Question Bank For PG Course

Mathematics Paper-10A(i)

Special Paper: Pure Mathematics ADVANCED DIFFERENTIAL GEOMETRY: PGMT-XA

Question 1

Is the function $f: R \to R$ defined by $f(x) = x^3$, $\forall x \in R$ a homeomorphism from R to R?

Question 2

What is the tangent vector to the curve $\gamma(t) = (2 + t, t, t^2)$ in R^3 at the point (1,1,1)?

Question 3

If $(x_1, ..., x_n)$ is a local coordinate system in a neighbourhood U of p in the manifold M, then find the standard basis of the tangent space T_pM .

Question 4

Find the integral curve $\gamma(t)$ of the vector field $\frac{\partial}{\partial x}$ in R^2 .

Question 5

For two smooth functions $f: M \rightarrow N$ and $g: N \rightarrow K$, which of the followings is true?

1.
$$(g \circ f)^* = f^* \circ g^*$$

2.
$$(g \circ f)^* = g^* \circ f^*$$

3.
$$(g \circ f)^* = f^* \circ g^* \circ f^*$$

Question 6

If $(x_1, ..., x_n)$ is a local coordinate system in a neighbourhood U of p in the manifold M, then find the standard basis of the dual tangent space T_p^*M .

Question 7

Compute the following $(2dx + dy) \wedge (dx - dy)$

Question 8

What is the dimension of the following manifold?

$$\{(x, y, z) \in R^3: x^2 + y^2 + z^2 = 1\}$$

Question 9

Which of the following condition is satisfied by linear connection ∇ on M?

1.
$$\nabla_{fX}Y = f\nabla_XY$$

$$2. \quad \nabla_{fX}Y = \nabla_XY$$

3.
$$\nabla_{fX}Y = f\nabla_{Y}X$$

Question 10

"Every Riemannain metric admits a unique Riemannian connection"- is this statement true or false?

Question 11

Which of the following expression is/ are true for Riemannian curvature tensor?

1.
$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

$$2. \quad R(X,Y)Z + R(Z,X)Y = 0$$

3.
$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 1$$

Question 12

What is the scalar curvature of the Euclidean Space?

Question 13

Which of the following expression is/ are true for Riemannian curvature tensor field?

$$1.R(X,Y,Z,W) = -R(Y,X,Z,W)$$

2.
$$R(X,Y,Z,W) = R(Y,X,Z,W)$$

3.
$$R(X,Y,Z,W) = R(Y,Z,Z,W)$$

4.
$$R(X,Y,Z,W) = -R(X,X,Z,W)$$

Question 14

If ω is a 1-form, then which of the followings is true?

$$1.\omega \wedge \omega = 1$$

$$2. \omega \wedge \omega = 0$$

$$3. \omega \wedge \omega = -1$$

Question 15

What is the dimension of the tangent space of the manifold $M = \{(x, y) \in \mathbb{R}^2 : y > 0\}$?

Question 16

Let S^1 is the unit circle in the Euclidean plane R^2 . Does there exist a diffeomorphism between S^1 and R^2 ?

Question 17

Let f be a constant function in M and $X \in T_pM$ for $p \in M$. Find the value of X_pf .

Question 18

Let $(x_1, ..., x_n)$ be a local coordinate system in a neighbourhood U of p in the manifold M.Are the following vectors

$$\left(\frac{\partial}{\partial x_1}\right)_p, \dots, \left(\frac{\partial}{\partial x_{n-1}}\right)_p$$

linearly dependent or independent in the tangent space T_pM ?

Question 19

Let X, Y, Z be vector fields in M and f, g be smooth functions in M. Which of the following is/are true?

(i)
$$[fX, Y] = f[X, Y] - (Yf)X$$

(ii)
$$[X, fX] = 0$$

(iii)
$$[X, fX] = (Xf)X$$

Question 20

For two smooth functions $f: M \rightarrow$

N and $g: N \to K$,

which of the following is true?

$$1. \quad (g \circ f)_* = g_* \circ f_*$$

$$2. \quad (g \circ f)^* = g^* \circ f^*$$

$$3. \quad (g \circ f)^* = f^* \circ g^*$$

Question 21

Let X be any vector field on unit sphere S^2 . Which of the followings is/are true?

- (i) X is complete in S^2
- (ii) X is not complete in S^2
- (iii) X is not complete in S^2 but complete in $S^2 \{p\}$ for some point $p \in S^2$

Question 22

Let $\{\omega_1,\ldots,\omega_k\}$ be a set of 1-forms with $\omega_1\wedge\ldots\wedge\omega_k\neq 0$. Which of the following is/are true?

- (i) $\{\omega_1,\dots,\omega_k\}$ is linearly dependent
- (ii) $\{\omega_1, \dots, \omega_k\}$ is linearly independent
- (iii) $\{\omega_1, \dots, \omega_l\}$ is linearly dependent for some l < k.

Question 23

Let ω and λ be k-form and l-form respectively and f be smooth function on M. Calculate

$$d^2(f\omega \wedge \lambda)$$

Question 24

Which of the following is/are lie groups?

- (i) GL(n,R)
- (ii) $\{A \in GL(n,R): \det(A) = 1\}$
- (iii) R^n

Question 25

When is a linear connection said to be symmetric?

Question 26

What is the degree of the Riemannian curvature tensor field of 1st kind?

Question 27

What is the curvature of 3-dimensional Einstein manifold?

Question 28

What is the dimension of the tangent space $T_I(GL(n,R))$, where I is the identity matrix?

Question 29

If ω and μ are 1-forms, then which of the following is true?

$$1. \omega \wedge \mu = -\mu \wedge \omega$$
$$2. (\omega \wedge \omega) \wedge \mu = 0$$
$$3. \mu \wedge \mu = -1$$

Question 30

Does the following set form a manifold? $M = \{(x, 0) : x \in R\} \cup \{(0, y) : y \in R\}$