SAN ITELIAN OF THE PROPERTY OF

Question Bank For BDP Course

ঐচ্ছিক পাঠক্রম (Elective Course)

অক্ক (Mathematics)

অন্টম পত্র (8th Paper)

Mathematical Analysis - II: EMT-08

Question 1

Consider two partitions P and Q of the closed interval [0,1] as follows:-

$$P: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, 1\right\},\$$

$$Q: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1\right\}$$

Then find the correct option. নীচে [0,1]বদ্ধ অন্তরালে দুটি বিভাজন P এবং Q দেওয়া হলো -

$$P: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, 1\right\},$$

$$Q: \left\{0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1\right\}$$
তা হলে কোনটি ঠিক ?

Question 2

If $f(x) = x^2 \quad \forall \, x \in [a,b]$ and if $P:\{a,a+h,\ a+2h,...,a+nh=b\}$ be a partition of [a,b] then the supremum and infimum of f(x) in the r-th subinterval are respectively as যদি $f(x) = x^2 \quad \forall \, x \in [a,b]$ হয় এবং $P:\{a,a+h,\ a+2h,...,a+nh=b\}$, [a,b] অন্তরের একটি বিভাজন হয় তাহলে f(x) এর r তম উপান্তরে লঘিষ্ঠ উধ্বসীমা ও গরিষ্ঠ নিম্নসীমা যথাক্রমে

Question 3

If $f:[0,1] \to R$ defined as $f(x) = x \quad \forall \ x \in [0,1] \cap Q$ = 0 elsewhere Then choose the correct option. $f:[0,1] \to R$ নিম্নলিখিতভাবে সংজ্ঞায়িত $f(x) = x \quad \forall \ x \in [0,1] \cap Q$ = 0 অন্যথায় তাহলে নীচের বিবৃতিগুলির মধ্যে কোনটি সঠিক ?

If
$$f(x)$$
 is defined in $[0,1]$ as
$$f(x) = (-1)^{r-1} \ , \ \frac{1}{r+1} < x \le \frac{1}{r} \ , \ r = 1,2,3 \dots \dots = 0 \ , \ x = 0$$
 Then $f(x)$ is integrable in $[0,1]$ since
$$[0,1]$$
 অন্তরে $f(x)$ এর সংজ্ঞা হল
$$f(x) = (-1)^{r-1} \ , \ \frac{1}{r+1} < x \le \frac{1}{r} \ , \ r = 1,2,3 \dots \dots = 0 \ , \ x = 0$$
 ভাহলে $f(x)$, $[0,1]$ অন্তরে সমাকলন(যাগ্য হবে কারণ -

Question 5

Let f(x) be defined on the interval [0,1] as follows:- f(x)=1 when x is rational =-1 when x is irrational Here in [0,1] তি,1] অন্তরে f(x) অপেক্ষকটি নিম্নোক্ত ভাবে সংজ্ঞায়িত : f(x)=1যথন xমূলদ =-1 যথন x অমূলদ ভাহলে[0,1] অন্তরে

Question 6

The improper integral $\int_0^1 \frac{1}{x^2} dx$ is অব্যথার্থ সমাকলন $\int_0^1 \frac{1}{x^2} dx$ টি হল

Question 7

If
$$I_n=\int_0^\pi \frac{sinn\theta d\theta}{sin\theta}$$
 then যদি $I_n=\int_0^\pi \frac{sinn\theta d\theta}{sin\theta}$ হয়, তাহলে

Question 8

The improper integral $\int_0^1 x^{m-1}(1-x)^{n-1}\ dx \quad \text{is}$ convergent if $\int_0^1 x^{m-1}(1-x)^{n-1}\ dx \quad \text{এই অযথার্থ}$ সমাকলনটি অভিসারী হবে, যদি

Question 9

$$\int_0^1 \frac{1}{x^2} dx$$
 is
$$\int_0^1 \frac{1}{x^2} dx$$
একটি

Question 10

The value of $\int_0^\infty e^{-x} x^{-\frac{1}{2}} dx$ is

$$\int_0^\infty e^{-x} x^{-\frac{1}{2}} dx$$
এর মান হল

Question 11

The series is $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$ $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$ এই শ্ৰেণীটি

Question 12

The series $\sum_{k=0}^{\infty}(1-x)x^k$, for $0 \le x \le 1$ is $\sum_{k=0}^{\infty}(1-x)x^k$ শ্রেণীটি[0,1]অন্তরালে

Question 13

The radius of convergence of the series $\frac{1}{3} - x + \frac{x^2}{3^2} - x^3 + \frac{x^4}{3^4} - x^5 + \frac{x^6}{3^6} - \cdots$ is $\frac{1}{3} - x + \frac{x^2}{3^2} - x^3 + \frac{x^4}{3^4} - x^5 + \frac{x^6}{3^6} - \cdots$ এই শ্রেণীটির অভিসরণ ব্যাসার্ধ হল

Question 14

The Fourier constants a_k and b_k for the function f(x)=x $(-\pi \le x \le \pi)$ are respectively f(x)=x $(-\pi \le x \le \pi)$ এই অপেক্ষকের ফুরিয়ার ধ্রুবক a_k এবং b_k এর মান যথাক্রমে হল

Question 15

The integral $\int_0^\pi \frac{dx}{1-cosx}$ $\int_0^\pi \frac{dx}{1-cosx}$ এই সমাকলনটি

Question 16

Consider the partition P of the closed interval [0,1] as follows:- $P:\left\{0,\frac{1}{8},\frac{1}{4},\frac{7}{8},1\right\} \text{ then what is the norm of the partion P?}$

```
নীচে [0,1] বদ্ধ অন্তরালে একটি বিভাজন P দেওয়া হলো : - P:\left\{0,\frac{1}{8},\frac{1}{4},\frac{7}{8},1\right\} ,তাহলে P এর নর্ম কত হবে?
```

Question 17

```
Let the function f:[a,b] \to R be defined as follows:- f(x) = 0 when x is rational = 1 when x is irrational. Then what is the value of upper sum S_p for a partition P on [a,b]? f:[a,b] \to R নিম্নোক্তভাবে সংজ্ঞাভ f(x) = 0 যথন x মূলদ = 1 যথন x অমূলদ ভাহলে [a,b] এর কোনও বিভাজন P এর ক্ষেত্রে উম্বর্সমষ্টি S_p এর মান কত হবে?
```

Question 18

```
Let the function f:[a,b] \to R be defined as f(x)=k \ \forall \ x \in [a,b] where k is a real no. Then what are the values of \int_a^b f(x) dx and \int_a^{\overline{b}} f(x) dx? ধরা যাক f:[a,b] \to R অপেক্ষকটি এমল যাতে f(x)=k \ \forall \ x \in [a,b] যেখালে k একটি বাস্তব সংখ্যা। ভাহলে \int_a^b f(x) dx এবং \int_a^{\overline{b}} f(x) dx এবং
```

Question 19

Let
$$f:[0,\ \pi] o R$$
 be difined as $f(x)=x^{\frac{2}{2}}\sin\frac{\pi}{x}$ when $0< x\leq \pi=0$ when $x=0$ Determine whether $f(x)$ and $f'(x)$ are bounded in $[0,\pi]$. ধরি $f:[0,\ \pi] o R$ এমল একটি অপেক্ষক যাতে
$$f(x)=x^{\frac{2}{2}}\sin\frac{\pi}{x}$$
 যথল $0< x\leq \pi=0$ যথল $x=0$ ভাহলে $f(x)$ এবং $f'(x),[0,\pi]$ অন্তরে সীমাবদ্ধ কিলা বিচার কর।

Question 20

```
If f[0,2] \to R is integrable on [0,2] and is such that it is continuous at x=1 and f(1)=2 and f(x)\geq 0 \ \forall \ x\in [0,2] then what will be the value of \int_a^b f(x)dx?
```

যদি $f[0,2] \to R$ একটি [0,2] অন্তরে সমাকলযোগ্য অপেক্ষক হয় এবং f(x), x=1 বিন্দুতে সন্ততঃ এবং f(1)=2 হয়, আবার $f(x)\geq 0 \ \forall \ x\in [0,2]$ হয় তাহলে $\int_a^b f(x)dx$ এর মান কি হবে?

Question 21

If $a < \int_0^4 \sqrt{9 + x^2} dx < b$ then what are the values of a and b ?

যদি $a < \int_0^4 \sqrt{9 + x^2} \, dx < b$ হয় তাহলে a এবং b এর মান কত ?

Question 22

If f(x)=x when $0\leq x<2$ $=x^2 \text{ when } 2\leq x\leq 3$ Then evaluate $\int_0^3 f(x)dx$ if f(x) is integrable on [0,3].

যদি f(x)=x যথন $0\leq x<2$ $=x^2$ যথন $2\leq x\leq 3$

হয় তাহলে $\int_0^3 f(x) dx$ এর মান নির্ণয় কর অবশ্য যদি f(x), [0,3] অন্তরে সমাকলনযোগ্য হয়।

Question 23

Change the order of integration of $\int_{x=0}^1 dx \, \int_{y=x}^{2x} (x^2+y^2) dy$.

 $\int_{x=0}^{1} dx \, \int_{y=x}^{2x} (x^2 + y^2) dy$ সমাকলনটি পরিবর্তিত ক্রম অনুসারে কি হবে ?

Question 24

What is the value of the improper

integral
$$\int_{-\sqrt{3}}^{\infty} \frac{dx}{1+x^2}$$
 ?

 $\int_{-\sqrt{3}}^{\infty} \frac{dx}{1+x^2}$ অযথার্থ সমাকলনটির মান কত ?

Question 25

Assuming $\int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log_e 2$, what is the value of $\int_0^{\pi} \log_e (1+\cos\theta) d\theta$?

 $\int_0^{\pi} \log(\sin x) \, dx = -\frac{\pi}{2} \log_e 2$ ধরে নিলে $\int_0^{\pi} \log_e (1+\cos\theta) d\theta$ এই সমাকলনটির মান কত হবে?

Question 26

Given that the improper integral $\int_{1}^{\infty} \frac{dx}{x^{2a}}$ is convergent. Then what is the range of a?

প্রদত্ত আছে $\int_{1}^{\infty} \frac{dx}{x^{2a}}$ অযথার্থ সমাকলনটি অভিসারী। তাহলে a এর মানের সীমা কত ?

Question 27

The improper integral $\int_0^\pi f(x)dx$ where $f(x)=\frac{1}{1-\cos x}$ is not convergent, can be proved by μ test, since $\lim_{x\to 0+} x^\mu f(x)=2$. What is the value of μ ?

 $\int_0^\pi f(x) dx$ যেখালে $f(x) = \frac{1}{1-\cos x}$ এই অযথার্থ সমাকলটিকে μ - পরীক্ষার সাহায্যে অভিসারী ন্য প্রমাণ করা যায় কারণ $\lim_{x\to 0+} x^\mu f(x) = 2 \cdot \mu$ -এর মান কত?

Question 28

What is the value of $\int_0^{\frac{\pi}{2}} \sin^4 \theta \cos^4 \theta \ d\theta$?

 $\int_0^{\frac{\pi}{2}} \sin^4 \theta \cos^4 \theta \ d\theta$ এর মাল কড?

Question 29

What is the sum of the convergent series $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n(n+1)}$?

 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n(n+1)}$ এই অভিসারী শ্রেণীটির যোগফল কড ?

Question 30

What will be the value of Fourier constant $b_k\ (k\in N)$ for the function

$$f(x) = -1 - \pi \le x \le 0$$

= 1 0 < x \le \pi ?

$$f(x)=-1$$
 $-\pi \le x \le 0$ $=1$ $0 \le x \le \pi$ এই অপেক্ষকের ক্ষেত্রে ফুরিয়ার প্রবক b_k $(k \in N)$ এর মান কত হবে ?