Question Bank For PG Course

Mathematics

Paper-1B

LINEAR ALGEBRA: PGMT-IB

Question 1

Which of the followings is/are vector space over the real field?

- 1. Set of all real polynomials R[x]
 - 2. Set of real polynomials of degree 2
 - 3. Set of real polynomials of degree less than 2

Question 2

Which of the followings is a subspace of the vector space \mathbb{R}^2 over the real field?

$$1.\{(x,0): x \in R\}$$

$$2.\{(x,2x):x\in R\}$$

$$3.\{(x,x^2):x\in R\}$$

Question 3

Let
$$W_1 = \{(x, 0): x \in R\}$$
 and $W_2 = \{(0, y): y \in R\}$. Is $W_1 \cup W_2$ a subspace Of R^2 ?

Question 4

Is the vector (1,2,3) linearly independent or dependent in the vector space R^3 over the real field?

Question 5

Are the vectors (1,2,3), (1,4,0), (0,0,5) and (1,5,0) linearly independent or dependent in the vector space \mathbb{R}^3 over the real field?

Question 6

What is the standard basis of the vector space $R_2[x]$, set of all real polynomials of degree less than or equal to 2, over the real field?

Question 7

What is the value of the inner product $(x,0) \ \forall x \in V$ in an inner product space V?

Question 8

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x,y,z) = (x,y,0), \forall (x,y,z) \in \mathbb{R}^3$. Find the kernel of T.

Question 9

Let $T: V \to W$ be a one-one linear transformation. Find the kernel of T.

Question 10

If a vector space V is isomorphic to the vector space \mathbb{R}^3 over the real field, then what is the dimension of V?

Question 11

Is λ is an eigenvalue of a non-singular matrix A, then what is the eigen value of the matrix A^{-1} ?

Question 12

Let $T: R^3 \to R^2$ be a linear transformation defined by T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z). Find the matrix of T relative to the basis (1,1,1), (1,1,0), (1,0,0) of R^3 and (1,3), (2,5) of R^2 .

Question 13

Find the eigen values of the matrix $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$.

Question 14

What are the eigen values of a real symmetric matrix?

Question 15

Let $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ and B is the diagonal matrix with eigen values of A as diagonal elements. If $B = P^{-1}AP$, then find P.

Question 16

Does the set of all real numbers form a vector space over the field of complex numbers?

Question 17

Is there any nontrivial subspace of the vector space of differentiable functions on [0,1] over R other than the subspace of infinitely differentiable functions on [0,1]?

Question 18

Let $W_n = \{(x, nx) : x \in R\}$ for n = 1,2,3,4. Does the set $W_1 \cap ... \cap W_4$ form a subspace of R^2 ?

Question 19

Is the vector (1,2,...,50) linearly independent or dependent in the vector space R^{50} over the real field?

Question 20

Does the set of vectors $B = \{(0,0,01), (0,1,1,1), (1,0,0,1)\}$ form a basis for the vector space R^4 over the real field?

Question 21

Let W be a nontrivial subspace of a finite dimensional vector space V. Can we extend a basis of W to a basis of V?

Question 22

What is the relation between the inner products(x,0) and (0,x) $\forall x \in V$ in an inner product space V?

Question 23

Let $T: \mathbb{R}^3 \to \mathbb{R}^5$ be a linear transformation defined by $T(x, y, z) = (0,0,0,0,0), \forall (x,y,z) \in \mathbb{R}^3$. Find the dimension of the kernel of T.

Question 24

Let $T: \mathbb{R}^2 \to W$ be a one-one linear transformation. Is the set $\{T(2,1), T(0,1)\}$ linearly independent or dependent in W?

Question 25

Find the rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)

Question 26

Let v and w be two eigen vectors of the eigen values α and β respectively of the matrix A. Are v and w linearly independent or dependent when $\alpha \neq \beta$?

Question 27

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y) = (x+3y,2x+5y,7x+9y). Find the matrix of T relative to the standard basis of \mathbb{R}^2 and \mathbb{R}^3 .

Question 28

Is the matrix

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \end{pmatrix}$$
 congruent to the matrix

$$\begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$$
?

Question 29

What is the modulus of each eigen value of a real orthogonal matrix?

Question 30

What is the dimensional of the vector space of all real polynomials with degree less than or equal to n?