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Answer Question 
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Question No. 1 and any four from the rest : 

questions : 

 . Show that Inf A = 0. 
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n isometric image of a complete metric space is complete.

Show that every contraction in a metric space is a uniformly 

continuous function. 
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 b) If 
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 are bounded closed sets that are mutually disjoints 

then show that 
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3. a) Let O be an open interval containing E. Then show that 
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 b) Show that every step function over [ a, b ] is measurable. 4 

 c) Let f be the characteristic function of the set of all irrationals in                 

[ 0, 1 ]. Evaluate 
1

0

dxfL . 2 

4. a) State and prove Lebesgue Dominated Convergence Theorem. 7  

 b) If f is continuous in [ a, b ], and g ( x ) = 0 at x = a and 1)( xg  when            

x > a, show that 
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5. a) Obtain the Fourier series for kxcos in ],[   and deduce that 
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b) For any set G in ( X, d ), show that )()( GDiamGDiam  . What can 

you conclude about G if 0)( GDiam  ? 3 + 1 

6. a) Show that any sub-space of a separable metric space is separable. 5  

 b) If A and B are two subsets in ( X, d ) and B is compact, show that 

0),( BAdist if and only if BA I . 5 

7. a) Prove that every sequentially compact metric space is totally bounded 

and complete. 5 

 b) Show that a subset of reals with usual metric is connected if and only 

if it is an interval. 5 

   


