out
the solution of systems of linear equations.

225

NSOU e CC-MT-06

Steps Description
1. Use the procedure in Table 9.1 to find the inverse A™' of the the
coefficient matrix A of the system of linear equations.
2. Multiply the matrix A7 and the right hand side vector b of the

system of linear equations. Refer Algorithm 9.1 and Check your
progress 9.1.

3. The result of the multiplication in step 2 gives the solution vector
x of the system of linear equations.

Table 9.2
Example 9.2
Consider the following system of linear equations given in section 8.4 in Unit 8.
x| — 2%, X3 = 0
2x,— 83 = 8
—4x;+ Sx,+ 9% = -9

Find the solution of the above linear system.

Solution :

1 =2 1 0

Here the coefficient matrix A = | 0 2 -8| and b= | 8

—4 5 9 -9

Apply the step 1 of Table 9.1.

-2 1 1 0 0
[A =1 0 2 =8 0 10
—4 5 9 0 0 1

Apply the step 2 of Table 9.1 to get the reduced row echelon matrix.

Enter the no of rows and columns: 3 6
The given matrix is

1.00 -2.00 1.00 1.00 0.00 0.00
0.00 2.00 -8.00 0.00 1.00 0.00
-400 500 9.00 0.00 0.00 1.00

The echelon matrix is

MATH (CC-MT-06)—15

226 NSOU e CC-MT-06

1.00 -2.00 1.00 1.00 0.00 0.00
0.00 2.00 -8.00 0.00 1.00 0.00
0.00 0.00 1.00 4.00 1.50 1.00

The reduced echelon matrix is

1.00 0.00 0.00 29.00 11.50 7.00
0.00 1.00 0.00 16.00 6.50 4.00
0.00 0.00 1.00 4.00 1.50 1.00

29 11.5 7
Therefore, A = | 16 6.5 4
4 1.5 1

Apply the step 3 of Table 9.1 to multiply 4! and b using the Algorithm 9.1.

29 11.5 71| 0O 29
16 6.5 4 g1=[16
4 L5 I{-9 3

Therefore, the solution x; = 29, x, = 16 and x; = 3.

Note :

In practical work A1 is seldom computed, unless the entries of 4! are needed.
Computing both A~ and 47! b takes about three times as many arithmetic operations
as solving Ax = b by row reduction, and row reduction may be more accurate.

Check Your Progress 9.5
Solve the following system using Matrix Inverse Method :

x; + 6x, = 2
S5x; + 4x, -1

9.5 LU Decomposition

LU factorization, is motivated by the fairly common industrial and business
problem of solving several sets of equations, all with the same coeflicient matrix :

Ax = by, Ax = b,, Ax =b;, .. ,Ax =D, 9.4)

NSOU e CC-MT-06 227

that is, for solving the equation Ax = b with different values of b for the same 4. Note
that in row reduction method left-hand side 4 and the right-hand side b are modified
within the same loop and there is no way to save the steps taken during the
elimination process. If the equation has to be solved for different values of b, the
elimination step has to be done all over again.

To avoid this, one could solve the first equation 9.4 by row reduction and obtain
LU factorization/decomposition of A at the same time. Thereafter, the remaining
equations are solved with LU factorization.

Assume that 4 is an m X n matrix that can be row reduced to echelon form
without row interchanges. Then A can be written in the form 4 = LU, where L is an
m x m lower triangular matrix with 1’s on the diagonal and U is m x n echelon form
of A. For instance, see the example in Figure 9.4. Such a factorization is called LU
factorization of A. The matrix L is invertible and is called unit lower triangular
matrix.

1 0 0 Offe * * * x
* 1 0 0/0 o % *
A=1[* * 1 0flo 0 0 ® *
*x F 1040 0 0 0 0
L U
Figure 9.4

Symbol (*) denotes any real number and symbol () denotes leading entry of a
row. When 4 = LU, the equation Ax = b can be written as L(Ux) = b. Writing y for
Ux, one can find x by solving the following pair of equations :

Ly=54
Ux=y 9.5)

Each equation is easy to solve because L and U are triangular (Figure 9.4).

A

Figure 9.5

228 NSOU e CC-MT-06

LU Decomposition Algorithm :

Suppose A can be reduced to an echelon form U using only row replacement that
add multiple of one row to another row below it. In this case there exists unit lower

triangular matrices £, [2,,....... ,E, such that
By EEA=U (9.6)
Then A=(E,. .. IHE)U
where L=(E,.. . IE)! (9.7)

It can be shown that product and inverse of unit triangular matrices are also unit
triangular. Thus L is unit lower triangular.

Note that the row operation in equation 9.6, which reduce 4 to U, also reduces
Lto], because E,........ Byl L=(E, ... EyEY) (B E,E,)™" =1 This observation
is the key to constructing . The following procedure (Table 9.3) outlines the LU
decomposition algorithm.

Steps Description

1. Reduce A to an echelon form U by a sequence of row
replacement operations, if possible

2. Place entries in L such that the same sequence of row
operations reduce L to I

Table 9.3

Let us find a LU factorization of matrix (8.3a)

2 4 -1)
4 -5 3 -8 1

4=, -5 —4 1 8
-6 0 7 -3

Since 4 has four rows, L should be 4 x 4. The first column of L is the first
column of A divided by the top pivot entry.

(9.8)

L

—

)
—_ O O O

NSOU e CC-MT-06 229

Compare the first columns of 4 and L. The row operations that create zeros in
the first column of 4 will also create zeros in the first column of L. The rest of L can
be determined by same correspondence of row operations.

Iteration(i) A4, L,
0 [2 4 -1 5) 1 0 0 0
4 -5 3 -8 1 0 1 0 0
2 -5 —4 1 8 0 0 1 0
_—6\(\7 -3 1 0 0 0 1
1 2 4 -1 0O 0 0
0 1 1 0 0
0 -3 0 1 0
0 4 0 0 1
2 P |
0 3 1
0 0 0
0 0 0
3 [2 4 -1 5 -2
0 3 1 2 -3
0 0 0 2 1
0 0 o o ()
4 [2 4 -1 5 -2
0 3 1 2 -3
0 0 0 2 1
0 0 0 0 5]
Final Step 2 4 -1 5 -2 1 0 0 0
0 3 1 2 -3 -2 1 0 0
U= L=
0 0 0 2 1 1 -3 1 0
0 0 0 5 -3 4 2 1

Table 9.4

230 NSOU e CC-MT-06

C Program for LU Decomposition is given in Table 9.5.

#include<stdio.h>
#include<math.h>
void main()
{
float a[20][20]={{1,-2,-4,-3},{2,-7,-7,-6},{-1,2,6,4},{-4,-1,9,8} };
float temp[20],t,t1,c[20][20]={},e=.0001;
int m, n, i, j, k, p,r, lead=0,q;
printf("Enter the number of rows and columns: ");
scanf("%d%d",&m,&n);,
/* Display the given matrix*/
printf("\n\nThe given matrix is\n");
printf(" \n");
for (i=0; i<m, 1++)

{

for (j=0; j<n; j++)
{
printf("%6.2\t", a[i][j]);
}
printf("\n");
}
/* Insert one in all diagonal entries to build the Lower Triangular Matrix */
for(r=0;r<m;r++)
{
c[r][r]=1;
}
/*Main logic of row echelon form*/
1i=0; /*1 1s pointing to first row™/
p=0; /*p is pointing to first row of Lower Triangular matrix*/
q=0; /*q is pointing to first column of Lower Triangular matrix*/
while(i<m-1 && lead<n)
{
if (fabs(a[i][lead])>e) /*Check if the entry is nonzero*/
{ /*Insert the entire column of leading entry of a matrix into Lower
Triangular matrix c*/

NSOU e CC-MT-06

231

}
{

for (r=t;r<m;r++)

{
}

/*Apply row operation to create zeros below leading entry*/
for(k=i+1; k<m, k++)
{
t=a[k][lead]/a[i][lead];
for(j=lead; j<n; j++)
a[k][j]=alk][j]-t*a[i][j];
}
i++;

lead++;
qt+;

c[rllql=alr][lead];

else

/*Search a row below current row such that the entry in the same
column is non-zero */
for(p=i+1; p<m; p++)
{
if (fabs(a[p][i])>e) /*Check if the entry is nonzero*/
break;
}
/*if non-zero entry found swap the rows™*/
if(p<m)
{
for(j=0; j<n; j++)
{
temp[j]=ali][j];
afi][jl=alpllil;
a[pl[jl=templj];
}
}

else

/*if all entry below the leading entry is zero then go to search

232 NSOU e CC-MT-06

the next column*/
lead++;

}
j

/*Divide each entry of Lower Triangular matrix by diagonal element*/
for(j=0;j<m;j++)
{
t1=c[jllil;
for(i=j;i<m;i++)

cliljI=clil[j)/t1;

}
printf("\n\nThe Upper Triangular Matrix is\n");
printf(" \n");

/* Display the Upper Triangular matrix */
for (i=0; i<m, 1++)
{
for (=0; j<n; j++)
{
printf("%6.2f\t", a[i][j]);
}
printf("\n");
}
printf("\n\nThe Lower Triangular Matrix is\n"),
printf(" \n");
/* Display the Lower Triangular matrix */
for (i=0; i<m, 1++)

{

for (j=0; j<m; j++)
{
printf("%6.2f\t", c[i][j]1);
}
printf("\n");
}
}

Table 9.5

NSOU e CC-MT-06 233

Example 9.3

[2 —4 -2 i
6 -9 =5
. .. 2 =7 -3 9 .
Find a LU decomposition of 4 = A 5 5 | using the program

-6 3 3 4]

in 9.5.

Solution :

Execute the program of Table 9.5 considering the input as A.
Enter the number of rows and columns: 5 4

The given matrix is

2.00 -400 -2.00 3.00
6.00 -900 -5.00 8.00
2.00 -7.00 -3.00 9.00
4.00 -2.00 -2.00 -1.00
-6.00 3.00 3.00 4.00

The Upper Triangular Matrix is The Lower Triangular Matrix is
2.00 -4.00 -2.00 3.00 1.00 0.00 0.00 0.00 0.00
0.00 3.00 1.00 -1.00 3.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 5.00 1.00 -1.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 2.00 2.00 -1.00 1.00 0.00
0.00 0.00 0.00 0.00 -3.00 -3.00 2.00 0.00 1.00

Solving the system of linear equations using L and U:

After decomposing the matrix, A into L and U, the next step is to solve Ly = b
and Ux =y to get the unique solution of a system of linear equations Ax =b. The
generic form of Ly =b is as follows :

1 0 0 0 . 0w 1 [5]
g 0 0 N by
o an 0 0 Yo | _ b,
930 31 32 1 0 »o| | b (9.9)
| Ym0 Ym-11 Ym-12 Ym-13 1_ V] LD

234 NSOU e CC-MT-06

Yo = by
o= b —)
Yo = by —) —anl (9.10)
= _
Y3 = b — 30 —axl —asp)s
Y1 = by — 1Mo = - 1)(m-2)Vm-1
Yo = by o
J<i
=y = b - _Zoa,-,y, where i=1,2,...m-1 (9.11)
j=

The algorithm to solve Ly =b is outlined in Algorithm 9.2.

Algorithm 9.2 : Solve Ly =»b where L is Unit Lower Triangular matrix
generated by LU decomposition.

Input : A (m x m) Unit Lower Triangular matrix L(m, m). A (m x 1) matrix
b(m, 1) which is the right hand side vector of Ax =b.

Output : A (m x 1) matrix y(m, /) which is the solution of Ly = b.
Steps Description

1. [yI[0]= b[0]

2 fori=1, 2, m-1 do:

3. s=0

4. for j=0, I,..... ..., i-1 do:
5 L s = s+ afilfi]lj]
6. y[i] = bfi] — s

7. Print Matrix y and stop.

Now to get the final solution we need to solve the equation Ux =y. For unique
solution scenario the generic form of Ux =y is as follows :

Qoo do1 Gy o3 oo o) ENEEN
dip Gz Gz Ay | Y1
0 ayp apy ... dy Y2 0_1 »
0 0 a3z ... a3(m—l) X3 R&) (9.12)
i 0 0 0 0 a(m—l)(m—l)_ _xm_l_ _ym—l_

NSOU e CC-MT-06 235

Xo = 0o — dpiXy - aO(m—l)xm—l)/aoo
X = 2 — Xy _al(m—l)xl)/all
= .. = 9.13)
Xm3 = Vs ~ A 3)m-1 m-1 - a(m—S)(m—Z)xm—Z)/ Am-3)(m-3)
Xma2 = Vs - a(m—Z)(m—l)xm—l)/ Am-2)(m-2)
Xm1 = ym—l/a(m—l)(m—l)
Xm1 = ym—l/a(m—l)(m—l) i
= x, = ¥ - 2 l%-xj where i=m-2, m-3,...210 (9.14)
J=m-

The algorithm to solve Ux =y is outlined in algorithm 9.3

Algorithm 9.3 : Solve Ux =y where U is Upper Triangular matrix generated
by LU decomposition.

Input : A (m x m) Upper Triangular matrix U(m, m). A (m x 1) matrix y(m, 1)
which is the solution of the system Ly =b.

Output : A (m x 1) matrix x(m, /) which is the solution of Ux=y.

Steps Description
1 dm-1)= A
2. for i=m-2, m-3,.....,2,1,0 do:
3. s=0
4. for j=m-1, m-2 ,.....,i+1 do:
3. s =8+ afi][j]*x[j]
6. x/i] = O[i] —s) /ali][i]
7. Print Matrix x and stop.

Check Your Progress 9.6

Write C programs for Algorithm 9.2 and Algorithm 9.3. Append this program
code with the program in Table 9.5.

Example 9.4

Solve the following set of linear equations by LU decomposition Method.

236

X1

—4x,

Solution :

+

2x,
2x,

5x,

+ X3
- 8x3
+ 9x3

Enter the number of rows and columns : 3 3

The given coefficient matrix is

1.00 -2.00 1.00
0.00 2.00 -8.00
-4.00 5.00 9.00

The Upper Triangular Matrix is

1.00 -2.00 1.00
0.00 2.00 -8.00
0.00 0.00 1.00

The y Matrix is

y[0] = 0.00
y[1] = 8.00
y[2] = 3.00

Check Your Progress 9.7

NSOU e CC-MT-06

The Lower Triangular Matrix is

1.00 0.00 0.00
1.00 0.00
-1.50 1.00

0.00
-4.00

The x Matrix or final solution is

x[0] = 29.00
x[1] = 16.00
x[2] = 3.00

Solve the following set of linear equations by LU decomposition Method :

3, -
—3x; +
6x; —
—Ox; +

Check Your Progress 9.8

x5
5x,
4x,
5x,

+

2x; +
X3
Sx3 +

A set of linear equations is given below :

xl -
2%, -
_xl —+

—4x, —

2x,
x5
2x,
X2

4x; —
Tx; —
6x; +
Ox; +

2x,

5xy
12x,

3x4
6x4
4x,
8xy

LW O N =

NSOU e CC-MT-06 237

Solve the above equation using C programming by following methods and
compare the results.

(a) LU decomposition algorithm. (C Program in Table 9.5, Algorithm 9.2, 9.3)
(b) Row reduction algorithm (Algorithm 8.1, 8.2)
Check Your Progress 9.9

Consider a given invertible matrix A (n, n) is decomposed into L (Unit Lower
Triangular) and U (Upper Triangular) matrices. To solve the linear system Ax = b,
Algorithm 9.2 and 9.3 are used. What is the number of arithmetic operations needed
to implement these two algorithms? Express the number in terms of O (big ‘O’)
notation.

Comparison between LU Decomposition algorithm and Row Reduction
(Gaussian Elimination) algorithm :

To compare the LU decomposition and Row Reduction, let us consider the
problem of solving 7 sets of linear equations with the same coefficient matrix 4 but
different right hand sides b. The problem can be expressed as

Solve Ax; = b, where i =1,2,3, .. ,nand x; = (x;p, X;, . . ., xl-(nfl))T,
b; = (by, by, . . ., bi(nfl))T

Now LU Decomposition method applies following steps to solve the above
system :

1. Decompose 4 into L and U :

Known as forward elimination method. This method is similar to the row
reduction method to convert a matrix into echelon form (Algorithm 8.1).
Only inserting the entries of L are the additional step which doesn’t add
any new flops. Therefore, the total number of flops is approximately
proportional to 7° (Refer Example 8.3) when » is very large. Since each
set of linear equations have the same coefficient matrix A4, this
decomposition method needs to be executed only for once.

2. Solve the set Ly, = b, :
Known as forward substitution method. The total number of flops is
approximately proportional to #? (Refer Check Your Progress 9.9) when
n is very large. Since each set of equations have different right hand side,
this forward substitution needs to be executed » times for n set of
equations. Therefore, total number of flops is approximately proportional
tonxn?=n.

238 NSOU e CC-MT-06

3. Solve the set Ux; =y, :
Known as back substitution method and here also the total number of flops
is approximately proportional to #? (Refer Check Your Progress 9.9) when
n is very large. By the same reasoning this step also needs to be executed
for n times and total no of flops is also proportional to n x n? = n3.

Therefore, the total number of flops required to solve n set of systems using LU
Decomposition method is proportional to #* + n3 + n* = 3n3. When n becomes very
large we can avoid the proportionality constants and we can write total number of
flops is = O(n?)

Now Row Reduction (Gauss Elimination) method applies following steps to
solve the above system :

1. Convert the augmented matrix into Row Fchelon form :
Known as forward elimination method. In this method the total number
of flops is approximately proportional to 7 (Refer Example 8.3) when
n is very large. Since for each set of linear equations this method needs
to be executed, the total number of flops for entire set is approximately
proportional to n x n3 = n*,

2. Convert the Row Echelon form into Reduced Row FEchelon form :
Known as backward substitution method. The total number of flops is
approximately proportional to #? (Refer Check Your Progress 8.4) when
n is very large. Since for each set of linear equations this method needs
to be executed, the total number of flops for entire set is proportional to
nxm=n,

Therefore, the total number of flops required to solve n set of system is
approximately proportional to #* + n3. When n becomes very large we can avoid the

lower power of n and other proportionality constants and we can write total number
of flops is = O(n*).

Therefore, we can conclude LU decomposition is superior than Row Reduction
algorithm if we consider set of system of linear equations with same coefficient
matrix. For scenario of a particular system of linear equation there is not much
difference in the performance and both of the algorithm has number of flops = O(#?).

9.6 Summary

The two direct methods for solving systems of linear algebraic equations are
presented in this chapter namely, The Matrix Method and LU Decomposition
Method. Some general guidelines for selecting a method for solving systems of
linear algebraic equations are given below :

NSOU e CC-MT-06 239

o Row reduction and reduced row reduction forms are fundamental to all the
direct methods those are considered here.

e Direct elimination methods are preferred for small systems (n ~< 50 to 100)
and systems with few zeros (non-sparse systems). Gauss elimination or Gauss
Jordan Elimination is the method of choice, as the Matrix Method needs more
arithmetic operations than the elimination methods.

o LU factorization methods are the methods of choice when more than one b
vector is considered with the same coeflicient matrix.

9.7 References and Further Reading

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2005

2. Linear Algebra and Its Application, David C. Lay, Pearson, 2007

3. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

4. Numerical Methods for Engineers and Scientists, Second Editon, Joe D.
Hoffman, CRC Press, 2001.

9.8 Hints and Solutions

Solution 9.1 : Solution 9.2 :
=27 =17

11 0 21 >

-1 13 -9 -53 =38
15 36

Solution 9.3 :

The reduced echelon matrix is

-05 0.7 0.65
1.00 0.00 0.00 -0.50 0.70 0.65 41=|-05 03 035
0.00 1.00 0.00 -0.50 0.30 0.35 205 01 —-0.05

-0.00 -0.00 1.00 -0.50 0.10 -0.05

240 NSOU e CC-MT-06

Solution 9.4 : Solution 9.7 :

A is not an invertible matrix. The x Matrix or final solution is

x[0]= 3.00, x[1]= 4.00, x[2]= -6.00,
x[3]= -1.00

Solution 9.8 :
x[0]= -2.00, x[1]= -1.00, x[2]= 2.00, x[3]= -3.00

Solution 9.9 :
Algorithm 9.2

For each execution of outer loop, the inner loop will run for 7 times (j from
0 to i-1). The outer loop 7 runs from / to n— /

2 n(n D_ =5 L»2— n)=0@n?) [ignoring the lower order term of # and other
=1

constants|
Algorithm 9.3

For each execution of outer loop, the inner loop will run for n-/-i times (j from
n-1 to i+/). The outer loop 7 runs from n-2 to 0

1
Z (n-1- n(n2) 1(n2 -n)=0(n*) [ignoring the lower order term of n

i=n-2

and other constants]

Unit - 10 Q Application of C Programming : Solution
of System of Linear Equations by Iterative
Methods : Jacobi and Gauss-Siedel
Method

Structure

10.0 Introduction

10.1 Objectives

10.2 Jacobi Method

10.3 The Gauss-Seidel Method

10.4 Summary

10.5 References and Further Reading
10.6 Hints and Solutions

10.0 Introduction

In last two units (Unit 8 and 9), different direct methods for solving systems of
linear equations along with their C-implementations were discussed. All nonsingular
systems of linear algebraic equations have a solution and theoritically the solution
can always be obtained by some direct method mentioned earlier. However, the
presence of roundoff errors while performing large number of arithmetic operations,
is a major pitfall in the application of direct methods. Round-off errors are inherent
as exact infinite precision numbers are approximated by finite precision numbers in
computer and other digital calculators. The effects of round-off can be reduced by
a procedure known as iterative methods, which is presented in this unit. All the
iterative methods obtain the solution asymptotically by an iterative procedure in the
following approach :

1. A trial solution is assumed.

2. The trial solution is substituted into the system of equations to determine the
mismatch, or error, in the trial solution.

3. An improved solution is obtained from the mismatch data.

Examples of iterative methods are Jacobi iteration, Gauss-Seidel iteration. We
will also discuss their respective C implantations in this unit.

241

MATH (CC-MT-06)—16

242 NSOU e CC-MT-06

10.1 Objectives

After going through this topic, the learner should be able to

Describe the general structure of an iterative procedure for solving the
system of linear algebraic equations.

Understand the differences between direct methods and iterative methods.
Solve a system of linear algebraic equations by Jacobi Method using C
program.

Y YV ¥

Solve a system of linear algebraic equations by Gauss-Seidel Method using
C program.
> Understand the concept of Strictly Diagonally Dominant Matrix.

10.2 Jacobi Method

The first iterative technique is called the Jacobi method and this method makes
two assumptions :

(1) that the given system has a unique solution and
(2) that the coefficient matrix A has no zeros on its main diagonal.

If any of the diagonal entries are zero, then rows or columns must be
interchanged to obtain a coefficient matrix that has nonzero entries on the main
diagonal.

Let us consider a system of linear equations to illustrate the principle of Jacobi
Method.

apx, tapx, tapx; .. tanx, =b
ayX; tapx, tapgxs t.. tax, =b,
ayx; Tapx, tapx; t... tagx, =b (10.1)
anlxl + an2x2 + an3x3 o + annxn = bn

To begin the Jacobi method, solve the first equation for x,, the second equation
for x, and so on, as follows :

NSOU e CC-MT-06 243

v = by —aypXy —ay3x3 = —ay,%,
1 an
o = by = GpXy — dpzX3 =+ = dyp,X,,
2 45%)
by — 31X — UanXn — - — U3, X
D3 dy X —dpX, 3n*n
= X3 = iy (10.2)
B b, —aux; —a,xy = - -1 (n-1*n-1
X, = p

nn

Therefore, the general form of solution is

AR (10.3)

Then make an initial approximation of the solution (x, x,, x3,..., x,) and

substitute these values of x; into the right-hand side of the rewritten equations to
obtain the first approximation. In the same way, the second approximation is
performed by substituting the first approximation’s x-values into the right-hand side
of the rewritten equations. By repeated iterations, a sequence of approximations will

be formed that converges to the actual solution if certain criterion is satisfied.

Algorithm 10.1 : Solve Ax =b where A is Coefficient matrix of the linear
system and b is the right hand side of the linear system.

Input : A (n x n) is a square matrix with nonzero diagonal elements. b is a
(n x 1) matrix.

Output : x is a (n x k) matrix where each element x;; is the value of unknown
variable x; in j th iteration.

244

NSOU e CC-MT-06

Steps

~

0PNk

—~ N~
~2

12.
13.

Description
k=20
fori=0,1,... n-1do:
x[i][k] = 0
Increment k
fori=0,1,... n-1do:
s=10
for j=0, 1, ... n-1do:

if (i #j) Do step 9.

s = s+ afil[j]*x[j][k— 1]

| x(ij{k] = Bfi])/ afiji]

go to step 4 if |x[i]l[k] —x[i][k— 1]| for at least one i> e (the
desired accuracy)

Print Matrix x

Print kth column of matrix x as final solution and stop.

Let us illustrate the Algorithm 10.1 of Jacobi Method using the following

example.

5S¢ - 2x, + 3x; = -1
2, - x, = Txy = 3

Start with initial solution x; = 0, x, = 0, x; = 0 (step 1 to step 3)

Calculate the next better approximation of the solution using following equations
(step 4 to step 10).

X, = —% + %xZ — %x3
x, = & 4 3n - dxn (10.5)
X; = —% + %xl — %xZ
So the first approximation is
x = -+ + 20 - 20 =-0200
x, = %2 +30 - lo= o

- _3 20y - 1oy=_
x3 = -3 + 50 - 5(0)=-0429

NSOU e CC-MT-06 245

Continue the iterations until two successive approximations are identical when

rounded to three significant digits. In this example, the absolute difference for

X =

(0.200 — 0) = 0.2, for x, = (0.222 — 0) = 0.222 and for x; = (0.429 — 0) = 0.429

are all greater than .001(desired accuracy), so next approximate solution will be
calculated. (step 11). In this way finally the following sequence of approximations,
shown in Table 10.1, is obtained.

x|i] itr=0 | itr=1 itr=2 | itr=3 | itr=4 | itr=5 | itr=6 | itr=7

x[0] 0 -0.2 0.146 | 0.192 | 0.181 | 0.185 | 0.186 | 0.186

x[1] 0 0.222 | 0203 | 0328 | 0332 | 0329 | 0.331 | 0.331

x[2] 0 -0429 | -0.517 | -0.416 | -0.421 | -0.424 | -0.423 | -0.423
Table 10.1

Therefore, the solution in iteration-6 and iteration - 7 are identical and the final

solution is

x[0]= 0.186
x[1]= 0.331
x[2]=-0.423

The ¢ implementation of the Algorithm 10.1 is given in Table 10.2.

C Program for Jacobi Method

{

#include<stdio.h>
#include<math h>
void main()

/*a[i][j] is coefficient of x[j] in ith equation , b[i] is the rhs of ith equation
x[1][j] is the value of ith unknown variable x[i] in jth iteration*/

float a[20][20]={{5,-2,3},{-3,9,1},{2,-1,-7} },b[20]={~1,2,3},x[20][20],s,t, €
=001,

int n,i,j,k=0,s0l flag;/*sol flag =1 means solution reaches to the desired
accuracy*/

printf("Enter the number of equations: ");

scanf("%d",&n);,

/* Display the coefficient matrix™*/

246 NSOU e CC-MT-06

printf("\n\nThe given coeflicient matrix is\n");
printf(" \n");
for (i=0; i<n; i++)

for (=0; j<n; j++)
{
printf("%6.2\t", a[i][j]);
}
printf("\n");
}
/* Insert zeros as initial solution */
for(i=0;1<n;i++)
{
x[i][k]=0;
}

/*Find out the approximate value of x[1] until it reaches the desired accuracy™/
do

{
k++;
/*Use the value of x[j] found in previous iteration to find new x[j]*/
for(i=0;i<n;i++)
{
s=0;
for(j=0;j<n;j++)
{
if(i!=9)
s=sta[i][j]1*x[j][k-1];
}

x[1][k]=(b[i]-s)/a[1][i];
}
sol flag=1;/*Initially assume that accuracy is reached*/
for(i=0;i<n;i++)
{
t=fabs(x[i][k]-x[i][k-1]);
/*Check the difference of x[i] in two consecutive iterations. If'it is greater
than the given accuracy then make sol flg=0%*/

NSOU e CC-MT-06 247

if(t>e)
{
sol flag=0;
break;
}
}
}
while(sol flag==0);
printf(" \n");

/* Display the sequence of solutions */
printf("\t");
for(i=0;1<=k;i++)
printf("itr=%d ",1);
printf(" \n \n");
for (i=0; i<n; i++)
{
printf("x[%d] ", 1);
for(j=0;j<=k;j*++)
printf("%6.3f ", x[i][j]);
printf("\n");

}

printf("\nThe x Matrix or final solution is\n");

printf(" \n \n");
/* Display the x matrix */

for(i=0;1<n;i++)

printf("x[%d]=%6.3f\n" 1, x[1][k]);

Table 10.2
Check Your Progress 10.1

Solve the following linear system by Jacobi Method rounding up the solution to
three significant digits :
10x, + 2x, - x3 = 7
xx *+ 8, + 3x3 = 4
2%, - x, *+ 10x3 = 9

248 NSOU e CC-MT-06

10.3 The Gauss-Seidel Method

A modification of the Jacobi method is called the Gauss-Seidel method, which
often requires fewer iterations to produce the same degree of accuracy. With the
Jacobi method, the values of x; obtained in the nth approximation remain unchanged
until entire of the (n+1)th approximation has been calculated. With the Gauss Seidel
method, on the other hand, the new value of each x; is used as soon as it is known.
That is, once we have determined x, from the first equation, its value is then used
in the second equation to obtain the new x,. Similarly, the new x; and x, are used
in the third equation to obtain the new x; and so on. Therefore, to calculate the
unknown variable x; we use all x; of current iteration when 7> j and all x; of previous
iteration when i <j. The Algorithm 10.2 shows the detailed steps of Gauss-Seidel
method.

Algorithm 10.2 : Solve Ax =b where A4 is Coefficient matrix of the linear
system and b is the right hand side of the linear system.

Input : A (n x n) is a square matrix with nonzero diagonal elements. b is a
(n x 1) matrix.

Output : x is a (n x k) matrix where each element x;; is the value of unknown
variable x; in the j th iteration.

Steps Description
1. k=20
2. fori=0, I ,...., n-1 do:
3. | x[il][k] =0
4. Increment k
5. fori=0, 1 ,...., n-1 do:
6. s =20
7. for j=0, 1, ... n-1do:
8. if (i>j) Do step 9
9. s = s+ afil[jI*[ji[k]
10. if (i <j) Do step 11
11. s =s +afil]l j]*x[j][k— 1]
12. x[iJ[k] = (b[i] —s) /afi][i]
13. go to step 4 if |x[i][k] —x[i][k— 1]| for at least one i >e(the
desired accuracy)
14. Print Matrix x
15. Print k th column of matrix x as final solution and stop.

NSOU e CC-MT-06 249

Let us find the solution of the linear system mentioned in (10.4) using Gauss-
Seidel method.

5¢ - 2x, + 3x3 = -1
3x; t 9% + x3 = 2
2, - x - TIx3 = 3

The sequence of approximations found by Algorithm 10.2 is shown in Table 10.3.

x|i] itr=0 itr=1 itr=2 itr=3 itr=4 itr=5

x[0] 0 -0.2 0.167 0.191 0.186 0.186

x[1] 0 0.156 0.334 0.333 0.331 0.331

x[2] 0 -0.508 -0.429 -0.422 -0.423 -0.423
Table 10.3

Therefore, the solution in iteration — 4 and iteration — 5 are identical and the
final solution is

x[0] = 0.186
x[1]= 0.331
x[2] = -0.423

It can be noted that the Jacobi method also gave the same result but took more
no of iterations. This shows faster convergence of Gauss-Seidel method over Jacobi
method. But with the advent of parallel processor Jacobi method is becoming
popular again. This is clearly because of the fact that all new components of the
vector X in the Jacobi method are calculated from all the old component values of
x within an iterative cycle. All component updates can therefore be carried out in
parallel with synchronization being required only between iterative cycles. In
contrast, the Gauss-Seidel method use new values within an iterative cycle in a
systematic manner that demands a strictly sequential evaluation of the components.
Table 10.4 shows the C-implementation of Gauss-Seidel method.

C Program for Gauss-Seidel Method

#include<stdio.h>

#include<math.h>

void main()

{ /*a[i][j] is coeflicient of x[j] in ith equation, b[i] is the rhs of ith equation
x[1][j] is the value of ith unknown variable in jth iteration*/

250 NSOU e CC-MT-06

float a[20][20]={{5,-2,3},{-3,9,1},{2,-1,-7}},x[20][20], e =.001;
float b[20]={-1,2,3},s.t;
int n,1,j,k=0,s0l flag;/*sol flag =1 means solution reaches to the desired accuracy*/

printf("Enter the number of equations: ");
scanf("%d",&n);

/* Display the given matrix*/
printf("\n\nThe given coefficient matrix is\n");

printf(" \n");
for (i=0; i<n; i++)

for (j=0; j<n; j++)
{ printf("%6.2f\t", a[i][j]);
lirintf("\n");
/j Insert zeros as initial solution */
for(i=0;1<n;i++)

{
}

/*Find out the approximate value of x[i] until it reaches the desired accuracy*/
do

{

k++;

for(i=0;1<n;i++)

{
s=0;
for(j=0;j<n;j++)
{

x[i][k]=0;

if(i>7)
s=sta[i][j]*x[j][k];
else if(i<))
s=stal1][j]*x[j][k-1];

NSOU e CC-MT-06 251

x[i][k]=(b[i]-s)/a[i][i];

}
sol flag=1;
for(i=0;i<n;i++)
{
t=fabs(x[i][k]-x[i][k-1]);
if(t>e)
{
sol flag=0;
break;
}
}
}
while(sol flag==0);
printf{(" \n");

/* Display the x matrix */
printf("\t");
for(i=0;1<=k;i++)
printf("itr=%d ",1);
printf(" \n \n");
for (i=0; i<n; i++)

{

printf("x[%d] ", 1);

for(j=0;j<=k;j++)

printf("%06.3f ", x[1][j]);

printf("\n");
}

printf("\nThe x Matrix or final solution is\n");
printf(" \n \n");
/* Display the x matrix */
for(i=0;1<n;i++)
printf("x[%d]=%6.3f\n" 1, x[1][k]);

Table 10.4
Check Your Progress 10.2

Solve the following linear system by Gauss-Seidel Method rounding up the
solution to three significant digits.

252 NSOU e CC-MT-06

10x, + 2x, - x3 = 7
xx *+ 8, + 3x3 = 4
2%, - x, *+ 10x; = 9

Neither of the iterative methods presented in this section always converges. That
is, it is possible to apply the Jacobi method or the Gauss-Seidel method to a system
of linear equations and obtain a divergent sequence of approximations. In such cases,
it is said that the method diverges.

Example 10.1

Solve the following system of equations using (a) Jacobi Method and (b) Gauss-
Seidel Method

¥ - 5% = -4
T, - x, = 6

Solution
Part (a) :

Execute the program (Jacobi Algorithm) in Table 10.2 on the matrix and
consider only the first 6 iterations (Table 10.5).

x|i] itr=0 itr=1 itr=2 itr=3 itr=4 itr=5 itr=6

x[0] 0 -4 -34 -174 -1224 -6124 | -42874

x[1] 0 -6 -34 -244 -1224 -8574 | -42874
Table 10.5

For this particular system of linear equations, it can be determined that the
actual solution is x[0]=1 and x[1]=1 and it is clear from Table 20 that the
approximations given by the Jacobi method become progressively worse instead of
better, and the method diverges.

Part (b) :

Execute the program (Gauss Siedel Algorithm) in Table 10.4 on the matrix and
consider only the first 6 iterations (Table 10.6).

x[i] | itr=0 | itr=1 | itr=2 | itr=3 itr=4 itr=5 itr=6

x[0] 0 -4 -174 | -6124 | -214374 | -7503124 | -262609360

x[1] 0 -34 | -1224| -42874 | -1500624 | -52521872 | -1838265472
Table 10.6

NSOU e CC-MT-06 253

The problem of divergence is not resolved by using the Gauss-Seidel method
rather than the Jacobi method. In fact, for this particular system the Gauss-Seidel
method diverges more rapidly, as shown in Table 10.6.

Strictly Diagonally Dominant Matrix

Let us now look at a special type of coefficient matrix A, called a strictly
diagonally dominant matrix, for which it is guaranteed that both methods will
converge.

A (n x n) matrix A is strictly diagonally dominant if the absolute value of each
entry on the main diagonal is greater than the sum of the absolute values of the other
entries in the same row. That is,

| > | + e + + |y,

an| > lan| + lan| + oo + lag|

...... (10.6)
’ann’ > ‘anl‘ + ‘anZ‘ + + an(n—l)’

Consider the following linear system of Example 10.1. The given coefficient

matrix is
1 -5
7 1 (10.7)

Clearly the above coefficient matrix is not strictly diagonally dominant.
Theorem 10.1

If 4 is strictly diagonally dominant, then the system of linear equations given by
Ax=>b has a unique solution to which the Jacobi method and the Gauss-Seidel
method will converge for any initial approximation.

In Example 10.1 the coefficient matrix A can be converted to strictly diagonally
dominant matrix by interchanging the rows. After this interchange, convergence is
assured. After interchanging row 1 and row 2 (R; <> R,) of 4 in (10.7), the strictly
diagonally dominant matrix is formed (10.8).

7 -1
[1 _5} (10.8)

Now after running Jacobi method on the matrix in (10.8) the following sequence
of solutions has been found (Table 10.7) :

254 NSOU e CC-MT-06
x|i] itr=0 itr=1 itr=2 itr=3 itr=4 itr=5
x[0] 0 0.857 0.971 0.996 0.999 1
x[1] 0 0.8 0.971 0.994 0.999 1
Table 10.7

Again after running Gauss Seidel method on the matrix in (10.8) the following

sequence of solutions has been found (Table 10.8) :

x|i] itr=0 itr=1 itr=2 itr=3 itr=4

x[0] 0 0.857 0.996 1 1

x[1] 0 0.971 0.999 1 1
Table 10.8

Now both the methods gives the final solution as x[0] =1 and x[1] = 1.

It can be noted that strict diagonal dominance (Theorem 10.1) is a sufficient but
not necessary condition for convergence of the Jacobi or Gauss-Seidel methods. For
instance, the coeflicient matrix of the system

—4x; + Sx, = 1
xx + 2x, = 3
is not a strictly diagonally dominant matrix, and yet both methods converge to the
solution x[0] =1 and x[1] =1 with an initial approximation of x[0] =0 and x[1]=0
Check Your Progress 10.3

Show that the Gauss-Seidel method diverges for the given system using the
initial approximation (x;, X,, X3, . . ., X,,) = (0,0,0, .. ., 0) :

2 ot 3% - x3 =
3x), - X =
X, *t 2%y =

Check Your Progress 10.4
Show that the Gauss-Seidel method diverges for the given system using the

initial approximation (x;, X,, X3, . . ., X,,) = (0,0,0, .. ., 0) :
2x, - 3x, = -7
x, * 3x, - 10x3 = 9

3x, + x3 = 13

NSOU e CC-MT-06 255

Check Your Progress 10.5

Interchange the rows of the system of linear equations in Check Your Progress
10.3 to obtain a system with a strictly diagonally dominant coefficient matrix. Then
apply the Gauss-Seidel method to approximate the solution to two significant digits.

Check Your Progress 10.6

Interchange the rows of the system of linear equations in Check Your Progress
10.4 to obtain a system with a strictly diagonally dominant coefficient matrix. Then
apply the Gauss-Seidel method to approximate the solution to two significant digits.

Check Your Progress 10.7

Solve the system

10, - 2%, - x3 - x;, = 3

2%, + 10x, - x - x; = 15
X, - X, + 10x; - 2x, = 27
X, - X, + 2x + 10x, = -9

Using Jacobi, Gauss-Seidel method and compare the results.

10.4 Summary

The iterative methods for solving systems of linear algebraic equations are
presented in this chapter. Some general guidelines for selecting an iterative method
for solving systems of linear algebraic equations are given below :

e For large systems that are not diagonally dominant, the round-off errors can
be large.

e Iterative methods are preferred for large, sparse matrices that are diagonally
dominant.

10.5 References and Further Reading

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2005

2. Linear Algebra and Its Application, David C. Lay, Pearson, 2007

256 NSOU e CC-MT-06

3. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

4. Numerical Methods for Engineers and Scientists, Second Editon, Joe D.
Hoffman, CRC Press, 2001.

10.6 Hints and Solutions

Solution 10.1 : Solution 10.2 :
x[0]=1, x[1]= -1, x[2] =1 and x[0]=1, x[1]= -1, x[2] =1 and
number of iterations = 8. number of iterations = 7.

Solution 10.3 :

Solution Diverges. The first five approximations are

x[1] itr=0 | itr=1 | itr=2 itr=3 itr=4 itr=5

x[0] 0 5 -29.5 332.75 -3470.875 36467.188
x[1] 0 10 | -93.5 993.25 -10417.63 109396.563
x[2] 0 -45 | 47.25 | -496.125 5209.313 -54697.781

Solution 10.5 :

Solution converges to x[0] = 2, x[1] = 1, x[2] =0 in five iterations.

x[1] itr=0 itr=1 itr=2 itr=3 itr=4 itr=5
x[0] 0 1.67 2.04 1.99 2 2
x[1] 0 1.11 0.97 1.01 1 1
x[2] 0 -0.06 0.02 0 0 0

Unit - 11 Q Application of C Programming : Interpolation

Structure

11.0 Introduction

11.1 Objectives

11.2 Interpolation
11.2.1 Direct Fit Polynomial
11.2.2 Lagrange Interpolation Method
11.2.3 Newton’s Divided-Difference Method
11.2.4 Newton’s Forward-Difference method

11.3 Summary

11.4 References and Further Reading

11.0 Introduction

In many problems in science and engineering, the data being considered are
known only at a set of discrete points, not as a continuous function. For example,
the continuous function

y = f(x) may be known at n discrete values of x :
Yyi=f(x) (i=1,2,...n)

In many applications, the values of the discrete data at the specific points are
not all that is needed. Values of the function at points other than the known discrete
points may be needed (i.e., interpolation). The derivative, integral of the function
may be required. Thus, processes of interpolation, differentiation, and integration of
a set of discrete data are of interest. These processes are illustrated in Figure 11.1.

Interpolation Differentiation Integration

A 4
v
v

Figure 11.1
257

MATH (CC-MT-06)—17

258 NSOU e CC-MT-06

These processes are performed by fitting an approximating function to the set
of discrete data and performing the desired process on the approximating function.

Many types of approximating functions exist. In fact, any type of analytical
function can be used as an approximating function. Three of the more common
approximating functions are :

> Polynomials
> Trigonometric functions
> Exponential functions

Approximating functions should have the following properties :

> The approximating function should be easy to determine

> It should be easy to evaluate.

> It should be easy to differentiate.

> It should be easy to integrate.

Polynomials satisfy all four of these properties. There are two fundamentally
different ways to fit a polynomial to a set of discrete data :

> Exact fits

> Approximate fits

An exact fit yields a polynomial that passes exactly through all of the discrete
points. This type of fit is useful for small sets of smooth data. Exact polynomial fit
methods and corresponding C implementations are discussed in Sections 11.3.1 to
11.3.4. An approximate fit yields a polynomial that passes through the set of data in
the best manner possible, without being required to pass exactly through any of the

data points. We have not discussed approximate polynomial fits here as it is out of
scope of the syllabus.

11.1 Objectives

After going through this topic, the learner should able to

> List the uses of functional approximation

> List the required properties of an approximating function

> Fit a direct fit polynomial of any degree to a set of tabular data
> Explain the concept underlying Lagrange polynomials

> Fit a Lagrange polynomial of any degree to a set of tabular data

NSOU e CC-MT-06 259

> Write a C program for direct fit and Lagrange method

> Define a divided difference and construct a divided difference table
> Write a C program to display the divided difference table

> Write a C program for divided difference method

> Apply the Newton forward-difference polynomial

> Write a C program for Newton forward-difference method

11.2 Interpolation

Let us consider following data set of (x, f (x) pairs given in Table 11.1 generated

x F o)
3.35 0.298507
34 0.294118
3.5 0.285714
3.44 ?
Table 11.1

by the function f(x) = % which is unknown initially. From the given data the
unknown value of f(x) at x = 3.44 needs to be determined. To do that, first the
approximate function that satisfy the first three points needs to be determined. A
polynomial can be constructed which is suitable for approximating function f(x)
because of the following two theorems :

Theorem 11.1 : Weierstrass polynomial approximation theorem

If £ (x) is a continuous function in the closed interval [a, b], then for every € >0
there exists a polynomial P, (x), where the value of # depends on the value of €, such
that for all x € [a, b],

1P, (x) —f(0)| <&
Consequently, any continuous function can be approximated to any accuracy by
a polynomial of high enough degree.

Theorem 11.2 Uniqueness theorem of polynomials

Given n + 1 discrete data points (x,, f (x,)), (x1.f (x1)), (X5, f (X5)),....... (. (X)),
there exists a unique polynomial P, of degree at most » such that

260 NSOU e CC-MT-06

P, (x;) = f(x;) for all i such that 0<i<n
11.2.1 Direct Fit Polynomial

First let us consider a completely general procedure for fitting a polynomial to

a set of data. Given n + 1 sets of data (x,, 1 (x;)), (x1.f (x1)), (x5, F (X2)),....... (%, (X)),
let the unique »” degree polynomial P, (x) that passes exactly through the n+ 1
points be

P,(x)=aytax+ayx®+.. . +ayx" (11.1)

For simplicity of notation, let f(x;) =f,. Substituting each data point into (11.1)
yields »+ 1 equations :

2 n =
aytax,tayx,s+ ... ax"=f

aytax; Tayx?+ .. ax"=f (11.2)

2 n =
aytax,tayx, + ... ax"=f,

There are n + 1 linear equations containing the » + 1 unknown coefficients a; to
a,. The Equations given in (11.2) can be solved for a, to a, by the method described
in section 8.5.3 (Reduced Row Echelon Form or Gauss Jordon elimination). The
resulting polynomial is the unique n - degree polynomial that passes exactly
through the n+ 1 data points. The coeflicient matrix is known as Vandermonde
Matrix (V) given in (11.3).

1 x5 x? - x”
I x x x;"

V=1... (11.3)
1 x, x? x,”

It can be noticed that det(})) # O (determinant of V) if x; are distinct which leads
to the uniqueness of the polynomial.

Let us now determine the polynomial that fit the data set given in Table 11.1.
The polynomial in this case would be of degree 2 (quadratic) as the number of points
considered is 3 (x, = 3.35, x; = 3.4, x, = 3.5). Let the interpolating polynomial be
of the form P, (x) = a, + a;x + a,x?, the augmented matrix obtained by augmentaing
the functional values as a column to the corresponding Vandermonde matrix is as
follows :

NSOU e CC-MT-06 261

1 335 (3.35% 0.298507
1 340 (3.40)2 0294118 (11.4)
1 350 (3.50)> 0.285714

The program given in Table 8.10 (Row reduced echelon form) is executed for
the above data. The accuracy up to 5 decimal places is considered. The output is
given in Table 11.2.

Enter the number of rows and columns : 3 4

The given matrix is

1.00 3.35 11.22 030
1.00 3.40 11.56 0.29
1.00 3.50 1225 0.29

The echelon matrix is

1.00 3.35 11.22 030
0.00 0.05 0.34 -0.00
0.00 0.00 0.02 0.00

The reduced echelon matrix is

1.000000 0.000000 0.000000 0.876534

0.000000 1.000000 0.000000 -0.256064

0.000000 0.000000 1.000000 0.024931
Table 11.2

Table 11.2 shows the value of a, = 0.876534, a; = —0.256064, a, = 0.024931

Therefore, the interpolating polynomial for the data set of Table 11.1 is
P,(x) = 0.876534 — 0.256064x + 0.024931x?

Now the value of the polynomial at x = 3.44 is

P, (3.44) = 0.876534 — 0.256064 x (3.44) + 0.024931 x (3.44)2 = 0.290697.

Therefore, the absolute error due to interpolation is

P, (3.44) — £ (3.44)| = |B,(3.44) —ﬁ =10.290697 — 0.290698| = 0.000001. (11.5)

262 NSOU e CC-MT-06

If the polynomial is chosen of degree 1(linear) and the number of points
considered 1s 2 (x, = 3.35, x; = 3.5) then by the same process the polynomial P,(x)
can be determined. In that case,

P(x) = 0.584217 — 0.085287x
P, (3.44) = 0.584217 — 0.085287 x (3.44) = 0.29083
Therefore, the absolute error due to interpolation is

P\(3.44) - £ (3.44)| = |RG.44)-5121= 0.20083 - 0.200698 | = 0.000132.

The error is larger than the error in equation (11.5) when the quadratic polynomial
is used. The advantages of higher-degree interpolation are therefore obvious.

The main advantage of direct fit polynomials is that the explicit form of the
approximating function is obtained, and interpolation at several values of x can be
accomplished simply by evaluating the polynomial at each value of x. A second
advantage is that the data can be unequally spaced.

The main disadvantage of direct fit polynomials is that each time the degree of
the polynomial is changed, all of the work required to fit the new polynomial must
be redone. The results obtained from fitting other degree polynomials is of no help
in fitting the next polynomial. One approach for deciding when polynomial
interpolation is accurate enough is to interpolate with successively higher-degree
polynomials until the change in the result is within an acceptable range. This
procedure is quite laborious using direct fit polynomials.

11.2.2 Lagrange Interpolation Method

The direct fit polynomial presented in Section 11.3.1, while quite straightforward
in principle, has several disadvantages. It requires a considerable amount of effort to
solve the system of equations for the coefficients. For a high-degree polynomial
(n greater than about 4), the system of equations can be ill-conditioned, which causes
large change in the solution vector (a;) due to very small changes in the elements of
the Vandermonde matrix. This happens when the linear system is sensitive to round-
off errors. In that case, a simpler, more direct procedure is desired. One such
procedure is the Lagrange polynomial, which can be fit to unequally spaced data or
equally spaced data.

NSOU e CC-MT-06 263

Consider the following data set of (x, f(x)) pairs given in Table 11.3 :

x fx)
Yo Jo
X A
X2 5
X3 g
X4 Ja
Table 11.3

The linear Lagrange polynomial P,(x) which passes through two points (x,, f;)
and (x,, f;) 1s given by,

(x xl)fo+(x_x0)f1

Pi(x) =) (v = x,) (11.6)
Equation 11.6 can be written as,

Pi(x) =1, (x)fo +1, () f, (11.7)
where [, (x) = (x ;)) and /; (x) = xO)) both being linear function known as
cardinal function.

At x = x,,
Py (xg) = Iy (xp) fo + 11 (xo) Sy
(o —x) 0~ %)
= Pix)=/fo [lh()= (xz x) (xo) = (x _ (())) =0] (11..8)

At x = xy,
Py (ey) =1y (x) fo + 1 (xl)fl
S P =S [) = e = 0and (1) = (s = 1] (119)

The equation 11.8 and 11.9 verifies that P,(x) passes through the points (x,, f;)
and (x,, 1)

Similarly, Given three points, (x,, f,), (x;, f;) and (x,, f,), the quadratic Lagrange
polynomial P,(x) which passes through the three points is given by,

264 NSOU e CC-MT-06

Py(x) = ((x —x)(x = x;) " (x = xp)(x — x,) n (x — xp)(x — x;) % (11.10)

Xy — x)(Xg — X3) 0 (x; = xp) 0 — x3) ! (%3 = xp)(x3 —x7)
Equation 11.10 can be written as,

Py) =l) fo + L)+ L (X)L (1L.11)

(x - xl)(x —X,)
(xg = x(xg — %,

(x = xp)(x —x)
Xy = Xp)(%y — Xp)

(x = xp)(x — x5)
X — %)% —x)”

where /, (x) =

)’Zl(x): (12(x): (

At x = x,,
Py (xg) =1y (xp) fo t 1, (xp) 1 + 1, (xp) /2

= Py () = fo [o () = (eI = 11y () = () = 0] (IL11)

At x = xy,
Py(x) =1y) fot 1) fi 6 () fo

Py ()= i [() = G = 1y () = () = 0] (1112)

At x = x,,
Py () =1y) fo t 1,) fi + 1, () /o
=P, (x) =/, [y () =11 (xp) =0, [, (xy) = 1] (11.13)

The equation 11.11, 11.12 and 11.13 verifies that P,(x) passes through the points
(xOJ .fO)J (xla .fl) and (x27 .]{2)

Therefore, Lagrange polynomial passing through (m+ 1) data points (x,, f,),
(x;, f1)s - . -, (x,, f,) has the general form :

P.(x)=1,) fot L) fi+o +1,()f,
= ili(x)ﬁ where /, (x) = ﬁ[f:ijj (11.14)
=0 7=\ N X
J#i

with the property /; (x;) = 1, when i = j

=0, when i #j

NSOU e CC-MT-06 265

Algorithm 11.1 : Lagrange Interpolation Method

Input : Array x[0: n— 1] and y[0: n — 1] to store n points (pairs of (x;, y;)). Array
L[0: n—1] to store the cardinal functions (/,, /;, ..., [, ;). A value of x=a (say)
within x[0] to x[n — 1] where value of the function f(x) or y is unknown.

QOutput : The value of the function at x =a.

Steps Description

1. fori=01, ..., n-1 /* Set the values of L[0:n—1[] to 1*/
2 | 17ij-1

fori=01, ..., n-1 /*Find the cardinal function®/
3. forj=01, ..., n-1

4. i (i#)

5. Lli]=L{i]*(a-x[j])/(x[i]-x[]])

6. b=0

7. fori=01, ..., n-1 /*Find the value of the function at x = a */
8. b=b + L[i]*y[i]

9 Print the value b and stop

The C program for Lagrange method is given in Table 11.4.

#include<stdio.h>
#include<math.h>
#define k 20
int main()
{
float x[k],y[k],a,b=0,L[k];
int 1,j,n;
printf("How many points: ");
scanf("%d",&n);,
printf("Enter the value of a:");
scanf("%ft",&a);
for(i=0;i<n;i++) /* Insert the (x,y) pairs*/
{
printf("\nEnter the x and y coordinates: ") ;
scanf("% %", &x[i],&y[1]);

}

266

NSOU e CC-MT-06

for(i=0;i<n;i++) /* Set the values of L[0 : n—1] to 1*/
{
L[i]=1;
}
for(i=0;i<n;i++) /*Find the cardinal function*/
{
for(j=0;j<n;j++)
{
if(i!=9)
Li]= L]*(a-x[D/x[i]-x[j]);
}
}
tor(i=0;i<n;i++) /*Find the value of the function at x=a */
b=b+L[i]*y[i];
printf("\nValue of cardinal Function\n");
printf(" \n\n");
tor(i=0;i<n;i++) /*Find the value of the cardinal functions*/
printf("L[%d]=%f\t",i,L[i]);
printf("\n\nThe value of y is %ft",b);
return 0;

Table 11.4
The output for the data given in Table 11.1 is given in Table 11.5.

How many points : 3
Enter the value of a: 3.44

Enter the x and y coordinates : 3.35 0.298507
Enter the x and y coordinates : 3.40 0.294118
Enter the x and y coordinates : 3.50 0.285714

Value of cardinal Function

L[0] =—0.319998 L[1]=1.079998 L[2]=0.240000
The value of y is 0.290697

Table 11.5

NSOU e CC-MT-06 267

The absolute error due to interpolation is

Py(3.44) — £ (3.44)| = |B3.44)— 5171 [0.290697 — 0.290698] = 0.000001.

Now let us add one more point in the data given in Table 11.1.

X f)
3.35 0.298507
34 0.294118
3.5 0.285714
3.6 0277778
3.44 ?

Table 11.6

After executing the program given in Table 11.4 on the data set of Table 11.6,
following output is produced (Table 11.7) :

How many points : 4
Enter the value of a: 3.44

Enter the x and y coordinates : 3.35 0.298507
Enter the x and y coordinates : 3.40 0.294118
Enter the x and y coordinates : 3.50 0.285714
Enter the x and y coordinates : 3.60 0.277778
Value of cardinal Function

L[0] =0.204799 L[1]=0.863998 L[2]=0.384000 L[3]= —0.043200
The value of y is 0.290698

Table 11.7

The output in Table 11.7 shows one more cardinal functions and the value of the
function is more accurate. The absolute error due to Lagrange interpolation is

Py(3.44) — £ (3.44) = |B(44) -~ 12~ 0.200698 — 0.290698] = 0.000000,

268 NSOU e CC-MT-06

The results are summarized below, where the results of linear, quadratic, and
cubic interpolation, and the errors, error (3.44) = [P(3.44) — 0.290698|, are tabulated
in (Table 11.8)

n P, (3.44) Type of the polynomial Error

1 0.290607 Linear 0.000091

2 0.290697 Quadratic 0.000001

3 0.290698 Cubic 0.000000
Table 11.8

The main advantage of the Lagrange polynomial is that the data may be
unequally spaced. There are several disadvantages. All of the work must be redone
for each degree polynomial. All the work must be redone for each value of x.

11.2.3 Newton’s Divided-Difference Method

It can be observed in the last section that the Lagrange method is not flexible
when additional data points are considered. All the cardinal function calculation
depends on all the points and the unknown value of x. Therefore, all the cardinal
functions calculated to find the interpolating polynomial using # points needs to be
re-calculated if one more point has been added. To avoid this, Newton’s divided
difference method can be used to find the interpolating polynomial. The main idea
of the method is as follows :

Suppose, the polynomial P, (x) interpolates (n + 1) points. If one more point is
added, the new interpolating polynomial P, (x) can be found using the polynomial
P, (x) and one more additional term for the new point. The method is iterative in
nature. To illustrate the method let us consider the (x,,) pairs given in Table 11.3.

Start with the iteration assuming, n» =0 and P, (x) passes through the point
(xo, fo). Therefore,

P, (x) = f, (11.15)

From equation 11.15, we get P,(x,) = f, which verifies that P,(x) passes
through the point (x,, f,).

For the next iteration n = 1, P, (x) passes through the points (x,, f,) and (x;, f,)
and can be written in the following form :

Py(x) =Py (x) +a; (x—xp) (11.16)

NSOU e CC-MT-06 269

Now using equation 11.16, we can write

Py (xo) = Py (xp) +ay (xg —x0) = Py (x) = fy
Which verifies P, (x) passes through (x,, f,). Now, since P, (x) also passes
through (x,, 7,), we can write,

PG =/
= Py(x) +a) (x; —xp) =/,
= fota, (x; —x5) =/ [Py(x) = f, from 11.15]
(fi-1)

ay = o~
L (=)

a, is known as divided difference and it is defined as the ratio of the difference
in the function values at two points (f; — f,) divided by the difference in the values
of the corresponding independent variable (x; — x,). Thus, the first divided difference
in the i iteration is defined as

Ji_
X

flxsx,1= eri—: £ where i =0,1,2,..n—1and a;, =f [x,, x,]
i+ 1

Similarly for n =2, P, (x) passes through the points (x,, f,), (x;, f;) and (x,, f5)
which can be written in the following form :

Py(x) =Py (x) T ay (x = xp)(x —x1) (11.17)
It can be verified that P, (x) satisfies the points (x,, f,), (x;, f;). Now, since P,(x)
also passes through (x,, f,), we can write,
Py(x) =1
= P1(xy) T ay (5 = X)Xy —x) = f3
(/2= Rx))

= R T x5 —x) (11.18)

From equation 11.18, using simple algebra, it can be shown that,

fr-h _h-Jo
N=% =X _ fIxx%]- fTx.xl
(62 = %) Y2 =%

a, = = f1xg, %%,]

270 NSOU e CC-MT-06

In General, the second divided difference is defined as :

f[xz'+1> Xit2] - f[xi >xi+l]

- = £
J[x5, X1, Xi00] Xop — X, /i

The divided difference table (Table 11.9) can be formed from Table 11.3.
Now the polynomial becomes,

P () = fo2 + (x = x0) fo!) + (x = xp)Cr — 1) fo@ +... A+ = xp)(x —x7)...0¢ =X, 1) fo®

Implementation of divided difference table in C:

To show the difference table in C, let us first introduce two integer variables 7
and j as row index and column index of the table respectively. A two dimensional
array M[n][n + 1] can be used to store the data of the difference table. Now the first
two columns of array M will have the (x;, f;) pairs. The first divided difference will
be stored in the cell M[1][2] (See the Table 11.9). Also it can be observed from the
Table 11.9 that higher order divided differences, those are required to determine the

x| fe| fo £ £ £
% | /
0 0\
N
RS i

_ W _ £
A flzfl(l)_,fl o _ O

N
e 2
__>f1()_f0():

1 1
X3 | £ f3_f2=f(1) fZ()_fl():f(Z) f(3)
y—x, 77 X3 —X% ! X3 =X 0\
AY
1 1 2 2 3 3
. f f4_f3:f(1) f() f()_) fz()_fl()_ G, fl()_f()()_ @)
s Ja |T—=h ———=hL"| =P —=A
Table 11.9

polynomial, can only be present in the cell AM[2][3], M[3][4], M[4][5], . . ., M[n][n + 1].
In all these cases 7 =j — 1 holds. Therefore, as a first step the column index j will be
set at 2 and row index 7 at j — 1. Then all the divided differences can be determined
by the following equation :

NSOU e CC-MT-06 271

My =M
_ M- =111
M, 1L

= 11.19
Mo = Myiz o) ()

The numerator of the right hand side of equation 11.19 can easily be understood
from the arrow (—) given in Table 11.9. In case of denominator, since the divided
difference formula has only the x; values, the entries of denominator will always be
from column 0. After creating all the entries of the difference table the (i+1)” term
of the interpolating polynomial will be generated using the following formula :

i-1
1 = [H(x—xj)JZ\/[[i][i +1] fori=12,... N7 (11.20)
Jj=0

The final formula for the interpolating polynomial is therefore
Py) = f0 + Dt = Moy + D iy (11.21)
1 1

Algorithm 11.2 : Divided difference Method

Input : Matrix M[n][n + 1] to store the difference table. The first two columns
of matrix M store the (x;, f;) pairs. An unknown value of x = a (say) within, x, to x,,
where value of the function f(x) at x =a is unknown.

QOutput : The value of the function at the non-tabular point x = a.

Steps Description
1. t=1,b
2. Jor (j=2,3, ..., n) /*Create the values of divided differences*/
3. for(i=j-1j, . . ., n-1)
1 MIi1[j]~(M{i][j-1]-M[i-1][j-1])/(M[i][0]-M[i=j+ 1][0])
/*eqn 11.19%/
5 Print M.
6 b=M[0][1]
7 for(i=1,2,.....n)
8 t=t*(a-M{fi-1]{0])*M[i][i+ 1]
9. b=b+t
10. Print b and stop.

272

NSOU e CC-MT-06

The C program for divided difference method is given in Table 11.10.

{

#include<stdio.h>
#include<math.h>
#define k 20

int main()

float b=0,t,M[k][k].a;

int 1,j,n;

printf("How many points: ");

scanf("%d",&n);,

printf("Enter the value of a:");

scanf("%ft",&a);

for(i=0;1<n;i++) /*Insert the (x,y) pairs*/

{
printf("\nEnter the x and y coordinates: ") ;
scanf("%f%f",&M[1][0],&M[i][1]);

}

for(i=0;i<n;i++) /*Reset the difference column to 0%/
for(j=2;j<=nj++)

MIi][j1=0;

for(j=2;j<=n;j++) /*Determination of difference table*/

for(i=j-1;1<n;i++)

M [I=MIA][-1]-M-1][-11)/M[][0]-M[i-j+1][0]);

printf("\nThe difference table is\n"),

printf(" ________________ \Il");
for(i=0:i<n:i++) /*Display the difference table*/
{

for(j=0;j<=n;j++)
printf("%A\t" M[i]1[j]);
printf("\n");
}
b=M[O][1];

for(i=1;i<=n;i++) /*Determine the final value of y from polynomial*/

{

NSOU e CC-MT-06 273

t=t*(a-M[i-1][0])*M[i][i+1];
b=b+t;
}
printf("\n\nThe value of y is %f",b),
return O;

}

Table 11.10
The output for the data given in Table 11.6 is given in Table 11.11.

How many points : 4

Enter the value of a: 3.44

Enter the x and y coordinates : 3.35 0.298507
Enter the x and y coordinates : 3.40 0.294118
Enter the x and y coordinates : 3.50 0.285714
Enter the x and y coordinates : 3.60 0.277778
The difference table is

3.350000 0.298507 0.000000 0.000000 0.000000

3,400000 0.294118 —-0.087780 0.000000 0.000000
3.500000 0.285714 —-0.084040 0.024934 0.000000
3.600000 0.277778 —-0.079360 0.023399 —-0.006138
The value of y is 0.290599

Table 11.11

The absolute error due to interpolation is

Py(3.44) — £ (3.44)] = |B(44) - 12~ 0.200599 — 0.290698] = 0.000099.

It is quite obvious that if additional points are to be added in the data set, extra
columns appear in the divided difference table but the existing entries of the
difference table still remain useful which drastically reduce the computation.

Check Your Progress 11.1

Table 11.12 is for the function f(x) =%+x2.

MATH (CC-MT-06)—18

274 NSOU e CC-MT-06

X £) X £) X £)
0.4 5.1600 1.4 3.3886 2.4 6.5933
0.6 3.6933 1.6 3.8100 2.6 7.5292
0.8 3.1400 1.8 43511 2.8 8.5543
1.0 3.0000 2.0 5.0000
1.2 3.1067 2.2 5.7491

Table 11.12

Consider the data in the range 0.4 <x<1.2 in Table 11.12. Using Lagrange
interpolation method calculate
P, (0.9) using the first three points,
P, (0.9) using the last three points,
P (0.9) using the first four points,
P (0.9) using last four points, and
P, (0.9) using all five data points.

Check Your Progress 11.2
Repeat Check Your Progress 11.1 in the range 0.4 <x <1.2 for x = 1.5.
Check Your Progress 11.3

o /a0 O

The constant pressure specific heat C, and enthalpy / of low pressure air are
tabulated in Table 11.13.

T C(D) 1) T C(D) 1)
1000 1.1410 1047.25 1400 1.1982 1515.79
1100 1.1573 1162.17 1500 1.2095 1636.19
1200 1.1722 1278.66 1600 1.2197 1757.66
1300 1.1858 1396.58

Table 11.13

Using divided difference method, calculate
a. C,(1180) using two points,
b. C, (1120) using three points,
c¢. C,(1480) using two points, and
d. C,(1480) using three points.

NSOU e CC-MT-06 275

Check Your Progress 11.4
Repeat Check Your Progress 11.3 for /2(7) instead of C, (7).
Check Your Progress 11.5

The data in Table 11.12 can be fit by the expression f(x) =%+bx2, Construct

the divided difference Table and determine a and b.

11.2.4 The Newton Forward-Difference method

Constructing approximating polynomials to tabular data is considerably simpler
when the values of the independent variable are equally spaced. Implementation of
polynomial fitting for equally spaced data is best accomplished in terms of differences.
Consequently, the concept of differences, difference tables, and difference polynomials
are used to determine the interpolating polynomial.

A difference table 1s an arrangement of a set of data, (x, f;), in a table with the
x values in monotonic ascending order, with additional columns composed of the
differences of the numbers in the preceding columns. To understand the difference
table, let us consider the data for the function f° (X)=% where the x values are
equally spaced in Table 11.14.

x f () Af (x) A (x) Nf) | A)
3.1 | 0322581=f,
32 | 0312500=f, | fi—f, = A,
33 | 0303030=f, | fi—fi=Af | A -Af, =AY,
34 | 0204118=f, | fi—f,=Af | M- Af =AY,
35 | 0285714=f, | fi-fi=Af | Mi-Af =AY,
3.6 | 0277778=f | fi—fi= A | M- Af =AY,
Table 11.14

Note that in Table 11.14, the forward difference operator A is defined as
Afi = fir = i
From equation 11.15, we can write, the polynomial of degree 0 as P, (x) = f,.

From equation 11.16, we can write, the polynomial of degree 1 as

276 NSOU e CC-MT-06

Pi(x)=/fo* a; (x—xp)
(fi- 1)

(x; —xp)

= Pix)=f+ (x = x) (11.22)

. X . .
Assuming s = and h = distance between two consecutive X;.

Replacing the value of s, # and Af,, in equation 11.22, we get

P =fy+ Yo (o)
= P(x)=f, T sA, (11.23)

From equation (11.17), we can write, the polynomial of degree 2 as
Py(x) =P (x) + a, (x — x)(x —x;)

hHh=-h_hAh-N A4 A

X, =% X —-%X h h AL
here . = -2- 1 M=% _ h h _ 0
where d, (%5 — %) 2h W2

A2
Therefore, Py(x) = f, +sAfy + 2hj2% (sh)(sh—h)

A% fy
= P(x)=fy +sA+ T(S)(S -1 (11.24)

After generalizing the result from equation 11.23 and 11.24, we can write the
following :

Given n + 1 data points, (x;, f;), one form of the unique n - degree polynomial
that passes through the » + 1 points is given by,

B0 = fy+ stfy + X0 a2 DO oy

#3606 ls=(1=D] 0 (11.25)

n!

where s is the interpolating variable such that
h
Check Your Progress 11.6

s = and h = distance between two consecutive x;.

Write a C program that can produce the forward difference table for the data
given in Table 11.14. Modify the above program so that it can determine the value
of P5(3.44) using Newton forward-difference formula given in equation 11.25.

NSOU e CC-MT-06 277

Check Your Progress 11.7

Solve the problems in Check Your Progress 11.1 using Newton forward-
difference method using the program for divided difference method written in the last
problem.

11.3 Summary

Procedures for developing approximating polynomials for discrete data are
presented in this unit. For small sets of smooth data, exact fits are desirable. The
direct fit polynomial, the Lagrange polynomial, and the divided difference polynomial
are explained with relevant C programs for non-equally spaced data. For equally
spaced data, polynomials based on differences are recommended. The Newton
forward-difference polynomial is simple to fit and evaluate. This polynomial is used
extensively to develop procedures for numerical integration in the next unit (Unit
12).

11.4 References and Further Reading

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2005.

2. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

3. Numerical Methods for Engineers and Scientists, Second Editon, Joe D.
Hoffman, CRC Press, 2001.

Unit - 12 O Application of C Programming : Integration

Structure

12.0 Introduction

12.1 Objectives

12.2 Integration

12.3 Newton-Cotes Formulas

12.3.1 Rectangular Rule

12.4 Summary

12.0 Introduction

In the last unit (Unit 11) interpolation within a set of discrete data points was
discussed. In this unit integration of a set of tabular data will be presented, which is
another important topic in numerical analysis that is used in mathematical and
engineering applications. This unit will show different methods and their C
implementations related to integration.

12.1 Objectives

After going through this topic, the learner should able to

Describe the general features of numerical integration.

Describe the procedure for numerical integration using Newton forward
difference polynomials

Write a C program for rectangular method to integrate a function.
Write a C program for trapezoid rule.
Write a C program for Simpson’s 1/3 and 1/8 rule

YYVY VY

Describe the relative advantage and disadvantages of Simpson’s 1/3 rule
and Simpson’s 3/8 rule

278

NSOU e CC-MT-06 279

12.2 Integration

Evaluation of integrals is one of the most important problems in mathematics
and other relevant disciplines. The problem of numerical integration, or numerical
quadrature, is that of estimating the number

b
1(f) = | f(x)dx (12.1)

This problem arises when the integration cannot be carried out exactly or when
f(x) is known only at a finite number of points. In that case, numerical integration
(quadrature) formulas can be developed by fitting approximating functions
(polynomials) to discrete data and integrating the approximating function :

b b
I(f) = [f()dx = [P,(x)eix (12.2)

The process is illustrated in Figure 12.1.

S)

/

[f(x)dx

v
v

Figure 12.1

12.3 Newton-Cotes Formulas

Several methods have been discussed in Section 11.3 to fit an interpolating
polynomial for both unequally spaced data and equally spaced data. Any of these
methods can be chosen to find the polynomial and integrate it for the given range.
When the function to be integrated is known at equally spaced points, the Newton
forward-difference polynomial presented in Section 11.3.4 can be fit to the discrete
data with much less effort. The resulting formulas are called Newton-Cotes formulas.
Thus, rewriting the equation (12.2) using the interpolating polynomial, we get,

280 NSOU e CC-MT-06

b
I(f) = [P, (x)dx (12.3)

where P, (x) is the Newton forward-difference polynomial given in equation 11.25
(Unit 11).

Py(x) = fo + 58 +S(S2—TDA2]5+WA%+

+S(S—1)(S_2) [S—(n—l)] Anf() (12.4)

where s is the interpolating variable such that

(12.5)

and s = distance between two consecutive x;.

Equation (12.3) requires that the approximating polynomial be an explicit
function of x, whereas equation (12.4) is implicit in x. Let us transform the equation
12.3 so that equation (12.4) can be used directly. Thus from equation (12.5), we get,

X =Xx,t hs
dx = hds

Using the above result, we can write equation (12.3) as

b s(b)
KA =[P)de=h | Px)+hs)ds (12.6)
a s(a)

The limits of integration, x =a and x =05, are expressed in terms of the
interpolating parameter s by choosing x = a as the base point of the polynomial, so

t - 2 =0 and x = b corresponds to s = b Za . Introducing

that x = a corresponds to s =

these results into eqaution (12.6) yields

I(f) = h[P,(x, + hs)ds (12.7)
0

Each choice of the degree n of the interpolating polynomial P, yields a different
Newton-Cotes formula. Table 12.1 lists the more common formulas.

NSOU e CC-MT-06 281

n Formula
Rectangular rule
1 Trapezoidal rule
2 Simpson’s % rule
) . 3
3 Simpson’s ¢ rule
Table 12.1

Now let us define few more terminology before using Newton-Cotes formula.
The distance between the lower and upper limits of integration is called the range of
integration. The distance between any two data points is called an increment (Figure
12.2). A constant (0-degree polynomial) requires a single data point to obtain a fit.
A linear polynomial requires one increment and two data points to obtain a fit. A
quadratic polynomial requires two increments and three data points to obtain a fit.
And so on for higher-degree polynomials. The group of increments required to fit a
polynomial is called an interval. A linear polynomial requires an interval consisting
of only one increment. A quadratic polynomial requires an interval containing two
increments. And so on. The total range of integration can consist of one or more
intervals. Each interval consists of one or more increments, depending on the degree
of the approximating polynomial. Therefore, the upper limit of integration (s) in
equation (12.7) is the total no of increments in between x =a and x = b.

<«—— Range of Integration ———
Interval 1 Interval 2 Interval n
r A N A \|r A N\ 7 A N
N e -
a — b
Increment

Figure 12.2

282 NSOU e CC-MT-06

12.3.1 Rectangular Rule

In this rule, the value of » in the interpolating polynomial P, is considered to
be 0. Therefore, it becomes 0 degree polynomial which is a straight line parallel to
x axis (Figure 12.3a). If n = 0, then from equation (12.4) we can write

Py (x) = f; (constant).

Xi41
Now if the value of j Py(x)dx 1s assumed to be A/, then using equation (12.7)

Xi

we can write,

Xipl s
AL = | Byx)dx=h[fide where h=x,, —x, (12.8)
X 0

Now the upperlimit of the integration, s = x"+1h_ Y % =1. So the equation (12.8)

becomes,

1
Al = h fids = hf, (12.9)
0

It 1s also evident from the geometry of the Figure 12.3a that the quantity /4f; is
the area of the rectangle. Here 2 =1x,,, —x; is the breadth and f, is the length of the
rectangle. The composite rectangular rule is obtained by applying equation (12.9)
over all the intervals of interest (Figure 12.3b). Thus,

I=3 Ali=h(fo+ fi+ fo+ o+) (12.10)

Note that, since the left most ordinates (f;) is considered as length of the first
rectangle and total no of rectangles is n, therefore the index starts from O and ends
atnm—1.

NSOU e CC-MT-06 283

v

A 4

The dashed line - f(x)

The bold line - P, (x).

The marked area in figure (a) - A/,
The marked area in figure (b) - /
The vertical lines — ordinates f; at x;

Figure 12.3

C program implementation of composite rectangular rule

To store the values of f; an array of appropriate length needs to be created first.
If the given data set has » + 1 points then total no of interval is »n. The value of 4
can be calculated using following formula :

_b-a
h= - (12.11)

The C program for the rectangular method is given in the Table 12.2.

/*Program for rectangular Method*/
#include<stdio.h>
#include<math.h>
#define f(x) 1/(x)

284 NSOU e CC-MT-06

#define k 80
int main()
{
float a,b,h,y[k],s=0,val;
int 1,m,n;
printf("How many points: ");
scanf("%d",&n);,
printf("Enter the lower and upper limit of integration: ");
scanf("%1t%f" &a,&b);
m=n-1; /*Number of intervals*/
h=(b-a)/m;
printf("\nh=%.2f and Number of Intervals=%d\n\n" h,m);,
for(i=0;i<n;i++) /*Insert f[i]*/
{
yli]=f(a+i*h);
printf("{[%.2f]=%f\n",a+1*h,y[1]);
}
for(i=0;i<m;i++)
s=s+y[il;
val=h*s;
printf("\n\nThe value of the integration is %f",val),
return 0;

Table 12.2

Consider the data set, generated from the function 7(x) :% where the values of

x;’s are equally spaced, in Table 12.3.

X [X [

3.1 0.322581 35 0.285714
32 0.312500 3.6 0.277778
33 0.303030 3.7 0.270270
34 0.294118

Table 12.3

NSOU e CC-MT-06 285

A parametrized macro for f(x) :% is defined in the program in Table 12.2. The

output of the rectangular method is given in Table 12.4.

How many points : 7
Enter the lower and upper limit of integration : 3.1 3.7

h = 0.10 and Number of Intervals = 6

f[3.10] = 0.322581
f[3.20] = 0.312500
£[3.30] = 0.303030
f[3.40] = 0.294118
f[3.50] = 0.285714
f[3.60] = 0.277778
f[3.70] = 0.270270

The value of the integration is 0.179572

Table 12.4

The approximate value of the integration is found to be 0.179572. Let us check
the true value of integration analytically.

3.7
1 . 3.7
J Lax =[] = 1n3.7) — 1n(3.1) = 0.176930

The absolute error of integration is |0.179572 — 0.176930| = 0.002642. Let us
execute the same program after reducing value of /4 half of its previous value.
Therefore, the new value of 2 = 0.05. Assuming both the limit of integration remains
same, the required value of # (number of intervals) can be found from the equation
(12.11) as follows :

b—a 06 _
= n="77=005 12

Therefore, the no of points needed for # = 0.05 is n + 1 = 13. The output of the
program in Table 12.2 after reducing the value of / is given in Table 12.5.

286 NSOU e CC-MT-06

How many points : 13
Enter the lower and upper limit of integration : 3.1 3.7

h = 0.05 and number of Intervals = 12

f3.10] = 0.322581
f[3.15] = 0.317460
f[3.20] = 0.312500
f[3.25] = 0.307692
f3.30] = 0.303030
f[3.35] = 0.298507
f[3.40] = 0.294118
f[3.45] = 0.289855
f[3.50] = 0.285714
f[3.55] = 0.281690
f[3.60] = 0.277778
f[3.65] = 0.273973
f[3.70] = 0.270270

The value of the integration is 0.178245

Table 12.5
The approximate value of the integration is found to be 0.178245 in this case.

The absolute error of integration is |0.178245 —0.176930| = 0.001315. This
result shows that decreasing the value of /# will increase the accuracy of the
integration process by reducing the error. Figure 12.4 shows how decreasing the
value of /# (adding more intervals) reduces the integration error.

A Error A ~__ Error
...................... /./ it et
\\ B/ : Error
: reduced
S () S (x)
X xi+;V X, x,+h/2 xi+?

Figure 12.4

NSOU e CC-MT-06 287

Table 12.6 shows the values of absolute error for different choice of A for
integration by rectangular rule.

Value of h Interval number | Number of points | Absolute error
0.20 3 4 0.005335
0.10 6 7 0.002642
0.05 12 13 0.001315

0.025 24 25 0.000656
0.01 70 71 0.000225
Table 12.6

The relationship between / and the absolute error is given in Figure 12.5. The
graph shows that the relationship is approximately linear. Therefore, the upper bound
of absolute error is not more than a constant multiple of # while using composite
rectangular method. We can write absolute error as O(h).

h vs error

0.006 O O0E335
b
0.005 >
0.004
g o0.002 0. 642
[T 8}
0.002 U_Uc-y
0.000656 4
0.001 W
o

[o] 0.05 0.1 0.15 0.2 0.25
Value of h

Figure 12.5

12.4 Summary & Keywords

The Newton-Cotes formulas are a family of numerical integration techniques that approximate the
integral of a function using polynomial interpolation. These methods are derived by integrating
Lagrange interpolating polynomials and are useful for estimating definite integrals when the function
values are known at equally spaced points. The unit discusses different Newton-Cotes formulas,
including the Trapezoidal Rule, Simpson's Rule, and higher-order quadrature methods. It also
explains their derivations, accuracy, and error estimates. The implementation in C programming is
provided to demonstrate practical numerical integration, including considerations for step size and
computational efficiency.

Keywords:
Numerical Integration, Newton-Cotes Formula, Trapezoidal Rule, Simpson’s Rule, Quadrature,
Lagrange Interpolation, Error Analysis,

Unit - 130 Trapezoida Rule

Structure

13.1 Objectives

13.2 Introduction

13.3 Trapezoida Rule

13.4 Summary & Keywords

13.1 Objectives

The following are discussed here:
* Working formula of Trapezoidal rule

* C programming for Trapezoidal Rule

13.2 Introduction

Set theory is the branch of mathematical logic that studies sets, which can be
informally described as collections of objects. Although objects of any kind can be
collected into a set, set theory, as a branch of mathematics, is mostly concerned with
those that are relevant to mathematics as a whole.

13.3 Trapezoidal Rule

12.3.2 Trapezoidal Rule

The trapezoid rule for a single interval is obtained by fitting a first-degree
polynomial 2, (x) to two discrete points (x;, f(x;)) and (x;,, f(x;.,)) as illustrated in
Figure 12.6. If n=1, then from equation (12.4) we can write,

P, (x)=f,+sAf, where = Af=f., -1 (12.12)
¥itl

Now if the value of j F(x)x is assumed to be A/, then using equation (12.7)
35

we can write,

288 NSOU e CC-MT-06

Xi4l s
AL = | B(x)ds=h[(f;+sAf)ds where h = x,,, — X, (12.13)
X; 0
Now the upperlimit of the integration, s= %:%: 1. So the equation
1 2 1
(12.13) becomes, AL, = hf(f;+sf)ds = h[sﬁ +SAf l) - h(ﬁ +%Aﬁ)
0
= L0f+ fia- 1)
= L(fi+ £ (12.14)
J(x) f,

1

1

’ 1

0 1

‘ 1 N
/ ' ‘
rd AN
’ M \
7’ s 1 \

4 1 1
1 1 T
“— Al I ‘ >

1

1

]

1

1

:

> i >
X; Xivl a=x, X X, X, X,=b

(a) (b)

The dashed line - f(x).

The bold line - P, (x).

The marked area in figure (a) - A,
The marked area in figure (b) - /
The vertical lines — ordinates f; at x;

Figure 12.6

NSOU e CC-MT-06 289

Thus,

n—1

1=Y AL = B+ p+ B+ v+ B+ 1)

= Lfyr2fi+ e+ f)+ 1] (12.15)

The C program for the composite trapezoidal method is given in the Table 12.7.

{

/*Program for trapezoidal Method*/
#include<stdio.h>
#include<math.h>

#define f(x) 1/(x)

#define k 80

int main()

float a,b,h,y[k],s=0,val;
int 1,m,n;
printf("How many points: ");
scanf("%d",&n);,
printf("Enter the lower and upper limit of integration: ");
scanf("%1t%f" &a,&b);
m=n-1; /*number of intervals*/
h=(b-a)/m;
printf("\nh=%.2f and number of Intervals=%d\n\n",h,m);
for(i=0;i<n;i++) /*Insert f[i]*/
{
yli]=f(ati*h);
printf("{[%.2f]=%f\n",a+1*h,y[1]);
}
for(i=1;1<n-1;i++)
s=stylil;
val=(h/2)*(y[0]+2*s+y[n-1]);
printf("\n\nThe value of the integration is %f" val);
return O,

Table 12.7

MATH (CC-MT-06)—19

290 NSOU e CC-MT-06

Consider the same data set generated from the function £(x) :% in Table 12.3.

The output of the composite trapezoidal rule after executing the C program on the
given data set is shown in Table 12.8.

How many points : 7
Enter the lower and upper limit of integration : 3.1 3.7

h = 0.10 and number of Intervals = 6

f[3.10] = 0.322581
f[3.20] = 0.312500
£[3.30] = 0.303030
f[3.40] = 0.294118
f[3.50] = 0.285714
f[3.60] = 0.277778
f[3.70] = 0.270270

The value of the integration is 0.176957

Table 12.8

The approximate value of the integration is found to be 0.176957. The actual
value of integration is already found as 0.176930. Therefore, the absolute error of
integration is |0.176957 — 0.176930| = 0.000027. It can be observed that the error is
significantly lesser in trapezoidal rule than rectangular rule. This result can be easily
explained from the graph of the function £ (x):% in Figure 12.7. The graph is

nearly linear in the range 3.7 >x > 3.1. As a result, a linear polynomial(Trapezoidal)
better approximate the function than a constant (Rectangular).

A ﬂk

S (x)

v

3.1 3.7 3.1 3.7
Rectangular Trapezoidal

Figure 12.7

NSOU e CC-MT-06

291

Now absolute error of this method also depends on the value of 4. Table 12.9
shows values of absolute error for different choice of 4.

Value of h Interval number | Number of points | Absolute error
0.20 4 0.000104
0.15 5 0.000059
0.10 7 0.000027
0.05 12 13 0.000007
0.025 24 25 0.000002

Table 12.9

The relationship between h and the absolute error is given in Figure 12.8. The
graph clearly shows that the relationship is quadratic. Therefore, the upper bound of
absolute error is not more than a constant multiple of #* while using composite
trapezoidal method. Mathematically we can write absolute error is O(4?).

h vs error
0.00012 0.000104
0.0001
0.00008
e 0.00005,
2 0.00006
i
0.00004 0:000027
0.00002 00000
0.000002% 7
o
) 0.05 0.1 0.15 0.2 0.25
Value of h

Figure 12.8

13.4 Summary & Keywords

The Trapezoidal Rule is a numerical integration technigue used to approximate the definite integral
of a function. It is based on dividing the interval into smaller subintervals, approximating the area
under the curve using trapezoids, and summing these areas. The accuracy of the approximation
improves with an increasing number of subintervals. The rule is derived from the concept of
Riemann sums and serves as a fundamental tool in numerical analysis. It is widely applied in
engineering, physics, and applied mathematics where exact integration is difficult. The error in the
Trapezoidal Rule is influenced by the second derivative of the function, with an error bound that
helps estimate the precision of the approximation.

Keywords:

Trapezoidal Rule, numerical integration, definite integral, approximation, subintervals,
Riemann sum,

Unit - 140 Simpson's 1/3 Rule

Structure

14.1 Objectives

14.2 Introduction

14.3 Simpson's /3 Rule

144 Summary & Keywords
14.5 Reference

14.1 Objectives

The following are discussed here:
* Working formula of Simpson's 1/3 rule

* C programming for Trapezoidal Rule

14.2 Introduction

Set theory is the branch of mathematical logic that studies sets, which can be
informally described as collections of objects. Although objects of any kind can be
collected into a set, set theory, as a branch of mathematics, is mostly concerned with
those that are relevant to mathematics as a whole.

14.3 Simpson's 1/3 Rule

143.3 Simpson’s 1/3 Rule

Simpson’s 1/3 rule is obtained by fitting a second-degree polynomial to three
equally spaced discrete points, as illustrated in Figure 12.9a. The number of
intervals is 2. Therefore,

2 2
- . . S(S—l) 2 p ax, [.. i . iz_ﬁz]
Af,-h£<_f,+mf,+—2 A2 f)ds = h| of + 55 + A2 f = ST A, |

Mampi Howlader
Typewriter
14

292 NSOU e CC-MT-06

= (27, + 27, + %)

W2+ 2=)+ a2 =2+ 1)

W3 fa+d fa+ i)

=B+ 4fia+) (12.16)

The composite Simpson’s 1/3 rule is obtained by applying equation (12.16) over
all the intervals of interest (Figure 12.9b). Note that the total number of intervals
must be a multiple of two.

S) P, (x)
f(x) Emor Py(x) \’
\J . f/ffﬁ\é 2
A) 4 % f/ 7i-1
. fo ? / ;
1 / /
/ /
‘ g A,
g A=X;, X, Xy wXju X, X, X, =b
(@) (b)

Figure 12.9

NSOU e CC-MT-06

Thus,

293

I=2(f+ah+)+ R+ af+)+t 2+ fa+ 1)
A fo+ 4+ fi+ o)+ 2o+ fut e+ f)+ 1]

=%[f0+4fodd +2feven+fn]

(12.17)

The C program for the composite Simpson’s 1/3 rule is given in the Table 12.10.

{

/*Program for Simpson's 1/3 Method*/
#include<stdio.h>

#include<math.h>

#define f(x) 1/(x)

#define k 80

int main()

float a,b,h,y[k],s=0,val;
int i,m,n;

2 277

printf("How many points: ");

2

scanf("%d",&n);,

printf("Enter the lower and upper limit of integration: ");
scanf("%1t%f" &a,&b);

m=n-1; /*Number of intervals*/

h=(b-a)/m;

printf("\nh=%.2f and number of Intervals=%d\n\n",h,m);
for(i=0;i<n;i++) /*Insert f[i]*/

{

yli]=f(a+i*h);
printf("f[%.2f]=%f\n",a+1*h,y[1]);

}

for(i=1;i<n-1;i++)

{

if (i%2==1)

s=st4*y[il;

else

}

s=s+2*y[il;

val=(h/3)*(y[0]+s+y[n-1]);

294 NSOU e CC-MT-06

printf("\n\nThe value of the integration is %f",val),
return 0;

}

Table 12.10
Consider the same data set generated from the function f(x) :% in Table 12.3.

The output of the composite Simpson’s % rule after executing the C program on
the given data set is shown in Table 12.11.

How many points : 7
Enter the lower and upper limit of integration : 3.1 3.7

h = 0.10 and number of Intervals = 6

f[3.10] = 0.322581
f[3.20] = 0.312500
£[3.30] = 0.303030
f[3.40] = 0.294118
f[3.50] = 0.285714
f[3.60] = 0.277778
f[3.70] = 0.270270

The value of the integration is 0.176931
Table 12.11

The approximate value of the integration is found to be 0.176931. The actual
value of integration is already found as 176930. Therefore, the absolute error of
integration is |0.176931 — 0.176930| = 0.000001. It can be shown that the absolute

error for composite Simpson’s % method is of the order A* (O(#*)).

12.3.4 Simpson’s 3/8 Rule

Simpson’s 3/8 rule is obtained by fitting a third-degree polynomial to four
equally spaced discrete points. Therefore, in this case the number of interval is 3 so
the upper limit of integration is 3. Therefore,

3
Az,.:hj(ﬁHAﬁ +¥A2ﬁ +WA3J; ds (12.18)
)]

Now replacing the A, A%, A3 and integrating the equation (12.18) the final result
for Simpson’s 3/8 rule is

AL = 21(f+3 i+ 3fra + fiv) (12.19)

NSOU e CC-MT-06 295

The composite Simpson’s 3/8 rule for equally spaced points is obtained by
applying equation (12.19) over the entire range of integration. Note that the total
number of intervals must be a multiple of three. Thus,

I=2hfy+3/+3f+ A+ M A+3f4+3fs+ f)+oe
F3h(fa+ 30+ 3 00+ 1)

= I =2 h(fy +3/+3/5+ 2/ +3fs 43/ 42 g +--3f, 1+ 1) (12.20)

Simpson’s 1/3 rule and Simpson’s 3/8 rule have the same order of error, O(4%).
Then question may arise why Simpson’s 3/8 rule is needed. One reason is that
Simpson’s 1/3 rule can be used only when the number of intervals is even number. If
the total number of intervals is odd then three intervals can be evaluated by the 3/8
rule, and the remaining even number of increments can be evaluated by the 1/3 rule.

Check Your Progress 12.1

The following integrals are used to illustrate numerical integration methods. All
of these integrals have exact solutions, which should be used for error analysis in the
numerical problem.

5 10
A [(3x?+2)dx B. [(5x*+4x* +2x+ 3)dx
0 0

I 1
C. [(5+sin(x)ax D. Jlexdx
) .

i. Evaluate integrals (A) and (B) by the trapezoidal rule for 1, 2, 4 intervals.
Compute the errors and ratio of the errors.

ii. Evaluate integrals (C) by the trapezoidal rule for 1, 2, 4 intervals. Compute
the errors and ratio of the errors.

iii. Evaluate integrals (D) by the trapezoidal rule for 1, 2, 4 intervals. Compute
the errors and ratio of the errors.

Check Your Progress 12.2
Write the C program for Simpson’s 3/8 rule. Evaluate the integral (D).

Check Your Progress 12.3

Consider the function f(x) tabulated in Table 12.12. Evaluate the integral
2.8
j f(x)dx using the trapezoidal rule with 1, 2, 4 and 8 intervals. The exact value is

1.2
8.43593. Compute the errors and ratios of the errors.

296 NSOU e CC-MT-06

X 7) x 7) X 7 ()
0.4 6.0900 1.4 6.9686 2.2 4.4782
0.6 7.1400 1.6 6.5025 2.4 3.6150
0.8 7.4800 1.8 5.9267 2.6 2.6631
1.0 7.5000 2.0 5.2500 2.8 1.6243
1.2 7.3100

Table 12.12

Check Your Progress 12.4
2.8
Consider the Table 12.12 again. Evaluate the integral J F(x)dx using the
1.2

Simpson’s 1/3 rule with 3 intervals. Is this value correct? If not, then evaluate the
integral using the strategy mentioned at the end of Section 12.3.4.

14.4 Summary

Procedures for developing numerical integration for discrete data are presented
in this unit. These procedures are based on fitting approximating polynomials to the
data and integrating the approximating polynomials. The Newton-Cotes formulas,
which are based on Newton foward-difference polynomials, give simple integration

formulas for equally spaced data. Rectangular, trapezoidal and Simpson’s %aﬂd%

methods are discussed in detail. The formulas for composite integration methods are
also derived and explained in this unit. Of all the methods considered, it is likely that
Simpson’s rules are efficient as these methods produce less error.

14 .5 References .

1. Elementary Numerical Analysis — An algorithmic Approach, Third Edition,
S.D. Conte, Carl de Boor, Tata McGraw-Hill, 2005

2. Numerical Recipes in C, Second Edition, H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery, Tata McGraw Hill, 2003.

3. Numerical Methods for Engineers and Scientists, Second Editon, Joe D.
Hoffman, CRC Press, 2001.

Mampi Howlader
Typewriter
14

Mampi Howlader
Typewriter
14

	A
	CC-MT-06
	1
	2
	3
	4

	NSE-MT-03 -Title page.pdf
	Title Page
	U 1
	U 2
	U 3
	U 4
	U 5
	U 6
	U 7
	U 8
	U 9
	U 10
	U 11
	U 12
	U 13
	U 14

