EPH-XI (UT-197/16)

স্নাতক পাঠক্রম (B.D.P.)

শিক্ষাবর্ষান্ত পরীক্ষা (Term End Examination) :

ডিসেম্বর, ২০১৫ ও জুন, ২০১৬

পদার্থবিদ্যা (Physics)

ঐচ্ছিক পাঠক্রম (Elective)

একাদশ পত্ৰ (11th Paper : Relativity and Advanced Mechanics)

সময় ঃ দুই ঘন্টা Time : 2 Hours পূৰ্ণমান ঃ ৫০

Full Marks: 50

মানের গুরুত্ব ঃ ৭০%

Weightage of Marks: 70%

পরিমিত ও যথাযথ উত্তরের জন্য বিশেষ মূল্য দেওয়া হবে। অশুদ্ধ বানান, অপরিচ্ছন্নতা এবং অপরিষ্কার হস্তাক্ষরের ক্ষেত্রে নম্বর কেটে নেওয়া হবে। উপাত্তে প্রশ্নের মূল্যমান সূচিত আছে।

Special credit will be given for accuracy and relevance in the answer. Marks will be deducted for incorrect spelling, untidy work and illegible handwriting.

The weightage for each question has been indicated in the margin.

১। যে-কোনো দটি প্রশ্নের উত্তর দিন ঃ ১০ × ২ = ২০

ক) তরঙ্গ অপেক্ষকের ভৌত তাৎপর্য লিখুন । এর প্রমাণীকরণ বলতে কী বোঝেন ? সস্কাব্যতার প্রবাহ ঘনত্ব ব্যাখ্যা করুন । সস্কাব্যতার সন্তততার সমীকরণটি লিখন ।

0+2+0+2

EPH-XI (UT-197/16)

2

খ) বিশেষ আপেক্ষিকতাবাদের স্বীকার্যগুলি লিখুন । দুটি
নির্দেশতন্ত্রের মধ্যে লরেনৎস রূপান্তর সমীকরণগুলি লিখুন
ও ব্যাখ্যা করুন । আপেক্ষিকতাবাদে দৃঢ় বস্তুর সংজ্ঞা কি
গ্রাহ্য ? গলনে বস্তুর ভর কি বৃদ্ধি পায় ?

8 + 8 + 5 + 5

- গ) স্বাতন্ত্র্য সংখ্যা ও প্রতিবন্ধ গতি উদাহরণসহ ব্যাখ্যা করুন। দা লাঁবের নীতি (D'Alembert's principle) থেকে ল্যাগ্রাঞ্জের সমীকরণ প্রতিষ্ঠা করুন। ২ + ৮
- ঘ) হাইজেনবার্গের অনিশ্চয়তা নীতিটি লিখুন । এর সাহায্যে পরমাণুর নিউক্লিয়াসে ইলেকট্রনের অনুপস্থিতির কারণ ব্যাখ্যা করুন । ডেভিসন-জারমার পরীক্ষার বর্ণনা ও ফলাফল আলোচনা করুন । ২ + ২ + ৬

২। যে-কোনো **তিনটি** প্রশ্নের উত্তর দিন ঃ ৬ × ৩ = ১৮

ক)
$$\begin{bmatrix} \stackrel{\wedge}{x}, \stackrel{\wedge}{p}_{\chi} \end{bmatrix} = i\hbar \ \text{হলে দেখান য}$$

$$\begin{bmatrix} \stackrel{\wedge}{x}, \stackrel{\wedge}{p}_{\chi}^n \end{bmatrix} = i\hbar n p_{\chi}^{n-1} \quad \text{এবং}$$

$$\begin{bmatrix} \stackrel{\wedge}{x}^n, \stackrel{\wedge}{p}_{\chi} \end{bmatrix} = i\hbar n x^{n-1}. \qquad \mathfrak{O} + \mathfrak{C}$$

B.Sc.-7206-B

[P.T.O.

B.Sc.-7206-B

3 **EPH-XI (UT-197/16)**

- খ) কার্টেজীয় তন্ত্রে মূলবিন্দুগামী কোন অক্ষের সাপেক্ষে কোন জড় বস্তুর জড়তা ভ্রামকের সাধারণ রাশিমালা নির্ণয় করুন।
- গ) পরীক্ষাগার ও ভরকেন্দ্র নির্দেশতন্ত্র কী ? জড় ও অজড় নির্দেশতন্ত্রের পার্থক্য উদাহরণসহ লিখুন ।
- ঘ) আপেক্ষিকতাবাদের সাপেক্ষে বেগ সংযোজন সূত্র প্রতিষ্ঠা করুন ।
- গ্রোয়েডিয়ায়ের সময় নির্ভর তরঙ্গ সমীকরণটি প্রতিষ্ঠা
 করুন।
- চ) আইনস্টাইন তাঁর আলোকতড়িৎ ক্রিয়ার সমীকরণের সাহায়্যে কীভাবে আলোকতড়িৎ নিঃসরণের বৈশিষ্ট্যগুলি ব্যাখ্যা করেন ?
- ৩। যে-কোনো চারটি প্রশ্নের উত্তর দিন ঃ ৩ × ৪ = ১২
 - ক) শব্দ ও আলোকের ডপলার ক্রিয়ার পার্থক্য করুন।
 - খ) ভর ও শক্তির সমতৃল্যতা নীতি ব্যাখ্যা করুন ।
 - গ) মিনকওস্কির চতুর্মাত্রিক জগৎ কী লিখন।
 - ঘ) কম্পটন্ ক্রিয়ার তত্ত্বটি সংক্ষেপে লিখুন।
 - ঙ) বোরের পরিপুরকতার নীতিটি আলোচনা করুন।

EPH-XI (UT-197/16)

- চ) এরেনফেস্টের উপপাদ্যটি লিখুন।
- ছ) নীচের সম্পর্কটি প্রতিষ্ঠা করুন ঃ $pq-qp=-i\hbar$, এখানে p এবং q প্রচলিত অর্থ বহন করে ।
- জ) কণা ও তরঙ্গের দ্বিচারিতা বলতে কী বোঝেন ?

(English Version)

- 1. Answer any *two* questions : $10 \times 2 = 20$
 - a) Write down the physical interpretation of wavefunction. What do you mean by normalisation of wavefunction ? Explain probability density. Write down the equation of continuity of probability.

$$3 + 2 + 3 + 2$$

- b) State the postulates of special theory of relativity. Write down Lorentz transformation equations in respect of two frames of reference and explain them. Is the definition of a rigid body acceptable in reality? Does the mass of body increase on melting?

 4 + 4 + 1 + 1
- Explain, with examples, degrees of freedom and constrained motion. Establish Lagrange's equation from D' Alembert's principle.

d) Write down Heisenberg's uncertainty principle. Explain with its help the non-existence of electron in the nucleus of an atom. Describe the experimental arrangement of Davisson and Germer's experiment and discuss the results of the experiment. 2+2+6

2. Answer any *three* questions : $6 \times 3 = 18$

a)
$$\begin{bmatrix} \stackrel{\wedge}{x}, \stackrel{\wedge}{p}_{\chi} \end{bmatrix} = i\hbar, \text{ then show that}$$

$$\begin{bmatrix} \stackrel{\wedge}{x}, \stackrel{\wedge}{p}_{\chi}^{n} \end{bmatrix} = i\hbar n p_{\chi}^{n-1} \text{ and}$$

$$\begin{bmatrix} \stackrel{\wedge}{x}^{n}, \stackrel{\wedge}{p}_{\chi} \end{bmatrix} = i\hbar n x^{n-1}.$$
 3 + 3

- b) Find out the general expression for moment of inertia of a rigid body about an axis passing through the origin in Cartesian system.
- c) What are laboratory and centre of mass reference systems? Distinguish between inertial and non-inertial frames with examples.
- d) Establish velocity addition theorem in connection with special theory of relativity.

B.Sc.-7206-B [P.T.O.

Deduce the time dependent Schrödinger wave equation.

3

- Discuss how Einstein could explain the features of photoelectric emission with the help of his photoelectric equation.
- Answer any *four* questions : 3.

 $3 \times 4 = 12$

- Distinguish between Doppler's effects in sound and light.
- Explain the mass and energy equivalence principle.
- Write about four dimensional world of Minkowski.
- Explain the theory of Compton effect in brief.
- Discuss Bohr's Complementarily principle. e)
- f) Write down Ehrenfest's theorem.
- Establish the following relation: $pq - qp = -i\hbar$, where p and q bear usual meanings.
- What do you understand by wave-particle h) dualism?